CN110793752A - Device and method for testing field underground water connectivity - Google Patents
Device and method for testing field underground water connectivity Download PDFInfo
- Publication number
- CN110793752A CN110793752A CN201911058279.8A CN201911058279A CN110793752A CN 110793752 A CN110793752 A CN 110793752A CN 201911058279 A CN201911058279 A CN 201911058279A CN 110793752 A CN110793752 A CN 110793752A
- Authority
- CN
- China
- Prior art keywords
- communicator
- gas
- valve
- controller
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 12
- 238000000034 method Methods 0.000 title abstract description 17
- 239000003673 groundwater Substances 0.000 claims abstract description 47
- 238000002347 injection Methods 0.000 claims abstract description 29
- 239000007924 injection Substances 0.000 claims abstract description 29
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 238000012544 monitoring process Methods 0.000 claims description 29
- 238000010998 test method Methods 0.000 claims description 9
- 238000011160 research Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract description 7
- 239000000700 radioactive tracer Substances 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M10/00—Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种野外地下水连通性测试装置及方法,包括制气增压机构、阀门、压力传感器、流量传感器、通信器、控制器、封隔器和起泡器,阀门、压力传感器和流量传感器安装于注入井井盖的上侧,封隔器和起泡器安装于注入井井盖的下侧,制气增压机构连通于阀门,控制器连接阀门,压力传感器和流量传感器通过通信器与控制器连接;由制气增压机构产生的气体能够经过阀门、封隔器和起泡器进入注入井。本发明可以避免外源化学示踪剂进入地下水,同时又可指示地下水流速、流向等水文地质参数的连通性。
The invention discloses a groundwater connectivity test device and method in the field, comprising a gas-making booster mechanism, a valve, a pressure sensor, a flow sensor, a communicator, a controller, a packer and a bubbler, a valve, a pressure sensor and a flow rate sensor. The sensor is installed on the upper side of the well cover of the injection well, the packer and the bubbler are installed on the lower side of the well cover of the injection well, the gas pressure booster is connected to the valve, the controller is connected to the valve, the pressure sensor and the flow sensor communicate with the control unit through the communicator The gas produced by the gas pressurization mechanism can enter the injection well through the valve, packer and bubbler. The invention can prevent the exogenous chemical tracer from entering the ground water, and at the same time can indicate the connectivity of hydrogeological parameters such as the flow velocity and direction of the ground water.
Description
技术领域technical field
本发明涉及地下水科学领域,具体的,涉及一种野外地下水连通性测试装置及方法。The invention relates to the field of groundwater science, in particular to a field groundwater connectivity testing device and method.
背景技术Background technique
在地下水科学领域,地下水连通性测试是掌握地下水的连通性、流速、流向等水文地质参数的重要测试手段,一般常采用在上游某个地点投示踪剂,在下游多个监测点取样检测水中示踪剂浓度的方法。可是,在进行地下水水文地质参数研究过程中发现,许多研究场地位于人口居住密集或者重要水源地等,即使一些低毒性的示踪剂也会被限制使用,而且荧光类示踪剂容易使局域地下水发生颜色变化引起居民恐慌。因此,发明人认为,常规采用投化学示踪剂的方法逐渐不适用于人口居住密集或者存在重要水源地的地区,并且这种地下水连通性测试是必要的。In the field of groundwater science, groundwater connectivity testing is an important test method to master the hydrogeological parameters such as groundwater connectivity, flow velocity, and flow direction. Generally, a tracer is often used at a certain upstream location, and the water is sampled at multiple downstream monitoring points. method of tracer concentration. However, during the study of groundwater hydrogeological parameters, it was found that many research sites are located in densely populated areas or important water sources. The color change of groundwater caused panic among residents. Therefore, the inventors believe that the conventional method of dosing chemical tracers is gradually unsuitable for areas with dense population or where important water sources exist, and such groundwater connectivity testing is necessary.
发明内容SUMMARY OF THE INVENTION
为了解决上述常规采用投化学示踪剂的方法逐渐不适用于人口居住密集或者存在重要水源地的地区的问题,本发明提出了一种可以避免外源化学示踪剂进入地下水,同时又可指示地下水流速、流向等水文地质参数的连通性野外测试方法。该方法采用天然空气中的气相流体作用指示剂,采用监测气体、气体含量的方法确定地下水流速、流向。In order to solve the problem that the conventional method of adding chemical tracers is gradually unsuitable for areas with dense population or important water sources, the present invention proposes a method that can prevent exogenous chemical tracers from entering groundwater, and at the same time can indicate Field test method for connectivity of hydrogeological parameters such as groundwater velocity and flow direction. The method uses gas-phase fluid in natural air as an indicator, and uses the method of monitoring gas and gas content to determine the groundwater flow rate and direction.
本发明的第一目的,是提供一种野外地下水连通性测试装置。The first object of the present invention is to provide a field groundwater connectivity test device.
本发明的第二目的,是提供一种野外地下水连通性测试方法。The second object of the present invention is to provide a method for testing groundwater connectivity in the field.
首先,本发明公开了一种野外地下水连通性测试装置,包括制气增压机构、阀门、压力传感器、流量传感器、通信器、控制器、封隔器和起泡器,阀门、压力传感器和流量传感器安装于注入井井盖的上侧,封隔器和起泡器安装于注入井井盖的下侧,制气增压机构连通于阀门,控制器连接阀门,压力传感器和流量传感器通过通信器与控制器连接;由制气增压机构产生的气体能够经过阀门、封隔器和起泡器进入注入井。First of all, the present invention discloses a field groundwater connectivity test device, including a gas pressure booster mechanism, a valve, a pressure sensor, a flow sensor, a communicator, a controller, a packer and a bubbler, a valve, a pressure sensor and a flow rate The sensor is installed on the upper side of the manhole cover of the injection well, the packer and the bubbler are installed on the lower side of the manhole cover of the injection well, the gas pressure boosting mechanism is connected to the valve, the controller is connected to the valve, and the pressure sensor and flow sensor are connected to the control device through the communicator. The gas produced by the gas pressurizing mechanism can enter the injection well through the valve, the packer and the bubbler.
进一步,所述制气增压机构为气泵。Further, the air making and boosting mechanism is an air pump.
进一步,所述阀门包括相连接的溢流阀和减压限流阀。Further, the valve includes a connected overflow valve and a pressure reducing and restricting valve.
进一步,所述通信器为有线通信器或无线通信器。Further, the communicator is a wired communicator or a wireless communicator.
进一步,当所述通信器为有线通信器时,所述通信器通过导线与流量传感器和压力传感器连接,所述通信器通过导线与控制器连接。Further, when the communicator is a wired communicator, the communicator is connected to the flow sensor and the pressure sensor through a wire, and the communicator is connected to the controller through a wire.
进一步,当所述通信器为无线通信器时,所述通信器通过导线与流量传感器和压力传感器连接,所述通信器通过无线连接的方式与控制器连接。Further, when the communicator is a wireless communicator, the communicator is connected to the flow sensor and the pressure sensor through a wire, and the communicator is connected to the controller through a wireless connection.
进一步,还包括导管,所述制气增压机构、阀门、压力传感器、流量传感器、通信器、控制器和起泡器均安装或连接于导管。Further, a conduit is also included, and the gas-producing and boosting mechanism, the valve, the pressure sensor, the flow sensor, the communicator, the controller and the bubbler are all installed or connected to the conduit.
进一步,所述封隔器安装于注入井的水面以下;所述起泡器安装于所述封隔器下侧。Further, the packer is installed below the water surface of the injection well; the bubbler is installed on the lower side of the packer.
其次,本发明还公开了一种野外地下水连通性测试方法,气体由注入井通过导管经过阀门、压力传感器、流量传感器、井盖、封隔器、起泡器进入含水层,一旦有气体进入注入井内,压力传感器就会发出相应的压力上升信号,通信器将压力上升信号传递给控制器并记录。然后气体通过含水层进入监测井,气体一旦进入监测井,监测井内气体压力上升,使井内气体压力稍微大于大气压力,控制器控制监测井阀门打开,气体持续稳定排放,此时压力传感器、流量传感器通过通信器与控制器持续通讯记录,同时定期取排出的气体样品并分析气体组分含量,结合压力传感器、流量传感器的数据信号,监测井中指示气体的总量。Secondly, the invention also discloses a method for testing groundwater connectivity in the field. The gas enters the aquifer from the injection well through the conduit through the valve, the pressure sensor, the flow sensor, the well cover, the packer and the bubbler. Once the gas enters the injection well , the pressure sensor will send out the corresponding pressure rise signal, the communicator will transmit the pressure rise signal to the controller and record. Then the gas enters the monitoring well through the aquifer. Once the gas enters the monitoring well, the gas pressure in the monitoring well rises, so that the gas pressure in the well is slightly higher than the atmospheric pressure. The controller controls the monitoring well valve to open, and the gas continues to discharge steadily. At this time, the pressure sensor and flow sensor Continuous communication and recording through the communicator and the controller, at the same time, the discharged gas samples are taken regularly and the gas component content is analyzed. Combined with the data signals of the pressure sensor and the flow sensor, the total amount of indicated gas in the well is monitored.
进一步,在调查研究区域选取多个监测井实施所述的野外地下水连通性测试方法,待多个监测井均未检测出指示气体时,判定此调查方位内的地下水与注入井不存在连通,否则存在连通。Further, select multiple monitoring wells in the investigation and research area to implement the described field groundwater connectivity test method. When no indication gas is detected from multiple monitoring wells, it is determined that there is no connection between the groundwater and the injection well in this survey location, otherwise There is connectivity.
本发明与现有技术相比,有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明中,只需要对传统的水文监测井或水井进行一定的改造即可实施,具体的,只需要在注入井和监测井加装本发明所述的野外地下水连通性测试装置即可,并且本发明所述的野外地下水连通性测试装置可以避免投入化学试剂对地下水水质的影响,更好的保护地下水水生态环境,是一种绿色环保的连通性野外测试方法。1. In the present invention, it is only necessary to carry out certain transformations to traditional hydrological monitoring wells or water wells. Specifically, it is only necessary to install the field groundwater connectivity test device of the present invention in the injection wells and the monitoring wells. , and the field groundwater connectivity testing device of the present invention can avoid the impact of inputting chemical reagents on groundwater quality, better protect the groundwater ecological environment, and is a green and environmentally friendly field testing method for connectivity.
2、传统的测试方法需要一次性投入大量化学试剂,成本较大,而本发明避免使用化学示踪剂作为耗材,并且其所涉及的设备可重复利用,再者其采用的气体在可直接从空气中通过气泵获得,使得测试成本大大降低。2. The traditional test method needs to invest a large amount of chemical reagents at one time, and the cost is relatively high, while the present invention avoids the use of chemical tracers as consumables, and the equipment involved can be reused, and the gas used can be directly obtained from The air is obtained by the air pump, which greatly reduces the test cost.
3、本发明中,使用气压传感器和流量传感器辅助进行气体踪迹的判断,可减少人工投入,不同于传统测试方法需要定期取样检测,花费大量检测费用,定期取样检测还有可能错过最初达到时间,本发明所示的方法在监测井中气体检测具有实时性的特点,压力传感器能够第一时间检测到气体到达监测井,在气体到达井内之前无需取样检测,即可提高测试参数的准确性,又可减少综合测试成本。3. In the present invention, using the air pressure sensor and the flow sensor to assist in judging the gas trace can reduce the manual input, which is different from the traditional testing method that requires regular sampling and testing, which costs a lot of testing costs, and the regular sampling and testing may miss the initial arrival time. The method shown in the invention has the characteristics of real-time detection of gas in the monitoring well, the pressure sensor can detect the gas arriving in the monitoring well at the first time, and does not need to sample and detect before the gas reaches the well, which can improve the accuracy of test parameters, and can also improve the accuracy of testing parameters. Reduce comprehensive testing costs.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention.
图1为展示了实施例1所示的装置的结构示意图。FIG. 1 is a schematic diagram showing the structure of the device shown in Embodiment 1. FIG.
图中,1-制气增压机构;2-减压限流阀;3-溢流阀;4-压力传感器;5-流量传感器;6-井盖;7-固井圆环;8-导管;9-水面;10-封隔器;11-含水层;12-起泡器;13-预测地下水流向;14-无线通信器;15-控制器;I-注入井;II-监测井。In the figure, 1-air pressure boosting mechanism; 2-decompression and restrictor valve; 3-relief valve; 4-pressure sensor; 5-flow sensor; 6-well cover; 7-cementing ring; 8-conduit; 9-water surface; 10-packer; 11-aquifer; 12-bubbler; 13-forecast groundwater flow direction; 14-wireless communicator; 15-controller; I-injection well; II-monitoring well.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
正如背景技术所述,为了解决上述常规采用投化学示踪剂的方法逐渐不适用于人口居住密集或者存在重要水源地的地区的问题,本发明提出了一种可以避免外源化学示踪剂进入地下水,同时又可指示地下水流速、流向等水文地质参数的连通性野外测试方法。该方法采用天然空气中的气相流体作用指示剂,采用监测气体、气体含量的方法确定地下水流速、流向,现结合附图和具体实施方式对本发明进一步进行说明。As described in the background art, in order to solve the problem that the above-mentioned conventional method of adding chemical tracers is gradually unsuitable for areas with dense population or important water sources, the present invention proposes a method that can avoid the entry of exogenous chemical tracers. Groundwater, and at the same time can indicate groundwater velocity, flow direction and other hydrogeological parameters of connectivity field test method. The method uses gas-phase fluid in natural air as an indicator, and uses the method of monitoring gas and gas content to determine groundwater flow rate and flow direction. The present invention will now be further described with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
首先,本实施例公开了一种野外地下水连通性测试装置,包括制气增压机构1、阀门、压力传感器4、流量传感器5、通信器、控制器15、封隔器10和起泡器12,阀门、压力传感器4和流量传感器5安装于注入井I井盖6的上侧,封隔器10和起泡器12安装于注入井I井盖6的下侧,制气增压机构1连通于阀门,控制器15连接阀门,压力传感器4和流量传感器5通过通信器与控制器15连接;由制气增压机构1产生的气体能够经过阀门、封隔器10和起泡器12进入注入井I;可以理解的是,本实施例中的注入井I是现有的进行野外地下水连通性测试所开设的注入井I,并非本实施例中所特有的装置。First of all, this embodiment discloses a field groundwater connectivity test device, including a gas pressure boosting mechanism 1 , a valve, a pressure sensor 4 , a flow sensor 5 , a communicator, a
需要说明的是,本实施例中的阀门包括减压限流阀2和溢流阀3。It should be noted that the valve in this embodiment includes a pressure reducing and restricting valve 2 and an overflow valve 3 .
可以理解的是,本实施例中的注入井I和监测井II均设有固井圆环7。It can be understood that both the injection well I and the monitoring well II in this embodiment are provided with a cementing ring 7 .
所述制气增压机构1为气泵。本实施例中的使用气泵作为一种能够执行输入气体的部件,其作用是提供气源给本实施例中的野外地下水连通性测试装置,因此本实施例对于气泵的选取,其要求满足能够将气体推入到含水层11即可。The air making and boosting mechanism 1 is an air pump. In this embodiment, the air pump is used as a component capable of inputting gas, and its function is to provide a gas source to the field groundwater connectivity test device in this embodiment. Therefore, the selection of the air pump in this embodiment must meet the requirements of being able to The gas may be pushed into the
所述阀门包括相连接的溢流阀3和减压限流阀2。此为本领域中的常用装置,在此无需赘述,仍然需要解释的是,本实施例中的溢流阀3和减压限流阀2是与控制器15相连接的,因此其需要采用支持连接控制器15的型号。The valve includes a connected overflow valve 3 and a pressure reducing and limiting valve 2 . This is a commonly used device in the field, and it is unnecessary to repeat it here. It still needs to be explained that the relief valve 3 and the pressure reducing and limiting valve 2 in this embodiment are connected to the
所述通信器为有线通信器或无线通信器14。The communicator is a wired communicator or a
可以理解的是,本实施例中的有线通信器可以是路由器或交换器或PC的总线,本实施例中的无线通信器14可以是无线信号发射器,如射频信号发射器、蓝牙信号发射器,本是实施例中的有线通信器/无线通信器14与压力传感器4/流量传感器5的连接为本领域技术人员所熟知的公知常识,在此不予赘述。It can be understood that the wired communicator in this embodiment may be a router or a switch or a PC bus, and the
本实施例在具体的实施过程中使用无线通信器14,以获得更加灵活的连接方式。In this embodiment, the
当所述通信器为有线通信器时,所述通信器通过导线与流量传感器5和压力传感器4连接,所述通信器通过导线与控制器15连接。When the communicator is a wired communicator, the communicator is connected to the flow sensor 5 and the pressure sensor 4 through wires, and the communicator is connected to the
当所述通信器为无线通信器14时,所述通信器包括无线发射器和无线接收器,无线发射器通过导线与流量传感器5和压力传感器4连接,无线接收器与控制器15连接。When the communicator is the
还包括导管8,所述制气增压机构1、阀门、压力传感器4、流量传感器5、通信器、控制器15和起泡器12均安装或连接于导管8。Also included is a conduit 8 to which the gas-producing and boosting mechanism 1 , valve, pressure sensor 4 , flow sensor 5 , communicator,
所述封隔器10安装于注入井I的水面9以下;所述起泡器12安装于所述封隔器10下侧。The
具体的,封隔器10放置在地下水位以下,起到阻止气体往上运移的作用;起泡器12放置在含水层11位置,可让气体在地下水中分散,加快气体随着这地下水进入含水层11的过程。Specifically, the
本实施例中的控制器15采用PC,在其他实施例中,控制器可以采用MCU或PLC。The
实施例2Example 2
本实施例公开了一种野外地下水连通性测试方法,气体由注入井I通过导管8经过阀门、压力传感器4、流量传感器5、井盖6、封隔器10、起泡器12进入含水层11,一旦有气体进入监测井II内,压力传感器4就会发出相应的压力上升信号,通过通信器将压力上升信号传递给控制器15,然后控制器15控制监测井II中阀门打开,使井内气体压力稍微大于大气压力,此时监测井II中压力传感器4、流量传感器5通过通信器与控制器15持续通讯,同时定期取排出的气体样品并分析气体组分含量,结合压力传感器4、流量传感器5的数据信号,监测井II中指示气体的总量。可以理解的是,本实施例中的监测井II也属于现有技术。This embodiment discloses a method for testing groundwater connectivity in the field. The gas enters the
进一步,在调查研究区域选取多个监测井II实施所述的野外地下水连通性测试方法,待多个监测井II均未检测出指示气体时,判定此调查方位内的地下水与注入井不存在连通,否则存在连通。Further, select a plurality of monitoring wells II in the investigation and research area to implement the described field groundwater connectivity test method, and when none of the plurality of monitoring wells II detects an indicator gas, it is determined that the groundwater in this survey location is not connected to the injection well. , otherwise there is connectivity.
可以理解的是,本实施例中,注入井I中压力传感器4持续传输压力信号给控制器15,流量传感器5持续传输流量信号给控制器15,压力信号反应的是导管8管壁所受的压力,由于导管8连通的是气泵,因此其测量的具体数值是导管8内的气压,流量信号反应的是导管8内的流通的气体的流量,若在监测井II内气体压力稍微大于大气压力的情况下,压力传感器4持续传输的压力信号大于大气压,流量传感器5持续传输的流量信号大于零,则说明监测井II内有气体流通,监测井II与注入井I含水层是连通的。It can be understood that, in this embodiment, the pressure sensor 4 in the injection well 1 continuously transmits a pressure signal to the
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911058279.8A CN110793752B (en) | 2019-10-25 | 2019-10-25 | Device and method for testing field underground water connectivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911058279.8A CN110793752B (en) | 2019-10-25 | 2019-10-25 | Device and method for testing field underground water connectivity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110793752A true CN110793752A (en) | 2020-02-14 |
CN110793752B CN110793752B (en) | 2021-09-14 |
Family
ID=69440650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911058279.8A Active CN110793752B (en) | 2019-10-25 | 2019-10-25 | Device and method for testing field underground water connectivity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110793752B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112113883A (en) * | 2020-08-31 | 2020-12-22 | 河海大学 | A system and method for monitoring groundwater solute transport in a subsurface flow zone of a river |
CN114018312A (en) * | 2021-11-07 | 2022-02-08 | 天津市地质研究和海洋地质中心 | Integrated device and method for underground water environment monitoring well investigation |
CN114486637A (en) * | 2022-01-24 | 2022-05-13 | 湖北煤炭地质一二五队 | Open-air groundwater connectivity investigation testing arrangement |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3174717B2 (en) * | 1995-06-26 | 2001-06-11 | 三菱重工業株式会社 | Underwater bubble generator with adjustable bubble diameter |
CN201107416Y (en) * | 2007-10-22 | 2008-08-27 | 苏州圣庄伟业岩土科技有限公司 | Foundation engineering ground water parameter measuring systems based on pressure tracer |
CN102435768A (en) * | 2011-12-21 | 2012-05-02 | 唐山现代工控技术有限公司 | Method and device for measuring flow velocity of canal by using bubbles |
CN104990575A (en) * | 2015-07-09 | 2015-10-21 | 中国地质大学(武汉) | Combined underground water monitoring device |
CN106405679A (en) * | 2016-11-09 | 2017-02-15 | 中国地质大学(北京) | Well alignment device which quantitatively monitors underground water flow and well pull ring |
CN109212254A (en) * | 2018-09-29 | 2019-01-15 | 山东省地矿工程集团有限公司 | A method for measuring groundwater migration paths using tracers |
JP2019035688A (en) * | 2017-08-18 | 2019-03-07 | 株式会社アサノ大成基礎エンジニアリング | Flow velocity and flow direction meter and screen |
CN109727512A (en) * | 2019-03-14 | 2019-05-07 | 哈尔滨工程大学 | A hydrogen bubble Reynolds experimental device |
KR102027942B1 (en) * | 2019-04-04 | 2019-10-02 | 한국지질자원연구원 | Radon monitoring apparatus for groundwater monitoring well of fixed type aerator structure |
-
2019
- 2019-10-25 CN CN201911058279.8A patent/CN110793752B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3174717B2 (en) * | 1995-06-26 | 2001-06-11 | 三菱重工業株式会社 | Underwater bubble generator with adjustable bubble diameter |
CN201107416Y (en) * | 2007-10-22 | 2008-08-27 | 苏州圣庄伟业岩土科技有限公司 | Foundation engineering ground water parameter measuring systems based on pressure tracer |
CN102435768A (en) * | 2011-12-21 | 2012-05-02 | 唐山现代工控技术有限公司 | Method and device for measuring flow velocity of canal by using bubbles |
CN104990575A (en) * | 2015-07-09 | 2015-10-21 | 中国地质大学(武汉) | Combined underground water monitoring device |
CN106405679A (en) * | 2016-11-09 | 2017-02-15 | 中国地质大学(北京) | Well alignment device which quantitatively monitors underground water flow and well pull ring |
JP2019035688A (en) * | 2017-08-18 | 2019-03-07 | 株式会社アサノ大成基礎エンジニアリング | Flow velocity and flow direction meter and screen |
CN109212254A (en) * | 2018-09-29 | 2019-01-15 | 山东省地矿工程集团有限公司 | A method for measuring groundwater migration paths using tracers |
CN109727512A (en) * | 2019-03-14 | 2019-05-07 | 哈尔滨工程大学 | A hydrogen bubble Reynolds experimental device |
KR102027942B1 (en) * | 2019-04-04 | 2019-10-02 | 한국지질자원연구원 | Radon monitoring apparatus for groundwater monitoring well of fixed type aerator structure |
Non-Patent Citations (2)
Title |
---|
易连兴 等: "地下水连通介质结构分析-以寨底地下河系统实验基地示踪试验为例", 《工程勘察》 * |
韩文娟 等: "示踪试验在水库大坝渗漏检测中的应用", 《治淮》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112113883A (en) * | 2020-08-31 | 2020-12-22 | 河海大学 | A system and method for monitoring groundwater solute transport in a subsurface flow zone of a river |
CN112113883B (en) * | 2020-08-31 | 2022-03-18 | 河海大学 | System and method for monitoring transport of underground water solute in river subsurface |
CN114018312A (en) * | 2021-11-07 | 2022-02-08 | 天津市地质研究和海洋地质中心 | Integrated device and method for underground water environment monitoring well investigation |
CN114018312B (en) * | 2021-11-07 | 2024-04-05 | 天津市地质研究和海洋地质中心 | Integrated equipment and method for monitoring well investigation of groundwater environment |
CN114486637A (en) * | 2022-01-24 | 2022-05-13 | 湖北煤炭地质一二五队 | Open-air groundwater connectivity investigation testing arrangement |
Also Published As
Publication number | Publication date |
---|---|
CN110793752B (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102230375B (en) | Method for monitoring coal bed gas parameter in real time | |
CN110793752A (en) | Device and method for testing field underground water connectivity | |
CN107764713B (en) | In-situ test method of double-ring infiltration device with adjustable measuring range and soil permeability coefficient | |
CN103334739B (en) | A kind of method and device of measuring coal-bed gas pressure | |
CN1970990B (en) | Method for measuring return flow in petroleum drilling and device therefor | |
CN204041061U (en) | A kind of coal bed gas gas well automatic liquid level tester | |
CN104879094B (en) | Downhole throttling gas well shaft simulation experiment device | |
CN201021919Y (en) | Oil pipeline mixed oil concentration detection device | |
CN107192632A (en) | A kind of device and method for measuring shale gas reservoir air content | |
CN203216821U (en) | Testing device for soil air-infiltration coefficients | |
CN107907187B (en) | Method and device for measuring gas-liquid interface depth of salt cavern gas storage | |
CN103163056B (en) | Method for detecting mine hydrogeological conditions | |
CN201254989Y (en) | On-line detection device for water content of oil well | |
CN204312052U (en) | Water shutoff profile control construction parameter on-line monitoring system | |
CN206161087U (en) | Gassiness flow measurement gasometry meter | |
CN110307035B (en) | Device and method for testing coal bed gas basic parameters and predicting gas accumulation zone | |
CN106644387B (en) | Test device and test method for resistance coefficient along the inner wall of pipeline under unsteady flow | |
CN201277061Y (en) | Coal-bed gas pressure determinator | |
CN211648236U (en) | Coal seam gas drainage radius measuring device and system | |
CN205297502U (en) | Digital automatic regulating system for separately-injected cumulative flow | |
CN105781532B (en) | Leak source depth detection experimental device | |
CN110864723B (en) | Groundwater oil pollution monitoring system | |
CN202788817U (en) | Near-bit measuring system experimental facility | |
CN112502694A (en) | System and method for measuring and calculating working fluid level of oil well | |
CN207703831U (en) | A kind of high-precision environment detection monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |