CN110798249B - Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法 - Google Patents

Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法 Download PDF

Info

Publication number
CN110798249B
CN110798249B CN201910952712.6A CN201910952712A CN110798249B CN 110798249 B CN110798249 B CN 110798249B CN 201910952712 A CN201910952712 A CN 201910952712A CN 110798249 B CN110798249 B CN 110798249B
Authority
CN
China
Prior art keywords
signal
mimo system
iteration
massive mimo
precoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910952712.6A
Other languages
English (en)
Other versions
CN110798249A (zh
Inventor
梁中华
白依梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201910952712.6A priority Critical patent/CN110798249B/zh
Publication of CN110798249A publication Critical patent/CN110798249A/zh
Application granted granted Critical
Publication of CN110798249B publication Critical patent/CN110798249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供一种Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法,本方法是对Massive MIMO系统发射端发出的信号通过预编码矩阵W进行SORMI‑Newton联合预编码得到信号x,在Massive MIMO系统中对信号的处理使用联合算法,收敛速度更快,可以通过更少的迭代次数实现与RZF预编码相同的BER性能,且具有较低复杂度。

Description

Massive MIMO系统中信号快速收敛联合预编码方法、信号传 输方法
技术领域
本发明属于大规模多输入多输出领域,涉及一种信号快速收敛预编码算法的研究。
背景技术
近年来,随着移动数据业务量急剧增长,为满足移动通信系统对频谱效率和数据速率的需求,第五代(5th generation,5G)移动通信技术被提出。其中,大规模多输入多输出(multiple input multiple output,MIMO)技术是5G移动通信技术中的主要技术之一,它能有效减少多用户之间的干扰,提高系统信道容量及频谱效率。
在下行链路中,与传统MIMO技术配置的几个发射天线和接收天线相比,大规模MIMO在基站配置几十根甚至上百根天线用来满足用户需求,基站与用户间的信道矩阵也会随之变大,从而需要在接收端处理大量数据,尤其是矩阵计算。在下行链路中,预编码技术是将接收端的数据处理转移到发射端,从而降低接收端信号处理的复杂度。同时,预编码技术也可以减小系统的硬件成本,提高用户间的公平性。但该技术在大规模MIMO系统中涉及大矩阵求逆问题,因此,在大规模MIMO系统中需要设计高性能、低复杂度的算法来提高系统性能。
发明内容
为达到上述目的,本发明提供一种适用于大规模多输入多输出系统的信号快速收敛预编码算法,主要包括以下步骤:
一种Massive MIMO系统中信号快速收敛联合预编码方法,本方法是对MassiveMIMO系统发射端发出的信号通过预编码矩阵W进行SORMI-Newton联合预编码得到信号x,
x=Ws,W=βHH(HHH+εIK)-1
其中,
Figure BDA0002226275950000021
表示调制信号,β表示功率归一化因子,用于使W满足功率约束条件
Figure BDA0002226275950000022
P代表天线单元总发射功率;ε=K/P,K表示接收端用户数量,M为发射端天线数量;
Figure BDA0002226275950000023
表示平坦瑞利衰落的信道矩阵,其元素服从标准正态分布;
Figure BDA0002226275950000024
表示单位对角阵;
Figure BDA0002226275950000025
其中,(HHH+εIK)-1的计算采用SORMI-Newton联合预编码方法,具体包括:
第一步:设定初始值Z(0)=D-1
第二步:进行一次SORMI迭代:
Z(1)=(D-ωL)-1[(ωU+(1-ω)D)Z(0)+ωIK]
第三步:进行Newton迭代:
Z(i)=Z(i-1)(2IK-(HHH+εIK)Z(i-1)),i≥2
直到信噪比为30dB时,误码率<10-5时Newton迭代结束,此时联合算法迭代结果即为(HHH+εIK)-1值;
其中,D-U-L=G,D、-U和-L分别代表对角阵、严格上三角矩阵和严格下三角矩阵,分别与HHH+εIK中的元素一一对应;i表示迭代次数;
Figure BDA0002226275950000031
表示最优松弛因子,ρ[]表示求谱半径,Z为迭代中间变量。
优选的,i介于1到5之间。
更优选的,i取值为2或3。
在此基础上,本发明还提供一种Massive MIMO系统信号传输方法,包括以下步骤:
Massive MIMO系统的天线单元发射信号后进行调制,对调制后的信号通过采用上述方法得到信号x,信号x经信道传输、解调后在接收端接收得到信号y;
Figure BDA0002226275950000032
其中,
Figure BDA0002226275950000033
表示下行链路信噪比度量值;
Figure BDA0002226275950000034
表示加性高斯白噪声向量,其元素服从均值为0,方差为σ2的正态分布,σ为正整数。
本发明的有益效果是:
本发明在Massive MIMO系统中对信号的处理使用联合算法,收敛速度更快,可以通过更少的迭代次数实现与RZF预编码相同的BER性能,且具有低复杂度。
附图说明
图1为本发明的系统框图。
图2为不同M/K时联合算法收敛情况;
图3为不同算法复杂度比较;
图4大规模MIMO系统M×K=256×64配置下算法BER性能比较;
图5为本发明流程框图。
具体实施方式
预编码算法矩阵求逆的方法,分为线性预编码和非线性预编码。与线性预编码相比,非线行预编码算法在大规模MIMO系统中运算复杂度高、对硬件设备要求高,所以本发明只考虑线性预编码。在现有的几个经典线性预编码算法中,RZF预编码算法具有较好的性能,因此本发明基于RZF预编码算法,得到复杂度低且收敛速度快的预编码方法。
另,本发明所述的s调制信号,指的是对基站发出的信号进行调制得到调制信号,本发明信号快速收敛联合预编码方法是在调制信号后进行的,即是对Massive MIMO系统发射端发出的信号调制后对调制信号通过预编码矩阵W进行SORMI-Newton联合预编码。调制本身是一个电信号变换的过程,是由A信号去改变B信号的某些特征值(如振幅、频率、相位等),导致B信号的这个特征值发生有规律的变化,当然这个规律是由A信号本身的规律所决定的。由此,B信号就携带了A信号的相关信息,在某种场合下,可以把B信号上携带的A信号的信息释放出来,从而实现A信号的再生,这就是调制的作用。
下面结合附图对本发明做进一步详细描述:
实施例1:
如图1-5所示,本实施例提供一种Massive MIMO系统信号传输方法,包括以下步骤:Massive MIMO系统的天线单元发射信号后进行调制,对调制后的信号通过采用上述方法得到信号x,信号x经信道传输、解调后在接收端接收得到信号y。其中得到信号x的方法为本发明的信号快速收敛联合预编码方法:
具体包括如下步骤:
采用16QAM调制发射信号,使调制信号经过预编码矩阵,进行SORMI-Newton联合预编码得到信号x,预编码后的信号在信道中传输,采用16QAM解调信号,并在接收端接受得到信号y。
在大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统中,经典正则化迫零(Regularized Zero Forcing,RZF)线性预编码算法可以减小噪声对系统的影响,其预编码矩阵表示如下:
W=βHH(HHH+εIk)-1 (1)
记G=HHH+εIk (2)
则通过预编码后的信号向量
Figure BDA0002226275950000051
计算如下:
x=Ws=βHHG-1s (3)
其中,β表示功率归一化因子,用于使W满足功率约束条件
Figure BDA0002226275950000052
P代表总发射功率;ε=K/P,K表示接收端的用户数;
Figure BDA0002226275950000053
表示平坦瑞利衰落的信道矩阵,其元素服从标准正态分布;
Figure BDA0002226275950000054
表示单位对角阵;
Figure BDA0002226275950000055
表示预编码矩阵;
Figure BDA0002226275950000056
表示调制信号。
因为在大规模MIMO系统中直接矩阵求逆复杂度高,因此用GS迭代法、SOR迭代法和Newton迭代法等近似矩阵求逆。
GS迭代法在于迭代初始值,即在迭代初期能够获得较好的性能,SOR迭代法是在GS迭代法的基础上引入变量松弛因子以提高算法的收敛速率。所以SOR算法和GS迭代法一样在迭代初期就可以获得良好性能。Newton迭代法的特点是迭代初始值计算复杂,它的优势体现在迭代后期,随着迭代次数的增加,Newton迭代法的性能逐渐变好。因此该发明提出把Newton迭代法与SOR迭代法组合可以集合两者的优势。在Newton迭代之前首先进行SOR迭代,能够改善牛顿迭代法的迭代初始值,获得更有效、快速的搜索方向,从而使得牛顿迭代法快速收敛的特性在迭代初期就体现出来。
但由于SOR迭代结果为G-1s,很难从G-1s的乘积项中提取出G-1,故不能直接作为牛顿迭代的初始值。因此提出SORMI迭代法近似求解G-1,具体方法如下所示。
把矩阵G可以分解为:
G=D-U-L(4)
其中,D、-U和-L分别代表对角阵、严格上三角矩阵和严格下三角矩阵,其元素与矩阵G中的元素一一对应。
则联合预编码算法如下:
第一步:设定初始值;
Z(0)=D-1 (5)
第二步:进行一次SORMI迭代;
Z(1)=(D-ωL)-1[(ωU+(1-ω)D)Z(0)+ωIk] (6)
第三步:进行Newton迭代,直到满足系统性能需求。本发明规定直到满足信噪比SNR=30dB时,误码率接近10-6为止(小于10-5)。
Z(i)=Z(i-1)(2Ik-GZ(i-1)),i≥2 (7)
其中,i表示迭代次数;
Figure BDA0002226275950000071
表示最优松弛因子,式中:u=ρ[D-1(L+LH)],ρ[.]表示求矩阵的谱半径。
在(7)式中所得结果Z(i)就是(3)式中G-1的估计值。然后将Z(i)的迭代结果带入(3)式便可求得预编码后的信号向量x。
接收端的每个用户接收的信号可以表示为:
Figure BDA0002226275950000072
其中,ρ表示下行链路的信噪比的度量值;
Figure BDA0002226275950000073
表示加性高斯白噪声向量,其元素服从均值为0,方差为σ2的正态分布;
Figure BDA0002226275950000074
表示通过预编码后的信号向量。
图2为不同M/K时联合算法收敛情况,其中M表示发射端信号天线数目,其中K表示接收端的用户数。图中的数代表从上往下M/K的值。当M/K=1,α>1,所以联合算法不收敛;当M/K≥2时,满足收敛条件α<1,联合算法收敛。并且随着M/K的增大,α的值越小,联合算法收敛概率越大。当M/K≥2时,联合算法便能保证收敛,因此,SORMI-Newton联合算法的收敛性对不同的基站天线数量与用户数的比值(M/K)情况具有更强的鲁棒性。其中,ε=K/P,K可取任意正整数,P代表功率,可取任意正数,仿真时所取功率大小与发射端天线数M相等。β是为了使信号功率做归一化,计算得到的因子(信号归一化采用MATLAB函数,取值0.5)。
图3为两种算法的复杂度比较,为了达到系统性能需求当迭代次数大于1时,联合算法、RZF算法和牛顿迭代复杂度都为O(K3)。由图可知,在用户数K相同时,联合算法复杂度小于RZF算法的复杂度。并且用户数K对算法复杂度具有更大的影响。
由图4可知,所有算法的误码率随着信噪比的增大而减小。以RZF预编码的仿真结果为基准线,在256×64的配置下Newton迭代法性能损失非常大。当迭代次数i=2时,SORMI迭代法与联合算法的结果都不理想;当i=3时,在高信噪比下,联合算法的误码率比SORMI迭代法的误码率小,甚至接近i=4时的SORMI迭代法的误码率;特别是在迭代次数i=4时,联合算法的性能已达到RZF算法,而其他算法还存在性能损失。通过以上分析可知,在相同信噪比下联合算法通过更少的迭代次数快速估计出了G-1的值。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种Massive MIMO系统中信号快速收敛联合预编码方法,其特征在于,本方法是对Massive MIMO系统发射端发出的信号通过预编码矩阵W进行SORMI-Newton联合预编码得到信号x,
x=Ws,W=βHH(HHH+εIK)-1
其中,
Figure FDA0002952020610000011
表示调制信号,β表示功率归一化因子,取值介于0-1,用于使W满足功率约束条件
Figure FDA0002952020610000012
P代表发射端总发射功率;ε=K/P,ε取任意正数,K表示接收端用户数量,M为发射端天线数量;
Figure FDA0002952020610000013
表示平坦瑞利衰落的信道矩阵,其元素服从标准正态分布;IK代表
Figure FDA0002952020610000014
I为单位对角阵;
其中,(HHH+εIK)-1的计算采用SORMI-Newton联合预编码方法;
所述(HHH+εIK)-1的计算,具体包括:
第一步:设定初始值Z(0)=D-1
第二步:进行一次SORMI迭代:
Z(1)=(D-ωL)-1[(ωU+(1-ω)D)Z(0)+ωIK]
第三步:进行Newton迭代:
Z(i)=Z(i-1)(2IK-(HHH+εIK)Z(i-1)),i≥2
直到信噪比等于30dB时,误码率<10-5时Newton迭代结束,此时联合算法迭代结果即为(HHH+εIK)-1值;
其中,D-U-L=G,D、-U和-L分别代表对角阵、严格上三角矩阵和严格下三角矩阵,分别与HHH+εIK中的元素一一对应;i表示迭代次数;
Figure FDA0002952020610000021
表示最优松弛因子,ρ[]表示求谱半径,Z为迭代中间变量。
2.如权利要求1所述的方法,其特征在于,i介于1到5之间。
3.如权利要求1或2所述的方法,其特征在于,i取值为2或3。
4.一种Massive MIMO系统信号传输方法,其特征在于,包括以下步骤:
Massive MIMO系统的天线单元发射信号后进行调制,对调制后的信号通过采用权利要求1所述方法得到信号x,信号x经信道传输后得到信号y;
Figure FDA0002952020610000022
其中,
Figure FDA0002952020610000024
表示下行链路信噪比度量值;
Figure FDA0002952020610000023
表示加性高斯白噪声向量,其元素服从均值为0,方差为σ2的正态分布,σ为任意正整数。
CN201910952712.6A 2019-10-09 2019-10-09 Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法 Active CN110798249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910952712.6A CN110798249B (zh) 2019-10-09 2019-10-09 Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910952712.6A CN110798249B (zh) 2019-10-09 2019-10-09 Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法

Publications (2)

Publication Number Publication Date
CN110798249A CN110798249A (zh) 2020-02-14
CN110798249B true CN110798249B (zh) 2021-07-02

Family

ID=69440131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910952712.6A Active CN110798249B (zh) 2019-10-09 2019-10-09 Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法

Country Status (1)

Country Link
CN (1) CN110798249B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788644A (zh) * 2016-12-30 2017-05-31 东南大学 一种基于改进的牛顿迭代法的大规模mimo预编码方法
CN109150278A (zh) * 2018-08-17 2019-01-04 电子科技大学 基于改进牛顿迭代的massive MIMO信号检测方法
CN110212959A (zh) * 2019-05-16 2019-09-06 华中科技大学 一种毫米波mimo-ofdm通信系统的混合预编码能效优化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010291A1 (ko) * 2014-07-15 2016-01-21 엘지전자 주식회사 Mimo 수신기가 re 그룹 단위로 복수의 레이어를 정렬하여 수신 신호를 처리하는 방법
TWI605693B (zh) * 2016-04-11 2017-11-11 國立清華大學 雙向放大轉送多輸入多輸出中繼系統之中繼點預編碼器選擇方法
CN108768473B (zh) * 2018-04-04 2021-08-03 景晨 一种存在天线相关与信道估计误差的mimo多中继系统的预编码方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788644A (zh) * 2016-12-30 2017-05-31 东南大学 一种基于改进的牛顿迭代法的大规模mimo预编码方法
CN109150278A (zh) * 2018-08-17 2019-01-04 电子科技大学 基于改进牛顿迭代的massive MIMO信号检测方法
CN110212959A (zh) * 2019-05-16 2019-09-06 华中科技大学 一种毫米波mimo-ofdm通信系统的混合预编码能效优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An Overview of Massive MIMO:Benefits and Challenges;Lu Lu;《IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING》;20141031;第8卷(第5期);全文 *

Also Published As

Publication number Publication date
CN110798249A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN107070514B (zh) 一种优化的大规模mimo信号检测方法
CN109951214B (zh) 一种适用于大规模mimo系统的信号检测方法
CN102647259B (zh) 基于奇异值分解的多用户mimo系统上行链路传输方法
CN103929396A (zh) Mimo-ofdm系统下行信息数据的处理方法
WO2015112883A1 (en) System and method for early termination in iterative null-space directed singular value decomposition for mimo
CN108712198B (zh) 一种基于子带等效信道矩阵条件数的混合预编码方法
CN101026435A (zh) 通信系统中低复杂度的极大似然检测方法及装置
CN113162663B (zh) 非理想信道信息下的鲁棒多载波mimo无线携能系统设计方法
CN111010220B (zh) 基于能量效率的多用户多流的下行混合预编码方法及系统
CN110798249B (zh) Massive MIMO系统中信号快速收敛联合预编码方法、信号传输方法
CN112054826A (zh) 一种基于中间信道的单用户低复杂度混合预编码方法
Pavlov et al. Deep learning application for classification of SEFDM signals
CN107733487B (zh) 一种大规模多输入多输出系统的信号检测方法及装置
CN106789822B (zh) 降低多用户大规模mimo-ofdm系统峰均功率比的方法及系统
CN113612571B (zh) 一种基于广义多分数傅里叶变换的多分量安全传输方法
CN112929062B (zh) 基于组稀疏的mimo干扰信道网络干扰对齐方法
CN107248876B (zh) 基于稀疏贝叶斯学习的广义空间调制符号检测方法
CN114389756A (zh) 基于分组ml检测和并行迭代干扰抵消的上行mimo检测方法
De Souza et al. A novel signal detector in MIMO systems based on complex correntropy
CN108494452B (zh) 毫米波大规模mimo-ofdm系统中多用户混合波束赋形算法和实现装置
CN110868244A (zh) 一种基于信道穿刺的低复杂度通信信号检测方法
CN113489510B (zh) 一种基于用户分组的大规模mu-mimo系统dbp架构信号检测方法
CN113328771B (zh) 一种基于共轭梯度算法的大规模mimo信号检测方法
CN111565159B (zh) 基于无转置极小残差的迭代大规模mimo信号检测方法
Archana et al. Integrated approach for efficient power consumption and resource allocation in MIMO-OFDMA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant