CN110794867B - 通信干扰下无人机编队信息交互拓扑智能决策方法和装置 - Google Patents
通信干扰下无人机编队信息交互拓扑智能决策方法和装置 Download PDFInfo
- Publication number
- CN110794867B CN110794867B CN201910991172.2A CN201910991172A CN110794867B CN 110794867 B CN110794867 B CN 110794867B CN 201910991172 A CN201910991172 A CN 201910991172A CN 110794867 B CN110794867 B CN 110794867B
- Authority
- CN
- China
- Prior art keywords
- information interaction
- arc
- obtaining
- interaction topology
- topology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 152
- 230000003993 interaction Effects 0.000 title claims abstract description 140
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000002085 persistent effect Effects 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000012217 deletion Methods 0.000 claims 1
- 230000037430 deletion Effects 0.000 claims 1
- 230000009471 action Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/104—Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
- H04W40/16—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/102—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明提供一种通信干扰下无人机编队信息交互拓扑智能决策方法和装置,涉及无人机通信领域。包括以下步骤:获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;判断A0对初始信息交互拓扑T1是否有影响;若否,则T1即为最终的信息交互拓扑;若是,则获取A1的替代反向弧,将替代反向弧替代A1,得到信息交互拓扑T2;判断T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则获取T2对应的无向图R1;基于R1获取备用边集合;基于备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。本发明的安全可靠性高。
Description
技术领域
本发明涉及无人机通信技术领域,具体涉及一种通信干扰下无人机编队信息交互拓扑智能决策方法和装置。
背景技术
随着科技的发展,无人机技术被广泛应用于民用和军用领域。多架无人机编队作业已成为现如今的发展趋势。而所有无人机(UAV)通常通过点对点的通信链接进行信息交互,以形成一定的编队队形,并保持此编队队形朝目标区域飞行。其中,所使用的通信链接被称为无人机编队的信息交互拓扑。
无人机编队飞行过程中可能会发生通信故障,使得某些通信链接不能够被使用,从而导致无人机编队不能继续工作。现有技术一般将出现故障的通信链接删除,获取此时的通信网络下的三维持久编队对应的信息交互拓扑,并用该信息交互拓扑继续工作。
然而本申请的发明人发现,现有技术的方法在实际应用时,由于无人机编队在飞行过程中速度较快,而现有技术重新获取信息交互拓扑的时间较长,如果没有快速恢复无人机编队的信息交互拓扑容易导致无人机之间发生碰撞而无法完成编队任务。因此现有技术存在安全性低的缺点。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种通信干扰下无人机编队信息交互拓扑智能决策方法和装置,解决了现有技术安全性低的技术问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
本发明解决其技术问题所提供的一种通信干扰下无人机编队信息交互拓扑智能决策方法,所述决策方法由计算机执行,包括以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断所述中断的通信链接A0对所述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将所述替代反向弧替代A1,得到信息交互拓扑T2;判断所述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于所述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。
优选的,在S2中,判断A0对T1是否有影响,包括:
判断所述中断通信链接A1构成的集合是否为空集,若是,则A0对T1没有影响;若否,则A0对T1有影响。
优选的,在S3中,所述替代反向弧的获取方法包括:
S3011、将所述中断的通信链接A0从所述初始通信网络D1中删除,得到通信网络D2;
S3012、判断所述中断通信链接A1中的每条故障弧的反向弧是否存在于D2中,若是,则所述反向弧可以作为A1的故障弧的替代反向弧;若否,则继续判断下一条故障弧。
优选的,在S3中,所述信息交互拓扑T2的获取方法,包括:
若否,则继续添加下一条替代反向弧;
S303、将所有可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2。
优选的,在S4中,所述备用边集合的获取方法包括:
获取所述通信网络D2对应的无向图R2;将所述R1中的边从所述R2中删除,得到剩余的边作为备用边;所有的备用边构成备用边集合。
优选的,在S4中,所述最终的信息交互拓扑的获取方法包括:
获取所述R1对应的刚度矩阵M;
将每条备用边依次添加到所述刚度矩阵M中,并判断:所述刚度矩阵M的秩是否为满秩;若否,则将所述备用边从所述刚度矩阵M中删除;若是,则判断:
对于任意一条备用边eij,判断:备用边eij的节点vj在T2中的入度是否小于3且弧aij存在于所述通信网络D2中;若是,则将弧aij添加到T2中,得到信息交互拓扑T3;若否,则判断:
节点vi在T2中的入度是否小于3且弧aji存在于所述通信网络D2中;若是,则将弧aji添加到T2中,得到信息交互拓扑T3;若否,则判断:
弧aij是否存在于所述通信网络D2中;若是,则将弧aij添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vj之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;若否,则将弧aji添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vi之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;
判断T3是否为三维持久图,若是,则T3为最终的信息交互拓扑,若否,则继续添加下一条备用边,并重复以上步骤。
本发明解决其技术问题所提供的一种通信干扰下无人机编队信息交互拓扑智能决策装置,所述装置包括计算机,所述计算机包括:
至少一个存储单元;
至少一个处理单元;
其中,所述至少一个存储单元中存储有至少一条指令,所述至少一条指令由所述至少一个处理单元加载并执行以实现以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断所述中断的通信链接A0对所述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将所述替代反向弧替代A1,得到信息交互拓扑T2;判断所述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于所述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。
优选的,在S3中,所述替代反向弧的获取方法包括:
S3011、将所述中断的通信链接A0从所述初始通信网络D1中删除,得到通信网络D2;
S3012、判断所述中断通信链接A1中的每条故障弧的反向弧是否存在于D2中,若是,则所述反向弧可以作为A1的故障弧的替代反向弧;若否,则继续判断下一条故障弧。
优选的,在S3中,判断所述替代反向弧是否可以替代A1,包括:
若否,则继续添加下一条替代反向弧;
S303、将所有可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2。
优选的,在S4中,所述备用弧集合的获取方法包括:
获取所述通信网络D2对应的无向图R2;获取所述R1对应的刚度矩阵M;将所述R1中的边从所述R2中删除,得到剩余的边作为备用边;所有的备用边构成备用边集合。
(三)有益效果
本发明提供了一种通信干扰下无人机编队信息交互拓扑智能决策方法和装置。与现有技术相比,具备以下有益效果:
本发明通过获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;判断中断的通信链接A0对初始信息交互拓扑T1是否有影响;若否,则T1即为最终的信息交互拓扑;若是,则获取A1的替代反向弧,将替代反向弧替代A1,得到信息交互拓扑T2;判断信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则获取T2对应的无向图R1;基于R1获取备用边集合;基于备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。本发明先用故障弧的反向弧尝试替代故障弧以恢复部分信息交互拓扑,再获取备用边,添加备用边对应的弧,得到完整的三维持久编队对应的信息交互拓扑,使得无人机编队在执行任务时可以稳定地保持队型,安全可靠性高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的通信干扰下无人机编队信息交互拓扑智能决策方法的整体流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例通过提供一种通信干扰下无人机编队信息交互拓扑智能决策方法和装置,解决了现有技术安全性低的技术问题,提高了无人机编队工作时的安全性。
本申请实施例的技术方案为解决上述技术问题,总体思路如下:
本发明实施例通过获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;判断中断的通信链接A0对初始信息交互拓扑T1是否有影响;若否,则T1即为最终的信息交互拓扑;若是,则获取A1的替代反向弧,将替代反向弧替代A1,得到信息交互拓扑T2;判断信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则获取T2对应的无向图R1;基于R1获取备用边集合;基于备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。本发明实施例先用故障弧的反向弧尝试替代故障弧以恢复部分信息交互拓扑,再获取备用边,添加备用边对应的弧,得到完整的三维持久编队对应的信息交互拓扑,使得无人机编队在执行任务时可以稳定地保持队型,安全可靠性高。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
本发明实施例提供了一种通信干扰下无人机编队信息交互拓扑智能决策方法,该方法由计算机执行,如图1所示,包括以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断上述中断的通信链接A0对上述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将上述替代反向弧替代A1,得到信息交互拓扑T2;判断上述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于上述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。
本发明实施例通过获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;判断中断的通信链接A0对初始信息交互拓扑T1是否有影响;若否,则T1即为最终的信息交互拓扑;若是,则获取A1的替代反向弧,将替代反向弧替代A1,得到信息交互拓扑T2;判断信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则获取T2对应的无向图R1;基于R1获取备用边集合;基于备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。本发明实施例先用故障弧的反向弧尝试替代故障弧以恢复部分信息交互拓扑,再获取备用边,添加备用边对应的弧,得到完整的三维持久编队对应的信息交互拓扑,使得无人机编队在执行任务时可以稳定地保持队型,安全可靠性高。
具体的,本发明实施例在具体实施时,由地面控制中心的计算机执行,继而将计算结果发给每架无人机,实现多无人机三维编队的信息交互拓扑的快速生成。
下面对各步骤进行具体分析。
在步骤S1中,获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1。
具体的,首先获取无人机编队未发生通信故障时的三维队形S、初始通信网络D1和初始信息交互拓扑T1。
本发明实施例设定共n个UAV通过UAV之间的单向通信以形成并保持一个三维的编队队形S,该编队队形S中n个位置分别编号为{1,2,…,n}。
无人机编队的初始通信网络D1=(V,A)。
其中:
V={vi},1≤i≤门是无人机代表的节点的集合,其中vi表示UAVi,即第i架无人机。
无人机编队的初始信息交互拓扑T1=(V,A*)。
A*是信息交互拓扑中的通信链接对应的弧集合。
再获取无人机编队发生通信故障时无人机编队中断的通信链接A0。具体的,中断的通信链接可以为一条也可以为多条,在本发明实施例中A0指代所有的中断的通信链接构成的弧集合。
基于A0和T1获取T1中的中断通信链接A1。具体的,A1为初始信息交互拓扑T1中的中断通信链接。即:
A1=A*∩A0
在步骤S2中,判断上述中断的通信链接A0对上述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑。
具体的,判断方法为:
判断中断通信链接A1构成的集合是否为空集,若是,则A0对T1没有影响;若否,则A0对T1有影响。
即:当T1中没有中断的通信链接时,A0对T1没有影响。此时可继续采用T1作为无人机编队工作的信息交互拓扑。
在步骤S3中,获取A1的替代反向弧,将上述替代反向弧替代A1,得到信息交互拓扑T2;判断上述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4。
具体的,包括以下步骤:
S3011、将上述中断的通信链接A0从上述初始通信网络D1中删除,得到通信网络D2。
S3012、判断上述中断通信链接A1中的每条故障弧的反向弧是否存在于D2中,若是,则上述反向弧可以作为A1的故障弧的替代反向弧;若否,则继续判断下一条故障弧。
若否,则继续添加下一条替代反向弧。
S303、将所有可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2。
本发明实施例在具体实施时,首先判断故障弧的反向弧是否存在于D2中,若反向弧存在则作为故障弧的反向替代弧。将所有的反向替代弧全部获取后,逐条添加到中,并判断是否需要进行路径反向操作,若需要,则进行路径反向操作,以获得信息交互拓扑T2。
需要说明的是,本发明还提供了另一种实施例用以获取信息交互拓扑T2。具体为:判断中断通信链接A1中的第一条故障弧是否存在替代反向弧,若第一条故障弧存在替代反向弧,则用替代反向弧替代故障弧并判断是否需要进行路径反向操作,待第一条故障弧操作完成后,继续判断下一条故障弧是否存在替代反向弧;若第一条故障弧不存在替代反向弧,则直接判断下一条故障弧并进行后续操作。将所有的可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2。
步骤S304:判断上述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4。
在步骤S4中,获取T2对应的无向图R1;基于R1获取备用边集合;基于上述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。
具体的,备用边集合的获取方法为:
获取上述通信网络D2对应的无向图R2;将上述R1中的边从所述R2中删除,得到剩余的边作为备用边;所有的备用边构成备用边集合。
最终的信息交互拓扑的获取方法包括:
获取上述R1对应的刚度矩阵M。
将每条备用边依次添加到上述刚度矩阵M中,并判断:上述刚度矩阵M的秩是否为满秩;若否,则将上述备用边从上述刚度矩阵M中删除;若是,则判断:
对于任意一条备用边eij,判断:备用边eij的节点vj在T2中的入度是否小于3且弧aij存在于上述通信网络D2中;若是,则将弧aij添加到T2中,得到信息交互拓扑T3;若否,则判断:
节点vi在T2中的入度是否小于3且弧aji存在于上述通信网络D2中;若是,则将弧aji添加到T2中,得到信息交互拓扑T3;若否,则判断:
弧aij是否存在于上述通信网络D2中;若是,则将弧aij添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vj之间的一条路径,且上述一条路径的反向路径中的所有弧都存在于D2中,在T2中将上述一条路径中的所有弧反向,得到信息交互拓扑T3;若否,则将弧aji添加到T2中,并在T2中找到一个入度小于3的节点v0,在T2中获取vo到vi之间的一条路径,且上述一条路径的反向路径中的所有弧都存在于D2中,在T2中将上述一条路径中的所有弧反向,得到信息交互拓扑T3。
判断T3是否为三维持久图,若是,则T3为最终的信息交互拓扑,若否,则继续添加下一条备用边,并重复以上步骤。
得到的最终的信息交互拓扑即为无人机编队继续工作时所执行的信息交互拓扑。
本发明实施例还提供了一种通信干扰下无人机编队信息交互拓扑智能决策装置,上述装置包括计算机,上述计算机包括:
至少一个存储单元;
至少一个处理单元;
其中,上述至少一个存储单元中存储有至少一条指令,上述至少一条指令由上述至少一个处理单元加载并执行以实现以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断上述中断的通信链接A0对上述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将上述替代反向弧替代A1,得到信息交互拓扑T2;判断上述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于上述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。
可理解的是,本发明实施例提供的上述决策装置与上述决策方法相对应,其有关内容的解释、举例、有益效果等部分可以参考通信干扰下无人机编队信息交互拓扑智能决策方法中的相应内容,此处不再赘述。
综上所述,与现有技术相比,具备以下有益效果:
本发明实施例通过获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;判断中断的通信链接A0对初始信息交互拓扑T1是否有影响;若否,则T1即为最终的信息交互拓扑;若是,则获取A1的替代反向弧,将替代反向弧替代A1,得到信息交互拓扑T2;判断信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则获取T2对应的无向图R1;基于R1获取备用边集合;基于备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑。本发明实施例先用故障弧的反向弧尝试替代故障弧以恢复部分信息交互拓扑,再获取备用边,添加备用边对应的弧,得到完整的三维持久编队对应的信息交互拓扑,使得无人机编队在执行任务时可以稳定地保持队型,安全可靠性高。
需要说明的是,通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (3)
1.一种通信干扰下无人机编队信息交互拓扑智能决策方法,其特征在于,所述决策方法由计算机执行,包括以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断所述中断的通信链接A0对所述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将所述替代反向弧替代A1,得到信息交互拓扑T2;判断所述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于所述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑;
所述获取A1的替代反向弧的方法,包括:
S3011、将所述中断的通信链接A0从所述初始通信网络D1中删除,得到通信网络D2;
S3012、判断所述中断通信链接A1中的每条故障弧的反向弧是否存在于D2中,若是,则所述反向弧可以作为A1的故障弧的替代反向弧;若否,则继续判断下一条故障弧;
所述获取信息交互拓扑T2的方法,包括:
若否,则继续添加下一条替代反向弧;
S303、将所有可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2;
所述获取备用边集合的方法,包括:
获取所述通信网络D2对应的无向图R2;将所述R1中的边从所述R2中删除,得到剩余的边作为备用边;所有的备用边构成备用边集合;
所述最终的信息交互拓扑的获取方法,包括:
获取所述R1对应的刚度矩阵M;
将每条备用边依次添加到所述刚度矩阵M中,并判断:所述刚度矩阵M的秩是否为满秩;若否,则将所述备用边从所述刚度矩阵M中删除;若是,则判断:
对于任意一条备用边eij,判断:备用边eij的节点vj在T2中的入度是否小于3且弧aij存在于所述通信网络D2中;若是,则将弧aij添加到T2中,得到信息交互拓扑T3;若否,则判断:
节点vi在T2中的入度是否小于3且弧aji存在于所述通信网络D2中;若是,则将弧aji添加到T2中,得到信息交互拓扑T3;若否,则判断:
弧aij是否存在于所述通信网络D2中;若是,则将弧aij添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vj之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;若否,则将弧aji添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vi之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;
判断T3是否为三维持久图,若是,则T3为最终的信息交互拓扑,若否,则继续添加下一条备用边,并重复以上步骤。
2.如权利要求1所述的决策方法,其特征在于,在S2中,判断A0对T1是否有影响,包括:
判断所述中断通信链接A1构成的集合是否为空集,若是,则A0对T1没有影响;若否,则A0对T1有影响。
3.一种通信干扰下无人机编队信息交互拓扑智能决策装置,其特征在于,所述装置包括计算机,所述计算机包括:
至少一个存储单元;
至少一个处理单元;
其中,所述至少一个存储单元中存储有至少一条指令,所述至少一条指令由所述至少一个处理单元加载并执行以实现以下步骤:
S1、获取未发生通信干扰时无人机编队的三维队形、初始通信网络D1和初始信息交互拓扑T1;获取发生通信干扰时无人机编队中断的通信链接A0;基于A0和T1获取T1中的中断通信链接A1;
S2、判断所述中断的通信链接A0对所述初始信息交互拓扑T1是否有影响;若是,则跳转到S3;若否,则T1即为最终的信息交互拓扑;
S3、获取A1的替代反向弧,将所述替代反向弧替代A1,得到信息交互拓扑T2;判断所述信息交互拓扑T2是否为三维持久图,若是,则T2即为最终的信息交互拓扑,若否,则跳到S4;
S4、获取T2对应的无向图R1;基于R1获取备用边集合;基于所述备用边集合添加备用边对应的弧到T2中,得到最终的信息交互拓扑;
所述获取A1的替代反向弧的方法,包括:
S3011、将所述中断的通信链接A0从所述初始通信网络D1中删除,得到通信网络D2;
S3012、判断所述中断通信链接A1中的每条故障弧的反向弧是否存在于D2中,若是,则所述反向弧可以作为A1的故障弧的替代反向弧;若否,则继续判断下一条故障弧;
所述获取信息交互拓扑T2的方法,包括:
若否,则继续添加下一条替代反向弧;
S303、将所有可替代的故障弧由对应的替代反向弧替代后,得到信息交互拓扑T2;
所述获取备用边集合的方法,包括:
获取所述通信网络D2对应的无向图R2;将所述R1中的边从所述R2中删除,得到剩余的边作为备用边;所有的备用边构成备用边集合;
所述最终的信息交互拓扑的获取方法,包括:
获取所述R1对应的刚度矩阵M;
将每条备用边依次添加到所述刚度矩阵M中,并判断:所述刚度矩阵M的秩是否为满秩;若否,则将所述备用边从所述刚度矩阵M中删除;若是,则判断:
对于任意一条备用边eij,判断:备用边eij的节点vj在T2中的入度是否小于3且弧aij存在于所述通信网络D2中;若是,则将弧aij添加到T2中,得到信息交互拓扑T3;若否,则判断:
节点vi在T2中的入度是否小于3且弧aji存在于所述通信网络D2中;若是,则将弧aji添加到T2中,得到信息交互拓扑T3;若否,则判断:
弧aij是否存在于所述通信网络D2中;若是,则将弧aij添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vj之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;若否,则将弧aji添加到T2中,并在T2中找到一个入度小于3的节点vo,在T2中获取vo到vi之间的一条路径,且所述一条路径的反向路径中的所有弧都存在于D2中,在T2中将所述一条路径中的所有弧反向,得到信息交互拓扑T3;
判断T3是否为三维持久图,若是,则T3为最终的信息交互拓扑,若否,则继续添加下一条备用边,并重复以上步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910991172.2A CN110794867B (zh) | 2019-10-18 | 2019-10-18 | 通信干扰下无人机编队信息交互拓扑智能决策方法和装置 |
US16/837,000 US11405303B2 (en) | 2019-10-18 | 2020-04-01 | Intelligent decision-making method and device for UAV formation information interaction topologies in communication interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910991172.2A CN110794867B (zh) | 2019-10-18 | 2019-10-18 | 通信干扰下无人机编队信息交互拓扑智能决策方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110794867A CN110794867A (zh) | 2020-02-14 |
CN110794867B true CN110794867B (zh) | 2020-10-30 |
Family
ID=69440523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910991172.2A Active CN110794867B (zh) | 2019-10-18 | 2019-10-18 | 通信干扰下无人机编队信息交互拓扑智能决策方法和装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11405303B2 (zh) |
CN (1) | CN110794867B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111638726B (zh) * | 2020-05-27 | 2021-07-27 | 北京理工大学 | 基于事件触发通信的多无人机编队一致性控制方法 |
CN111708376B (zh) * | 2020-06-17 | 2022-09-16 | 中国空气动力研究与发展中心 | 一种对通信链路具有鲁棒性的固定翼无人机编队控制方法 |
CN114025434B (zh) * | 2021-11-05 | 2024-02-20 | 江西洪都航空工业集团有限责任公司 | 一种通信网络拓扑结构自适应重构方法及装置 |
CN114296473B (zh) * | 2021-11-30 | 2022-09-09 | 北京航空航天大学 | 一种避免碰撞和通信中断的多智能体自适应编队控制方法 |
CN114564044B (zh) * | 2022-03-21 | 2024-04-30 | 西北工业大学 | 一种输入限幅事件触发的无人机有限时间编队控制方法 |
CN114895703B (zh) * | 2022-04-29 | 2024-07-19 | 北京航空航天大学 | 基于拓扑优化重构的分布式容错时变编队控制方法及系统 |
CN116149372B (zh) * | 2023-04-17 | 2023-07-07 | 西北工业大学 | 一种故障单机的排除方法、系统和应用 |
CN116820100B (zh) * | 2023-06-25 | 2024-02-27 | 中国矿业大学 | 一种欺骗攻击下的无人车编队控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2476149A (en) * | 2009-12-02 | 2011-06-15 | Selex Communications Spa | Formation flight control |
CN105871636A (zh) * | 2016-05-27 | 2016-08-17 | 合肥工业大学 | 基于最小树形图的无人机编队通信拓扑的重构方法及系统 |
CN106970645A (zh) * | 2017-05-16 | 2017-07-21 | 合肥工业大学 | 多无人机协同编队最优信息交互拓扑生成方法及装置 |
CN106992897A (zh) * | 2017-06-07 | 2017-07-28 | 合肥工业大学 | 多无人机协同编队中的信息交互拓扑优化方法及装置 |
CN107135105A (zh) * | 2017-05-08 | 2017-09-05 | 合肥工业大学 | 无人‑有人机编队信息交互拓扑容错优化方法及装置 |
CN107135104A (zh) * | 2017-05-08 | 2017-09-05 | 合肥工业大学 | 无人‑有人机编队信息交互拓扑优化方法及装置 |
CN107797564A (zh) * | 2017-07-04 | 2018-03-13 | 合肥工业大学 | 多无人机协同编队中信息交互拓扑启发式优化方法及装置 |
CN108845590A (zh) * | 2018-07-06 | 2018-11-20 | 哈尔滨工业大学(威海) | 一种时延环境下的多无人机协同编队控制方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6996065B2 (en) * | 2000-07-06 | 2006-02-07 | Lucent Technologies Inc. | Dynamic backup routing of network tunnel paths for local restoration in a packet network |
US9145140B2 (en) | 2012-03-26 | 2015-09-29 | Google Inc. | Robust method for detecting traffic signals and their associated states |
CN104573646B (zh) | 2014-12-29 | 2017-12-12 | 长安大学 | 基于激光雷达和双目相机的车前行人检测方法及系统 |
WO2018204816A1 (en) * | 2017-05-05 | 2018-11-08 | Intel IP Corporation | Methods and arrangements to signal for aerial vehicles |
CN109548039A (zh) * | 2017-08-11 | 2019-03-29 | 索尼公司 | 无线通信系统中的装置和方法、计算机可读存储介质 |
CN109212521B (zh) | 2018-09-26 | 2021-03-26 | 同济大学 | 一种基于前视相机与毫米波雷达融合的目标跟踪方法 |
US11222545B2 (en) * | 2019-06-28 | 2022-01-11 | Intel Corporation | Technologies for providing signal quality based route management for unmanned aerial vehicles |
-
2019
- 2019-10-18 CN CN201910991172.2A patent/CN110794867B/zh active Active
-
2020
- 2020-04-01 US US16/837,000 patent/US11405303B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2476149A (en) * | 2009-12-02 | 2011-06-15 | Selex Communications Spa | Formation flight control |
CN105871636A (zh) * | 2016-05-27 | 2016-08-17 | 合肥工业大学 | 基于最小树形图的无人机编队通信拓扑的重构方法及系统 |
CN107135105A (zh) * | 2017-05-08 | 2017-09-05 | 合肥工业大学 | 无人‑有人机编队信息交互拓扑容错优化方法及装置 |
CN107135104A (zh) * | 2017-05-08 | 2017-09-05 | 合肥工业大学 | 无人‑有人机编队信息交互拓扑优化方法及装置 |
CN106970645A (zh) * | 2017-05-16 | 2017-07-21 | 合肥工业大学 | 多无人机协同编队最优信息交互拓扑生成方法及装置 |
CN106992897A (zh) * | 2017-06-07 | 2017-07-28 | 合肥工业大学 | 多无人机协同编队中的信息交互拓扑优化方法及装置 |
CN107797564A (zh) * | 2017-07-04 | 2018-03-13 | 合肥工业大学 | 多无人机协同编队中信息交互拓扑启发式优化方法及装置 |
CN108845590A (zh) * | 2018-07-06 | 2018-11-20 | 哈尔滨工业大学(威海) | 一种时延环境下的多无人机协同编队控制方法 |
Non-Patent Citations (1)
Title |
---|
面向队形保持的无人机编队信息交互拓扑优化问题的研究;王国强;《中国博士学位论文全文数据库(电子期刊) 工程科技II辑》;20171215(第12期);C031-16 * |
Also Published As
Publication number | Publication date |
---|---|
US11405303B2 (en) | 2022-08-02 |
US20210119900A1 (en) | 2021-04-22 |
CN110794867A (zh) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110794867B (zh) | 通信干扰下无人机编队信息交互拓扑智能决策方法和装置 | |
US10311356B2 (en) | Unsupervised behavior learning system and method for predicting performance anomalies in distributed computing infrastructures | |
Moustafa et al. | Optimal major and minimal maintenance policies for deteriorating systems | |
US8997173B2 (en) | Managing security clusters in cloud computing environments using autonomous security risk negotiation agents | |
US11080128B2 (en) | Automatic failure recovery system, control device, procedure creation device, and computer-readable storage medium | |
CN105871636A (zh) | 基于最小树形图的无人机编队通信拓扑的重构方法及系统 | |
US20240264647A1 (en) | Computing power distribution method and apparatus, and computing power server | |
CN110609572B (zh) | 无人机编队信息交互拓扑的启发式优化方法和装置 | |
DE112012000774T5 (de) | Automatische Korrektur von Kontaktlistenfehlern in einem Zusammenarbeitssystem | |
CN110598871A (zh) | 一种微服务架构下的业务流柔性控制的方法及系统 | |
CN114842307B (zh) | 掩码图像模型训练方法、掩码图像内容预测方法和设备 | |
CN110879608B (zh) | 不确定环境下无人系统编队快速自适应决策方法和装置 | |
CN111314119B (zh) | 不确定环境下无人平台信息感知网络快速重构方法和装置 | |
CN111163440A (zh) | 通信干扰下无人机协同态势感知网络快速重构方法和装置 | |
CN110879609B (zh) | 对抗环境下无人机编队信息交互拓扑快速重构方法和装置 | |
CN114124445A (zh) | 一种工控网络异常行为检测方法及系统 | |
CN111026104B (zh) | 突发事件下的多智能体系统快速响应方法和装置 | |
CN111314879B (zh) | 突发事件下无人平台信息感知网络快速响应方法和装置 | |
CN111695583A (zh) | 一种基于因果网络的特征选择方法 | |
CN109522196A (zh) | 一种故障日志处理的方法及装置 | |
US20230239306A1 (en) | Modifying network relationships using a heterogenous network flows graph | |
CN110647166B (zh) | 均衡能耗的无人机编队信息交互拓扑在线优化方法和装置 | |
CN110609548B (zh) | 多无人平台协同队形保持的快速优化方法和装置 | |
CN115460217B (zh) | 一种基于强化学习的云服务高可用决策方法 | |
Pankov et al. | Model studies of systems with diagnostics based on fault simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |