CN110801228B - 一种基于神经网络预测的脑效应连接度量方法 - Google Patents

一种基于神经网络预测的脑效应连接度量方法 Download PDF

Info

Publication number
CN110801228B
CN110801228B CN201911054037.1A CN201911054037A CN110801228B CN 110801228 B CN110801228 B CN 110801228B CN 201911054037 A CN201911054037 A CN 201911054037A CN 110801228 B CN110801228 B CN 110801228B
Authority
CN
China
Prior art keywords
brain
reho
prediction
brain region
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911054037.1A
Other languages
English (en)
Other versions
CN110801228A (zh
Inventor
南姣芬
杨文雅
李志刚
郑倩
陈启强
夏永泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201911054037.1A priority Critical patent/CN110801228B/zh
Publication of CN110801228A publication Critical patent/CN110801228A/zh
Application granted granted Critical
Publication of CN110801228B publication Critical patent/CN110801228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明涉及一种基于神经网络预测的脑效应连接度量方法,包括步骤1:采集M个人静息态下的fMRI数据;步骤2:对每个fMRI数据进行预处理;步骤3:基于预处理后的fMRI数据,通过计算得到M个人的所有脑区的ReHo值,并构成ReHo值矩阵;步骤4:基于神经网络预测模型对每个人两两脑区的ReHo值进行网络训练及预测,得出每个人任意两两脑区之间的ReHo预测误差值,对ReHo预测误差值进行归一化,得出ReHo预测精确值;步骤5:将ReHo预测精确值作为两两脑区之间的效应连接值。本发明实现了非线性的计算脑效应连接。

Description

一种基于神经网络预测的脑效应连接度量方法
技术领域
本发明涉及影像分析技术领域,具体涉及静息态下fMRI人脑效应连接的度量方法,尤其涉及一种基于神经网络预测的脑效应连接度量方法。
背景技术
大脑是一个非常复杂的非线性神经网络系统,一个完整的任务往往需要涉及几个大脑区域乃至整个大脑。因此,对大脑功能整合进行研究就显得特别重要。目前,脑功能整合主要分两种策略:一种是注重时间相关性的功能连接,另一种则是探究因果关联的效应连接。功能连接从某种程度上来说只可以反映出交互作用的脑区,但却无法反映出交互脑区间的信息流向,而效应连接则弥补了功能连接这一缺点,不仅可以测量不同脑区相互作用的强度,还能反应其信息传递的方向。因此,通过构建效应连接能够更好地了解大脑皮层脑区间的交互模式。
目前,基于功能磁共振成像(functional magnetic resonance imaging,fMRI)数据进行有效连接分析常用的几种方法有:结构方程模型(Structural Equation Model,SEM)(Jiancheng zhuang,et al.Connectivity exploration with structural equationmodeling,NeuroImage[J].www.elsevier.com/locate/ynimg.NeuroImage 25(2005)462–470)、多变量自回归模型(Multivariate Autoregressivemodeling,MAR)、格兰杰因果模型(Granger Causality Analysis,GCA)及动态因果模型(Dynammic Causal Modeling,DCM)(Anil K.Seth,et al.Granger Causality Analysis in Neuroscience andNeuroimaging.pdf[J].The Journal of Neuroscience,February 25,2015·35(8):3293–3297·3293)。其中结构方程模型、多变量自回归模型及动态因果模型属于假设驱动的方法,存在一个共同的弊端是都需要预先选定相互作用的区域,并假设任意两个区域之间存在影响。虽然这种预先假设的模型在验证脑区之间的因果关系中有一定的作用,但是这种预先假设的模型无法弄清这种因果关系是否是因为另一个脑区引起的,可能会导致错误的判定结论。格兰杰因果分析方法可在无需先验知识下研究脑区间的因果关系,它是根据脑区活动信号时间序列之间的时间优先级来确定脑区间的因果关系,克服了上述方法的假设局限性。然而,格兰杰因果分析主要将脑功能活动假设为线性波动的,忽视了脑区活动信号非线性的生理特征。
神经网络是一种自主学习的技术,主要是通过建立神经网络初始模型,并对所提供的样本数据多次学习训练,不断修正模型初始参数,确定网络最终映射模型,达到模式分类、数据压缩、时间序列预测、函数逼近等目的的过程。在这个过程中,不仅无需任何先验知识,而且其模型映射关系既可以是线性的,也可以是非线性的,因此对样本数据有较好的适应性。因此,本发明设计了一种基于神经网络预测模型的脑效应连接度量方法。
发明内容
本发明针对有效连接分析的几种方法中的缺陷,提供一种基于神经网络预测的脑效应连接度量方法,实现了非线性的计算脑效应连接。
为实现所述目的,本发明所采用的技术方案是:
一种基于神经网络预测的脑效应连接度量方法,包括以下步骤:
步骤1:采集M个人静息态下的fMRI数据;
步骤2:对每个fMRI数据进行预处理;
步骤3:基于预处理后的fMRI数据,通过计算得到M个人的所有脑区的ReHo值,并构成ReHo值矩阵;
步骤4:基于神经网络预测模型对每个人两两脑区的ReHo值进行网络训练及预测,得出每个人任意两两脑区之间的ReHo预测误差值,对ReHo预测误差值进行归一化,得出ReHo预测精确值;
步骤5:将ReHo预测精确值作为两两脑区之间的效应连接值。
进一步地,所述的对每个fMRI数据进行预处理,具体包括以下步骤:
对采集到的fMRI数据从DICOM格式转换NIFTI格式后去除时间点;
对去除时间点后的fMRI数据进行切片时间层校正处理;
对切片时间校正后的fMRI数据进行头动校正,去除头动移动大于1.5mm或头动旋转角度大于1.5°的数据;
对头动校正后的fMRI数据进行空间标准化;
对空间标准化后的fMRI数据进行去线性漂移及带通滤波。
进一步地,所述的步骤3,具体包括以下步骤:
步骤3.1:对预处理后的fMRI数据分别计算每个人大脑中所有体素的ReHo值;
步骤3.2:选定一个脑模板,根据选定的脑模板将大脑划分为N个脑区,对应N个模板矩阵,N=1,2,3…90,分别计算每个脑区内每个体素的ReHo值;
步骤3.3:对每个脑区中所有体素的ReHo值进行平均得到该脑区的ReHo值,则每个人得到N个ReHo值,M个人的所有脑区的ReHo值组成一个M*N的ReHo值矩阵。
进一步地,所述的步骤3.3中,脑区的ReHo值计算公式如下:
Figure BDA0002256070820000031
其中,Wb是指第b个脑区的ReHo值,Maskb为第b个脑区的模板矩阵,V是第b个脑区中体素的个数,MatrixW是指全脑所有体素的ReHo值矩阵。
进一步地,所述的步骤4,具体包括以下步骤:
步骤4.1:为输入层、隐藏层和输出层的神经元之间设置映射关系,建立神经网络初始模型;
步骤4.2:通过神经网络初始模型训练确定神经网络预测模型;
步骤4.3:通过神经网络预测模型对测试数据集进行预测,得到每个人两两脑区之间的预测误差矩阵,即大小为N*N的矩阵E;
步骤4.4:将所有人的预测误差矩阵E进行归一化,并转换为预测精确率,具体如公式(4.15)所示:
Figure BDA0002256070820000032
其中,ACC表示所有脑区两两之间相互预测正确率矩阵,ACCA→B表示第A个脑区到第B个脑区的预测正确率,MAX(E)为误差矩阵E中数值最大的元素值,MIN(E)为误差矩阵E中数值最小的元素值,E是指两两脑区之间的预测误差值矩阵。
进一步地,所述步骤4.1包括:
建立输入层和隐藏层的映射关系:
Figure BDA0002256070820000033
Figure BDA0002256070820000034
其中,I、H分别为输入层神经元和隐藏层神经元的个数;
Figure BDA0002256070820000035
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元的输入值;/>
Figure BDA0002256070820000036
为第A个脑区到第B个脑区训练过程中输入层第i个神经元的输入值;f()为映射函数,/>
Figure BDA0002256070820000041
Figure BDA0002256070820000042
为第A个脑区到第B个脑区训练过程中输入层第i个神经元和隐藏层第h个神经元之间的权值;/>
Figure BDA0002256070820000043
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元的输出值;
建立隐藏层和输出层的映射关系:
Figure BDA0002256070820000044
Figure BDA0002256070820000045
其中,H、P分别为隐藏层神经元和输出层神经元的个数;
Figure BDA0002256070820000046
为第A个脑区到第B个脑区训练过程中输出层第p个神经元的输入值;/>
Figure BDA0002256070820000047
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元和输出层第p个神经元之间的权值;/>
Figure BDA0002256070820000048
为第A个脑区到第B个脑区训练过程中输出层第p个神经元的输出值。
进一步地,所述步骤4.2包括:
步骤4.2.1:令第B个脑区期望的输出值为
Figure BDA0002256070820000049
求误差函数如下:/>
Figure BDA00022560708200000410
其中,ERRA→B为第A个脑区到第B个脑区训练过程中误差函数;
Figure BDA00022560708200000411
为第A个脑区到第B个脑区训练过程中第p个神经元的误差;/>
Figure BDA00022560708200000412
为第B个脑区第p个神经元期望的输出值;
步骤4.2.2:计算误差函数对隐藏层和输出层之间参数的偏导数
Figure BDA00022560708200000413
及误差函数对输入层和隐藏层之间参数的偏导数/>
Figure BDA00022560708200000414
步骤4.2.3:通过训练不断修正权值参数,确定神经网络预测模型:
设置训练参数,所述训练参数包括学习速率η、最大训练次数ε和均方误差SSE;调整隐藏层和输出层之间的参数,以及输入层和隐藏层之间的参数:
Figure BDA0002256070820000051
Figure BDA0002256070820000052
其中,Δ为迭代次数;
计算网络训练误差,判断所述误差是否满足要求,当误差达到预设均方误差SSE或训练次数大于设定的最大训练次数ε,则结束训练,否则继续输入训练数据集进行训练。
进一步地,所述步骤4.3包括:
步骤4.3.1:根据神经网络预测模型进行ReHo值预测:
Figure BDA0002256070820000053
其中,ΨA→B表示第A个脑区预测第B个脑区的最终ReHo值预测结果;
Figure BDA0002256070820000054
表示通过所述步骤4.2.3确定的第A个脑区预测第B个脑区中第i个输入层和第h个隐藏层之间的权值;/>
Figure BDA0002256070820000055
表示通过步骤4.2.3确定的第A个脑区预测第B个脑区中第h个隐藏层和第p个输出层之间的权值;/>
Figure BDA0002256070820000056
表示第A个脑区第i个输入层神经元的ReHo输入值;
步骤4.3.2:计算每个人两两脑区之间的预测误差矩阵:
EA→B=|ΨA→B-ReHoB| (4.13)
Figure BDA0002256070820000057
其中,EA→B表示第A个脑区预测第B个脑区的预测误差值;ReHoB表示第B个脑区的真实ReHo值;E表示N个脑区两两脑区之间的预测误差矩阵。
通过上述技术方案,本发明的有益效果为:
1.效应连接的传统计算方法是基于先验模型的,如果先验模型本身不全面或者有错误,就会导致对效应连接错误的评估。本发明基于神经网络预测结合留一法交叉验证训练进行效应连接评估,是一种数据驱动方式,不需要任何脑相互作用的先验知识,克服了上述问题,使得结果更加可靠。
2.目前应用最为广泛的格兰杰因果分析方法,相比于传统计算方法具有很大优势,其也是基于数据驱动的分析技术,但是格兰杰因果检测大都假定其所检测信号具有线性特征。然而,对于大脑来说,其功能活动是非线性波动的,因此格兰杰因果的测量会导致对脑效应连接的评估不可靠。本发明基于神经网络预测模型,通过非线性映射关系来检测效应连接,使得对脑区活动之间的作用关系估计更准确、可靠。
3.传统进行脑效应连接分析的特征选取一般基于fMRI初始时间序列,较为直观,但属于低水平的初步分析,对每个时间点的波动情况较为敏感,使得噪声带来的影响较大。ReHo作为分析fMRI脑本质功能活动的一种技术,其稳定性得到科研人员的广泛验证。本发明基于这种更高层次的ReHo作为训练特征,相比于传统低水平分析具有更高的可靠性。
附图说明
图1是本发明一种基于神经网络预测的脑效应连接度量方法的流程示意图;
图2是本发明得到的较为显著的脑效应连接的脑网络示意图;
图3是采用格兰杰方法得到的较为显著的脑效应连接的脑网络示意图。
具体实施方式
下面结合附图及具体实施方式对本发明作进一步详细描述:
如图1所示,一种基于神经网络预测的脑效应连接度量方法,包括以下步骤:
步骤S11:采集M个人静息态下的fMRI数据;
所采集的fMRI数据是在被试者处于静息闭眼状态(未受到任何刺激,也不执行任何任务)下,通过德国西门子公司的3T磁共振扫描仪采用梯度平面回波成像序列得到的,其参数如下,层厚度为5mm,矩阵大小为64×64,回波时间为30ms,重复时间为2s,翻转角度为90o,层内分辨率为3.75×3.75mm2。每个被试者的扫描过程需要6分钟,共采集180个时间点。在扫描过程中,被试者要求保持清醒并放松的状态,同时使用乌龙头线圈和泡沫垫子固定被试头部避免头动。
作为一种可实施方式,本实施例中的M个人选取的是60个健康人士。
步骤S12:对每个fMRI数据进行预处理;
所述的对每个fMRI数据进行预处理,具体包括以下步骤:
对采集到的fMRI数据从DICOM格式转换NIFTI格式后去除时间点,以避免刚开始扫描仪的不稳定或者被试者不适应等因素对结果的影响,去除前10个时间点;
为了消除层与层之间扫描时间的差异对结果造成影响,对去除时间点后的fMRI数据进行切片时间层校正处理;
为了避免在扫描期间头动对结果的影响,对切片时间校正后的fMRI数据进行头动校正,去除头动移动大于1.5mm或头动旋转角度大于1.5°的数据;
为了消除不同被试者个体大脑形态的差异,对头动校正后的fMRI数据进行空间标准化;
对空间标准化后的fMRI数据进行去线性漂移及带通滤波,以去除扫描仪及生理活动产生的噪声,提高信噪比;带通滤波的频率为0.01~0.08Hz。
步骤S13:基于预处理后的fMRI数据,通过计算得到M个人的所有脑区的ReHo值,并构成ReHo值矩阵;
优选地,所述的步骤S13,具体包括以下步骤:
步骤S131:对预处理后的fMRI数据分别计算每个人大脑中所有体素的ReHo值;
步骤S132:选定一个脑模版,根据所选定的脑模板将大脑划分为N个脑区,每个脑区包含多个体素,对应N个模板矩阵,每个模板矩阵中元素值要么为1,要么为0,1表示对应体素属于该脑区,0则表示对应体素不属于该脑区;
具体地,脑模板选定为AAL标准脑模板;根据选定的脑模板将每个大脑划分为N个脑区,N=1,2,3…90;
步骤S133:对每个脑区中所有体素的ReHo值进行平均得到该脑区的ReHo值,则每个人得到N个ReHo值,并将M个人的所有脑区的ReHo值组成一个M*N的ReHo值矩阵;具体计算如下:
脑区的ReHo值计算公式如下:
Figure BDA0002256070820000071
其中,Wb是指第b个脑区的ReHo值,Maskb为第b个脑区的模板矩阵(矩阵中元素值要么为1,要么为0,1表示元素对应的大脑体素属于该脑区),∑表示矩阵中所有元素求和,V是第b个脑区中体素的个数,MatrixW是指全脑所有体素的ReHo值矩阵,矩阵中每个元素对应着一个全脑中一个体素的ReHo值,公式如(3.2)所示。
Figure BDA0002256070820000081
其中,ReHov表示大脑中第v个体素的ReHo值,K表示大脑中第v个体素的邻居个数加1(K取值一般为7,19或27,这里我们取K=27),Sτk表示对K个互为邻居体素组成的核团中第k个体素所有时间点的值进行从小到大排序后,第τ个时间点所在的排序序号,τ=1,2,...,T,k=1,2,...,K,T表示时间序列中时间点的个数。
步骤S14:基于神经网络预测模型对每个人两两脑区的ReHo值进行网络训练及预测,得出每个人任意两两脑区之间的ReHo预测误差值,对ReHo预测误差值进行归一化,得出ReHo预测精确值;
所述的步骤S14,具体包括以下步骤:
步骤S141:建立神经网络初始模型;神经网络模型包括输入层、隐藏层和输出层,所述输入层、隐藏层和输出层分别包括若干神经元,给三层神经元之间设置映射关系,建立神经网络初始模型;
步骤S141具体包括:
步骤S141.1:设置输入层、隐藏层和输出层的初始值:输入层、隐藏层和输出层分别包含I、H、P个神经元,其中输入层的神经元个数由选取特征数决定,输出层的神经元个数由预测结果个数决定,隐藏层的神经元的个数是由一个经验公式得到的,公式如下:
Figure BDA0002256070820000082
本实施例中输入层设置有1(I=1)个神经元,我们这里选取了一个特征ReHo,即输入层共一个神经元,该神经元为一个脑区的ReHo值,隐藏层设置有4(H=4)个神经元,我们想要的是一个脑区的ReHo预测值,故输出层设置1(P=1)个神经元,该神经元的输出值为一个脑区的ReHo预测值。
步骤4.1.2:建立输入层和隐藏层的映射关系:
Figure BDA0002256070820000083
Figure BDA0002256070820000084
其中,I、H分别为输入层神经元和隐藏层神经元的个数;
Figure BDA0002256070820000091
为隐藏层第h个神经元的输入值;/>
Figure BDA0002256070820000092
为输入层第i个神经元的输入值;f()为映射函数,/>
Figure BDA0002256070820000093
Figure BDA0002256070820000094
为输入层第i个神经元和隐藏层第h个神经元之间的权值,初始值设为接近于0的随机值;
Figure BDA0002256070820000095
为隐藏层第h个神经元的输出值;注意:以上过程均为第A个脑区到第B个脑区训练过程中得到的中间值。
建立隐藏层和输出层的映射关系:
Figure BDA0002256070820000096
Figure BDA0002256070820000097
其中,H、P分别为隐藏层神经元和输出层神经元的个数;
Figure BDA0002256070820000098
为输出层第p个神经元的输入值;/>
Figure BDA0002256070820000099
为隐藏层第h个神经元和输出层第p个神经元之间的权值,初始值设为接近于0的随机值;/>
Figure BDA00022560708200000910
为输出层第p个神经元的输出值。注意:以上过程均为第A个脑区到第B个脑区训练过程中得到的中间值。
步骤S142:通过神经网络初始模型训练确定神经网络预测模型;确定神经网络预测模型的过程,就是调整神经网络模型中权值的过程。
所述步骤S142具体包括:
步骤S142.1:令第B个脑区期望的输出值为
Figure BDA00022560708200000911
求误差函数如下:
Figure BDA00022560708200000912
其中,ERRA→B为误差函数;
Figure BDA00022560708200000913
为第A个脑区到第B个脑区训练过程中第p个神经元的误差;H,P分别为隐藏层和输出层神经元的个数;/>
Figure BDA00022560708200000914
为输出层第p个输出神经元的输出;/>
Figure BDA00022560708200000915
为输出层输出神经元的输入;/>
Figure BDA00022560708200000916
为隐藏层第h个神经元和第p个神经元之间的权值。注意:以上过程均为第A个脑区到第B个脑区训练过程中得到的中间值。
步骤S142.2:计算误差函数对隐藏层和输出层之间参数的偏导数
Figure BDA0002256070820000101
Figure BDA0002256070820000102
其中,ERRA→B为误差函数;H,P分别为隐藏层和输出层神经元的个数;
Figure BDA0002256070820000103
为输出层第p个神经元的输出值;/>
Figure BDA0002256070820000104
为输出层第p个神经元的输入值;/>
Figure BDA0002256070820000105
为隐藏层第h个神经元的输出值;/>
Figure BDA0002256070820000106
为隐藏层第h个神经元和输出层第p个神经元之间的权值。注意:以上过程均为第A个脑区到第B个脑区训练过程中得到的中间值。
接着,计算误差函数对输入层和隐藏层之间参数的偏导数
Figure BDA0002256070820000107
Figure BDA0002256070820000108
其中,ERRA→B为误差函数;H,P,I分别为隐藏层、输出层和输入层神经元的个数;
Figure BDA0002256070820000109
为输出层第p个神经元的输出值;/>
Figure BDA00022560708200001010
为输出层第p个神经元的输入值;/>
Figure BDA00022560708200001011
为隐藏层第h个神经元的输出值;/>
Figure BDA00022560708200001012
为隐藏层第h个神经元的输入值;/>
Figure BDA00022560708200001013
为输入层第i个神经元的输入值;/>
Figure BDA00022560708200001014
为隐藏层第h个神经元和第p个神经元之间的权值;/>
Figure BDA00022560708200001015
为隐藏层第i个神经元和第h个神经元之间的权值。
注意:以上过程均为第A个脑区到第B个脑区训练过程中得到的中间值。
步骤S142.3:通过训练不断修正权值参数,确定神经网络预测模型:
设置训练参数,所述训练参数包括学习速率η、最大训练次数ε和均方误差SSE;本实施例中将学习速率设置为0.05,最大训练次数设置为50000,均方误差设置为10-3,参数设置好进行下一步训练模型。
调整隐藏层和输出层之间的参数,以及输入层和隐藏层之间的参数:
Figure BDA0002256070820000111
Figure BDA0002256070820000112
其中,Δ为迭代次数。
值得注意的是,以上过程是采用留一法交叉验证进行。也就是说,每次实现过程中,只留下被试组中一个样本做测试集,其它M-1个样本做为训练集,则以上过程需要迭代M次,即训练M次,将精度最好的训练网络模型固化下来用于最后预测,得到预测值。具体来讲,将测试集中一个样本的给定脑区ReHo值输入至最终确定的神经网络模型的输入层,在输出层得到给定脑区到另外一个脑区的ReHo预测值;对所有被试进行上述过程,最终得到每个人的任意两两脑区之间的ReHo预测值。
计算网络训练误差,判断所述误差是否满足要求,当误差达到预设均方误差SSE或训练次数大于设定的最大训练次数ε,则结束训练,否则继续输入训练数据集进行训练,误差计算公式如(4.11)所示:
Figure BDA0002256070820000113
其中,M表示样本数,P表示输出神经元的个数,
Figure BDA0002256070820000114
表示第m个样本在输出层的第p个神经元的输出结果,/>
Figure BDA0002256070820000115
第m个样本在输出层的第p个神经元的真实结果。
步骤S143:通过神经网络预测模型对测试数据集进行预测,得到每个人两两脑区之间的预测误差矩阵,即大小为N*N的矩阵E;
所述步骤S143具体包括:
步骤S143.1:根据步骤S142中所确定的神经网络预测模型进行ReHo值预测:
Figure BDA0002256070820000116
其中,ΨA→B表示第A个脑区预测第B个脑区的最终ReHo值预测结果;
Figure BDA0002256070820000117
表示通过所述步骤4.2.3确定的第A个脑区预测第B个脑区中第i个输入层和第h个隐藏层之间的权值;/>
Figure BDA0002256070820000118
表示通过步骤4.2.3确定的第A个脑区预测第B个脑区中第h个隐藏层和第p个输出层之间的权值;/>
Figure BDA0002256070820000121
表示第A个脑区第i个输入层神经元的ReHo输入值。
步骤S143.2:计算每个人两两脑区之间的预测误差矩阵:
EA→B=|ΨA→B-ReHoB|(4.13)
Figure BDA0002256070820000122
其中,EA→B表示第A个脑区预测第B个脑区的预测误差值;ΨA→B表示步骤S143.1得到的第A个脑区预测第B个脑区的预测值;ReHoB表示第B个脑区的真实ReHo值;E表示N个脑区两两脑区之间的预测误差矩阵。
步骤S144:将所有人的预测误差矩阵E进行归一化,并转换为预测精确率,具体如公式(4.15)所示:
Figure BDA0002256070820000123
其中,ACC表示所有脑区两两之间相互预测正确率矩阵,ACCA→B表示第A个脑区到第B个脑区的预测正确率,其值的大小在0~1之间,其值越大表示第A脑区与第B脑区之间的因果关系越强(A=1,2,...,N;B=1,2,...,N)。MAX(E)为误差矩阵E中数值最大的元素值,MIN(E)为误差矩阵E中数值最小的元素值,E是指两两脑区之间的预测误差值矩阵。
步骤S15:将ReHo预测精确值作为两两脑区之间的效应连接值。
为验证本发明效果,将本发明的结果与传统格兰杰因果方法得到的结果做对比分析,对比如下:
通过本发明方法(EC-BPP)和传统格兰杰因果方法(GCA)分别对60个健康人士进行训练,并构建脑效应连接网络,根据效应连接值分别得出较为显著的50条脑网络效应连接的具体情况,如表1所示;同时,图2给出了采用本发明方法得到的较为显著的脑效应连接的脑网络示意图,图3给出了采用格兰杰效应连接方法得到的较为显著的脑效应连接的脑网络示意图。
表1:两种方法效应连接较为显著的50条网络连接情况表
Figure BDA0002256070820000131
/>
Figure BDA0002256070820000141
Figure BDA0002256070820000151
/>
从表1中传统格兰杰因果方法(GCA)得出的前50个效应连接中的结果发现,基底神经节网络的三个主要脑区(尾状核(CAU)、豆状苍白球(PAL)和豆状壳核(PUT))之间的连接及到丘脑(THA)和补充运动区(SMA)的连接较多。因为GCA分析为线性的直接因果分析,其结果暗示与基底神经节、丘脑和补充运动区中较强的直接因果连接,可能是脑网络通路中的重要部分,然而其无法测量出非线性的脑效应连接。
从表1可以看出,通过本发明方法(EC-BPP)得出的大部分都是从其他脑区到旁海马(PHG)的连接,还有一小部分是到海马(HIP)的连接。由该方法得到结果中有很多作用于旁海马的效应连接,有可能暗示了旁海马具有复杂的功能,这与之前的研究一致,在之前的研究中,本领域技术人员知道旁海马组织位于内侧颞叶,是连接海马和大脑新皮层的重要通道,并且旁海马参与很重要的认知功能,比如长时记忆、工作记忆以及感知。另外,旁海马和海马都是默认网络的主要功能脑区,之前的研究证明,静息态下大脑最活跃的功能脑网络是默认网络。而本发明中采用的fMRI数据都是静息态下得到的结果,这可能也是到旁海马和海马脑区的效应连接较多的原因。
本发明的方法和格兰杰因果模型得到的连接较强的脑区虽然不同,但是它们的结果存在互补的可能,因为两种结果分别从不同方面反映了大脑的有向连接情况,为脑效应连接提供更有效的度量。
为进一步验证本发明效果,采用模拟数据集对本发明的结果与传统格兰杰因果方法得到的结果做对比分析,对比如下:
步骤(1)、建立模拟数据模型,如下所示,该模拟数据模型中包括四个非线性的时间序列信号,分别为X1、X2、X3和X4,序号分别为1、2、3、4,并且从模型中明显的看出来存在X1→X2,X1→X3,X1→X4四个因果关系。
i=1:1:200;
Figure BDA0002256070820000152
步骤(2)、求该模拟数据的效应连接计算特征,这里使用移动平均法分别求出四个序列的移动平均值特征。移动平均法是指选择一定的平均项数(这里我们取平均项数为5项),采用逐项递移的方法对原来的时间序列计算一系列的移动平均值(这里得到长度为195的移动平均值序列),如下所示:
Figure BDA0002256070820000161
Figure BDA0002256070820000162
步骤(3)、将步骤(2)得到的长度为195的四个移动平均值序列分别作为原始时间序列的特征,用留一法交叉验证方式得到特征的训练集和测试集,用训练集对初始神经网络模型进行训练,得到最终确定的神经网络预测模型用于下一步的预测。此时A,B=1,2,3,4,代表时间序列信号的序号,当A=1,B=2时,表示从第1个时间序列到第2个时间序列的训练过程,即X1→X2的训练过程。
步骤(4)、采用本发明方法,通过神经网络初始模型训练确定神经网络预测模型,具体地,本实施例中,A,B=1,2,3,4,代表时间序列信号的序号。
步骤(5)、将测试集输入步骤(4)得到的神经网络预测模型中,与期望输出作差得到两两序列之间的预测误差值,对预测误差进行归一化并用1减得到预测精确值,用预测精确值作为效应连接值。
所述步骤(5)具体包括:
步骤(5.1):采用公式(4.12),根据步骤(4)中所确定的神经网络预测模型进行移动平均值的预测,具体地,本实施例采用一个输入层和一个输出层,即P=1,i=1,且A,B=1,2,3,4,代表时间序列信号的序号,公式(4.12)变形如下:
Figure BDA0002256070820000163
其中,ΨA→B表示第A个时间序列到第B个时间序列的最终移动平均值预测结果;
Figure BDA0002256070820000164
表示第A个时间序列预测第B个时间序列的输入层到第h个隐藏层的权值;/>
Figure BDA0002256070820000165
表示第A个个时间序列预测第B个时间序列的第h个隐藏层到输出层的权值;/>
Figure BDA0002256070820000166
表示第A个时间序列的第i个移动平均值。
步骤(5.2):采用公式(4.13)及公式(4.14)计算每个移动平均值两两时间序列之间的预测误差矩阵,本实施例中,公式(4.13)及公式(4.14)变形如下:
EA→B=|ΨA→B-MeanB|
Figure BDA0002256070820000171
其中,EA→B表示第A个时间序列预测第B个时间序列的预测误差值(A=1,2,3,4;B=1,2,3,4);ΨA→B表示第A个时间序列预测第B个时间序列的预测值;MeanB表示第B个时间序列的真实移动平均值;E表示4个时间序列两两移动平均值之间的预测误差矩阵。
步骤(5.3):采用公式(4.15)将所有移动平均值的预测误差矩阵E进行归一化,并转换为预测精确率,此时公式中A,B=1,2,3,4,代表时间序列信号的序号,公式(4.15)变形如下:
Figure BDA0002256070820000172
其中,ACC表示四个时间序列两两之间相互预测正确率矩阵,ACCA→B表示第A个时间序列到第B个时间序列的预测正确率,其值的大小在0~1之间,其值越大表示第A个时间序列与第B个时间序列的因果关系越强(A=1,2,3,4;B=1,2,3,4)。MAX(E)为误差矩阵E中数值最大的元素值,MIN(E)为误差矩阵E中数值最小的元素值,E是指两两时间序列之间的预测误差值矩阵。
步骤(6):将移动平均值预测精确值作为两两时间序列之间的效应连接值。
本发明的结果与传统格兰杰因果方法四个时间序列两两之间的效应连接情况如表2所示:
表2:两种方法四个时间序列两两之间的效应连接情况表
Figure BDA0002256070820000173
注:表中所有值均表明从列到行的因果关系;在GCA方法中,当两个时间序列之间效应连接值大于0.1时,表明两个时间序列之间有因果关系;在EC-BPP方法中,当两个时间序列之间效应连接值大于0.6时,表明两个时间序列之间有因果关系;
从表2中传统格兰杰因果方法(GCA)得到的效应连接值表明四个时间序列两两之间都没有因果关系,这与实际数据情况相背离,说明GCA方法对非线性信号之间效应连接的预测能力非常不好。然而,从EC-BPP方法中的结果中可以看出来,X1→X2(0.721),X1→X3(0.723)和X1→X4(0.727)之间存在因果关系,说明该方法能准确的求出非线性信号之间的因果关系。
本发明用ReHo值来作为衡量效应连接值的指标,并结合了神经网络预测模型,属于非线性的数据驱动方法,克服了以往效应连接模型的弊端。在以后的研究中,可以将方法向更多其他指标推广,如低频振幅分析、复杂熵等。同时,本发明中预测模型是基于BP神经网络基础改进而成,今后可以将本方法向支持向量机、人工神经网络等模型中推广应用,其应该也是非常有效的预测方法,在以后的研究中可以对不同预测模型的效果进行对比分析,对脑疾病相关的临床医学将具有重要的指导意义。
以上所述之实施例,只是本发明的较佳实施例而已,并非限制本发明的实施范围,故凡依本发明专利范围所述的构造、特征及原理所做的等效变化或修饰,均应包括于本发明申请专利范围内。

Claims (7)

1.一种基于神经网络预测的脑效应连接度量方法,其特征在于,包括以下步骤:
步骤1:采集M个人静息态下的fMRI数据;
步骤2:对每个fMRI数据进行预处理;
步骤3:基于预处理后的fMRI数据,通过计算得到M个人的所有脑区的ReHo值,并构成ReHo值矩阵;
步骤4:基于神经网络预测模型对每个人两两脑区的ReHo值进行网络训练及预测,得出每个人任意两两脑区之间的ReHo预测误差值,对ReHo预测误差值进行归一化,得出ReHo预测精确值;
所述的步骤4,具体包括以下步骤:
步骤4.1:为输入层、隐藏层和输出层的神经元之间设置映射关系,建立神经网络初始模型;
步骤4.2:通过神经网络初始模型训练确定神经网络预测模型;
步骤4.3:通过神经网络预测模型对测试数据集进行预测,得到每个人两两脑区之间的预测误差矩阵,即大小为N*N的矩阵E;
步骤4.4:将所有人的预测误差矩阵E进行归一化,并转换为预测精确率,具体如公式(4.15)所示:
Figure FDA0004119682720000011
其中,ACC表示所有脑区两两之间相互预测正确率矩阵,ACCA→B表示第A个脑区到第B个脑区的预测正确率,MAX(E)为误差矩阵E中数值最大的元素值,MIN(E)为误差矩阵E中数值最小的元素值,E是指两两脑区之间的预测误差值矩阵;
步骤5:将ReHo预测精确值作为两两脑区之间的效应连接值。
2.根据权利要求1所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述的对每个fMRI数据进行预处理,具体包括以下步骤:
对采集到的fMRI数据从DICOM格式转换NIFTI格式后去除时间点;
对去除时间点后的fMRI数据进行切片时间层校正处理;
对切片时间校正后的fMRI数据进行头动校正,去除头动移动大于1.5mm或头动旋转角度大于1.5°的数据;
对头动校正后的fMRI数据进行空间标准化;
对空间标准化后的fMRI数据进行去线性漂移及带通滤波。
3.根据权利要求1所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述的步骤3,具体包括以下步骤:
步骤3.1:对预处理后的fMRI数据分别计算每个人大脑中所有体素的ReHo值;
步骤3.2:选定一个脑模板,根据选定的脑模板将大脑划分为N个脑区,对应N个模板矩阵,N=1,2,3…90,分别计算每个脑区内每个体素的ReHo值;
步骤3.3:对每个脑区中所有体素的ReHo值进行平均得到该脑区的ReHo值,则每个人得到N个ReHo值,M个人的所有脑区的ReHo值组成一个M*N的ReHo值矩阵。
4.根据权利要求3所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述的步骤3.3中,脑区的ReHo值计算公式如下:
Figure FDA0004119682720000021
其中,Wb是指第b个脑区的ReHo值,Maskb为第b个脑区的模板矩阵,V是第b个脑区中体素的个数,MatrixW是指全脑所有体素的ReHo值矩阵。
5.根据权利要求1所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述步骤4.1包括:
建立输入层和隐藏层的映射关系:
Figure FDA0004119682720000022
Figure FDA0004119682720000023
其中,I、H分别为输入层神经元和隐藏层神经元的个数;
Figure FDA0004119682720000024
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元的输入值;/>
Figure FDA0004119682720000025
为第A个脑区到第B个脑区训练过程中输入层第i个神经元的输入值;f()为映射函数,/>
Figure FDA0004119682720000026
Figure FDA0004119682720000027
为第A个脑区到第B个脑区训练过程中输入层第i个神经元和隐藏层第h个神经元之间的权值;/>
Figure FDA0004119682720000031
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元的输出值;
建立隐藏层和输出层的映射关系:
Figure FDA0004119682720000032
Figure FDA0004119682720000033
其中,H、P分别为隐藏层神经元和输出层神经元的个数;
Figure FDA0004119682720000034
为第A个脑区到第B个脑区训练过程中输出层第p个神经元的输入值;/>
Figure FDA0004119682720000035
为第A个脑区到第B个脑区训练过程中隐藏层第h个神经元和输出层第p个神经元之间的权值;/>
Figure FDA0004119682720000036
为第A个脑区到第B个脑区训练过程中输出层第p个神经元的输出值。
6.根据权利要求5所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述步骤4.2包括:
步骤4.2.1:令第B个脑区期望的输出值为
Figure FDA0004119682720000037
求误差函数如下:/>
Figure FDA0004119682720000038
其中,ERRA→B为第A个脑区到第B个脑区训练过程中误差函数;
Figure FDA0004119682720000039
为第A个脑区到第B个脑区训练过程中第p个神经元的误差;/>
Figure FDA00041196827200000310
为第B个脑区第p个神经元期望的输出值;
步骤4.2.2:计算误差函数对隐藏层和输出层之间参数的偏导数
Figure FDA00041196827200000311
及误差函数对输入层和隐藏层之间参数的偏导数/>
Figure FDA00041196827200000312
步骤4.2.3:通过训练不断修正权值参数,确定神经网络预测模型:
设置训练参数,所述训练参数包括学习速率η、最大训练次数ε和均方误差SSE;调整隐藏层和输出层之间的参数,以及输入层和隐藏层之间的参数:
Figure FDA0004119682720000041
Figure FDA0004119682720000042
其中,△为迭代次数;
计算网络训练误差,判断所述误差是否满足要求,当误差达到预设均方误差SSE或训练次数大于设定的最大训练次数ε,则结束训练,否则继续输入训练数据集进行训练。
7.根据权利要求6所述的一种基于神经网络预测的脑效应连接度量方法,其特征在于,所述步骤4.3包括:
步骤4.3.1:根据神经网络预测模型进行ReHo值预测:
Figure FDA0004119682720000043
其中,ΨA→B表示第A个脑区预测第B个脑区的最终ReHo值预测结果;
Figure FDA0004119682720000044
表示通过所述步骤4.2.3确定的第A个脑区预测第B个脑区中第i个输入层和第h个隐藏层之间的权值;
Figure FDA0004119682720000045
表示通过步骤4.2.3确定的第A个脑区预测第B个脑区中第h个隐藏层和第p个输出层之间的权值;/>
Figure FDA0004119682720000046
表示第A个脑区第i个输入层神经元的ReHo输入值;
步骤4.3.2:计算每个人两两脑区之间的预测误差矩阵:
EA→B=|ΨA→B-ReHoB|(4.13)
Figure FDA0004119682720000047
其中,EA→B表示第A个脑区预测第B个脑区的预测误差值;ReHoB表示第B个脑区的真实ReHo值;E表示N个脑区两两脑区之间的预测误差矩阵。
CN201911054037.1A 2019-10-31 2019-10-31 一种基于神经网络预测的脑效应连接度量方法 Active CN110801228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911054037.1A CN110801228B (zh) 2019-10-31 2019-10-31 一种基于神经网络预测的脑效应连接度量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911054037.1A CN110801228B (zh) 2019-10-31 2019-10-31 一种基于神经网络预测的脑效应连接度量方法

Publications (2)

Publication Number Publication Date
CN110801228A CN110801228A (zh) 2020-02-18
CN110801228B true CN110801228B (zh) 2023-06-02

Family

ID=69489933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911054037.1A Active CN110801228B (zh) 2019-10-31 2019-10-31 一种基于神经网络预测的脑效应连接度量方法

Country Status (1)

Country Link
CN (1) CN110801228B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113100780B (zh) * 2021-03-04 2022-07-26 北京大学 同步脑电-功能磁共振数据的自动化处理方法
CN114510966B (zh) * 2022-01-14 2023-04-28 电子科技大学 一种基于图神经网络的端到端大脑因果网络构建方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567803A (zh) * 2018-12-18 2019-04-05 中国人民解放军战略支援部队信息工程大学 基于实时神经反馈技术的海马体自我调节分析方法
CN110136109A (zh) * 2019-05-08 2019-08-16 常州大学 一种基于膨胀卷积神经网络的mci分类方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170091615A1 (en) * 2015-09-28 2017-03-30 Siemens Aktiengesellschaft System and method for predicting power plant operational parameters utilizing artificial neural network deep learning methodologies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567803A (zh) * 2018-12-18 2019-04-05 中国人民解放军战略支援部队信息工程大学 基于实时神经反馈技术的海马体自我调节分析方法
CN110136109A (zh) * 2019-05-08 2019-08-16 常州大学 一种基于膨胀卷积神经网络的mci分类方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐良洲 ; 贺梦吟 ; 邓勋伟 ; .正常大脑静息态功能连接张量的相关特性研究.放射学实践.2018,(04),全文. *

Also Published As

Publication number Publication date
CN110801228A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN111863244B (zh) 基于稀疏池化图卷积的功能连接精神疾病分类方法和系统
CN111009324B (zh) 脑网络多特征分析的轻度认知障碍辅助诊断系统及方法
CN111739647B (zh) 基于磁共振影像的双相障碍自杀风险预测方法及相关装置
CN110801228B (zh) 一种基于神经网络预测的脑效应连接度量方法
CN111728590A (zh) 基于动态功能连接的个体认知能力预测方法和系统
CN110322554B (zh) 一种脑动态功能模式稳定性计算方法
CN110969614A (zh) 基于三维卷积神经网络的脑龄预测方法及系统
CN107811609B (zh) 一种脑老化评估系统
Liu et al. Deep learning of cortical surface features using graph-convolution predicts neonatal brain age and neurodevelopmental outcome
CN110889501A (zh) 一种基于非平稳动态贝叶斯网的人脑效应连接网络构建方法
CN110693510A (zh) 一种注意力缺陷多动障碍辅助诊断装置及其使用方法
CN115337000B (zh) 基于脑结构影像评估疾病引起大脑衰老的机器学习方法
Srinivasan et al. Influence of primary auditory cortex in the characterization of autism Spectrum in young adults using brain connectivity parameters and deep belief networks: An fMRI study
CN111612746B (zh) 一种基于图论的功能脑网络中枢节点的动态检测方法
CN111951228B (zh) 一种融合梯度激活映射和深度学习模型的癫痫灶定位系统
CN110547772B (zh) 一种基于脑信号复杂度的个体年龄预测方法
CN113317790A (zh) 一种基于持久同调的儿童自闭症神经生物学标记的寻找方法
KR20120072291A (ko) 점진적 em pca를 이용한 결측값 대치 방법
US7398120B2 (en) Method and arrangement and computer programme with programme code means and computer programme products for the analysis of neuronal activities in neuronal areas
Manandhar et al. Identifying dementia in MRI scans using artificial neural network and K-nearest neighbor
Anitha et al. Automated detection of white matter lesions in MRI brain images using spatio-fuzzy and spatio-possibilistic clustering models
Chu et al. Measuring the consistency of global functional connectivity using kernel regression methods
CN116597994B (zh) 基于脑激活聚类算法的精神疾病脑功能活动测评装置
CN115251889B (zh) 一种功能磁共振影像动态连接网络特征描述方法
AU2021104107A4 (en) A method for empirical risk assessment of brain disorder using neural network diagnostic system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant