CN110793032A - 一种加热炉富氧燃烧系统及其控制方法 - Google Patents

一种加热炉富氧燃烧系统及其控制方法 Download PDF

Info

Publication number
CN110793032A
CN110793032A CN201910940430.4A CN201910940430A CN110793032A CN 110793032 A CN110793032 A CN 110793032A CN 201910940430 A CN201910940430 A CN 201910940430A CN 110793032 A CN110793032 A CN 110793032A
Authority
CN
China
Prior art keywords
oxygen
combustion system
combustion
heating
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910940430.4A
Other languages
English (en)
Other versions
CN110793032B (zh
Inventor
高军
刘常鹏
马光宇
王向锋
郝博
徐伟
赵俣
张哲�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201910940430.4A priority Critical patent/CN110793032B/zh
Publication of CN110793032A publication Critical patent/CN110793032A/zh
Application granted granted Critical
Publication of CN110793032B publication Critical patent/CN110793032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

本发明涉及一种加热炉富氧燃烧系统及其控制方法,加热炉设预热段、一加热段、二加热段及均热段,其中一加热段设燃烧系统一、二加热段设燃烧系统二,燃烧系统一、燃烧系统二分别由设于炉膛两侧的多个烧嘴及氧枪组成,加热炉富氧燃烧系统还包括用于控制燃烧系统一或同时控制燃烧系统一及燃烧系统二的富氧浓度控制系统;富氧浓度控制系统由炉膛温度检测模块、烧嘴负荷计算模块、煤气量控制模块及氧浓度控制模块组成;本发明将加热炉原有燃烧系统与富氧燃烧技术有机结合,通过氧枪喷入高速氧气,在炉内形成无焰燃烧,能够有效提高加热炉的燃烧效率,降低燃料消耗,优化炉内温度场分布及钢坯温度均匀性,降低NOx的排放。

Description

一种加热炉富氧燃烧系统及其控制方法
技术领域
本发明涉及冶金加热炉节能技术领域,尤其涉及一种加热炉富氧燃烧系统及其控制方法。
背景技术
富氧燃烧技术在加热炉领域具有传导效率和燃烧效率高,能有效提高加热炉产能,改善炉内温度场,提高钢坯温度均匀性,减少氧化铁皮,节约燃料,降低NOx和C02排放等多方面优势,应用前景非常广阔。
目前,轧钢加热炉富氧燃烧有如下几种方式:空气与氧气预先混合后供入烧嘴燃烧、氧气插入式富氧燃烧、纯氧燃烧以及烟气回流富氧燃烧。对于传统的加热炉燃烧系统来说,空气与氧气预先混合后供入烧嘴燃烧,会造成燃烧速率加快,火焰缩短,燃烧区域更加集中,从而使得炉膛温度分布的均匀性变差,NOx的形成剧烈增加;同时钢坯的氧化烧损将增大,不利于提高钢铁生产的质量。传统的氧气插入式燃烧在加热炉领域主要是解决加热能力不足或从提高产能角度出发,并未真正解决炉温均匀性、污染生成和氧化烧损等问题。另外纯氧燃烧的氧气成本高,烟气回流富氧燃烧方式的技术不成熟,因此这两种方式目前在国内加热炉鲜有应用。
如何在原有燃烧系统基本设置不变的情况下,开发出加热炉富氧燃烧系统,通过合理布置富氧燃烧系统在加热炉中的位置及对富氧浓度进行控制,最终在提高产能的同时实现富氧燃烧炉内温度场更均匀,达到节约燃料、降低NOx排放、降低生产成本是加热炉富氧燃烧技术的研究重点。
专利号为CN104266190B的中国专利公开了一种“富氧无焰燃气燃烧器及其控制方法”,其提出的富氧无焰燃气燃烧器,将稀释燃烧技术与富氧燃烧技术有机结合,实现炉富氧燃烧。但存在需要将原有加热系统全部改进后才能应用。
专利号为CN103343965A的中国专利公开了“一种利用富氧燃烧的加热炉系统”,涉及一种空气与氧气预先混合后供入烧嘴燃烧加热炉系统,采用富氧燃烧技术,可实现低热值煤气的有效利用,更加高效、节能、环保。但存在会造成燃烧速率加快,火焰缩短,燃烧区域更加集中,使得炉膛温度分布的均匀性变差等问题。
发明内容
本发明提供了一种加热炉富氧燃烧系统及其控制方法,将加热炉原有燃烧系统与富氧燃烧技术有机结合,通过氧枪喷入高速氧气,在炉内形成无焰燃烧,能够有效提高加热炉的燃烧效率,降低燃料消耗,优化炉内温度场分布及钢坯温度均匀性,降低NOx的排放。
为了达到上述目的,本发明采用以下技术方案实现:
一种加热炉富氧燃烧系统,所述加热炉沿钢坯输送方向依次设预热段、一加热段、二加热段及均热段,其中一加热段设燃烧系统一、二加热段设燃烧系统二,燃烧系统一、燃烧系统二分别由设于炉膛两侧的多个烧嘴及氧枪组成,烧嘴上的煤气入口连接煤气管道,烧嘴上的空气入口连接空气管道;氧枪连接氧气管道;靠近烧嘴的煤气管道上设煤气调节阀,靠近烧嘴的空气管道上设空气调节阀,靠近氧枪的氧气管道上设氧气调节阀;所述加热炉富氧燃烧系统还包括用于控制燃烧系统一或同时控制燃烧系统一及燃烧系统二的富氧浓度控制系统;富氧浓度控制系统由炉膛温度检测模块、烧嘴负荷计算模块、煤气量控制模块及氧浓度控制模块组成;所述炉膛温度检测模块由安装在一加热段、或安装在一加热段及二加热段的温度检测装置组成,炉膛温度检测模块的信号输出端连接烧嘴负荷计算模块的信号输入端,烧嘴负荷计算模块的信号输出端分别连接煤气量控制模块的信号输入端及氧浓度控制模块的信号输入端,煤气量控制模块的信号输出端连接煤气调节阀;氧浓度控制模块的信号输出端分别连接空气调节阀及氧气调节阀。
所述煤气调节阀、空气调节阀及氧气调节阀均为电动调节阀。
所述氧枪在距离烧嘴200~450mm处设置,氧枪与烧嘴的法线夹角为0°~65°。
一种加热炉富氧燃烧系统的控制方法,包括如下步骤:
1)由所述炉膛温度检测模块将温度检测数据传送到烧嘴负荷功率计算模块;
2)当检测位置的加热炉炉膛温度发生变化时,通过烧嘴负荷功率计算模块实时计算实现富氧燃烧所需的理论煤气流量值及理论氧浓度值;其中理论氧浓度计算规则是:炉温每增加10~15℃,氧浓度提高5%~9%,并且氧浓度控制在21%~60%范围内;
3)烧嘴负荷功率计算模块将计算得到的理论煤气流量值及理论氧浓度值分别传送到煤气量控制模块、氧浓度控制模块中,煤气量控制模块根据理论煤气流量值直接控制煤气调节阀的开度;氧浓度控制模块根据理论氧浓度值分配理论空气流量值及理论氧气流量值,并对应控制空气调节阀和氧气调节阀的开度;氧气流量按500~10000Nm3/h控制,氧气流速按150~280m/s控制;
4)经过富氧浓度控制系统调节后,一加热段或一加热段及二加热段内的总氧气量始终与实现富氧燃烧所需的氧气量保持匹配;富氧浓度控制系统精准控制流量的氧气通过氧枪射到炉膛内,形成负压引射区,卷吸炉膛内的高温烟气及未燃尽的煤气,达到充分燃烧的目的;同时炉膛内的温度场更均匀,空气大量减少,NOx排放物降低。
所述富氧浓度控制系统根据加热炉产能进行设置;具体如下表所示:
预提高加热炉产能,且5%<提高量≤10%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按21%≤氧浓度<35%控制;
预提高加热炉产能,且10%<提高量≤18%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按35%≤氧浓度≤50%控制;
预提高加热炉产能,且18%<提高量≤25%时,18%~25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按30%≤氧浓度<60%控制;
预提高加热炉产能,且提高量>25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按60%≤氧浓度≤65%控制。
与现有技术相比,本发明的有益效果是:
1)在加热炉原有燃烧系统的基础上增加富氧浓度控制系统,通过精确控制炉内氧浓度,可有效提高加热炉的燃烧效率和产能,降低燃料消耗,提高钢坯温度均匀性,减少排烟损失,并降低NOx排放;
2)适用于新建加热炉及现有加热炉技术改造,对于现有加热炉可在线安装氧枪,并且在所有采用侧烧嘴的加热炉上都可应用,适用性强,易于实现,投入成本低,生产稳定性好。
附图说明
图1是本发明所述一种加热炉富氧燃烧系统的结构示意图。
图2是本发明所述一种加热炉富氧燃烧系统控制方法的原理框图。
图中:1.预热段 2.一加热段 3.二加热段 4.均热段 5.烧嘴 6.煤气调节阀 7.氧枪 8.氧气调节阀 9.空气调节阀 10.富氧浓度控制系统
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
如图1所示,本发明所述一种加热炉富氧燃烧系统,所述加热炉沿钢坯输送方向依次设预热段1、一加热段2、二加热段3及均热段4,其中一加热段2设燃烧系统一、二加热段3设燃烧系统二,燃烧系统一、燃烧系统二分别由设于炉膛两侧的多个烧嘴5及氧枪7组成,烧嘴5上的煤气入口连接煤气管道,烧嘴5上的空气入口连接空气管道;氧枪7连接氧气管道;靠近烧嘴5的煤气管道上设煤气调节阀6,靠近烧嘴5的空气管道上设空气调节阀9,靠近氧枪7的氧气管道上设氧气调节阀8;所述加热炉富氧燃烧系统还包括用于控制燃烧系统一或同时控制燃烧系统一及燃烧系统二的富氧浓度控制系统10;富氧浓度控制系统10由炉膛温度检测模块、烧嘴负荷计算模块、煤气量控制模块及氧浓度控制模块组成;所述炉膛温度检测模块由安装在一加热段2、或安装在一加热段2及二加热段3的温度检测装置组成,炉膛温度检测模块的信号输出端连接烧嘴负荷计算模块的信号输入端,烧嘴负荷计算模块的信号输出端分别连接煤气量控制模块的信号输入端及氧浓度控制模块的信号输入端,煤气量控制模块的信号输出端连接煤气调节阀6;氧浓度控制模块的信号输出端分别连接空气调节阀9及氧气调节阀8。
所述煤气调节阀6、空气调节阀9及氧气调节阀8均为电动调节阀。
所述氧枪7在距离烧嘴5 200~450mm处设置,氧枪7与烧嘴5的法线夹角为0°~65°。
如图2所示,本发明所述一种加热炉富氧燃烧系统的控制方法,包括如下步骤:
1)由所述炉膛温度检测模块将温度检测数据传送到烧嘴负荷功率计算模块;
2)当检测位置的加热炉炉膛温度发生变化时,通过烧嘴负荷功率计算模块实时计算实现富氧燃烧所需的理论煤气流量值及理论氧浓度值;其中理论氧浓度计算规则是:炉温每增加10~15℃,氧浓度提高5%~9%,并且氧浓度控制在21%~60%范围内;
3)烧嘴负荷功率计算模块将计算得到的理论煤气流量值及理论氧浓度值分别传送到煤气量控制模块、氧浓度控制模块中,煤气量控制模块根据理论煤气流量值直接控制煤气调节阀6的开度;氧浓度控制模块根据理论氧浓度值分配理论空气流量值及理论氧气流量值,并对应控制空气调节阀9和氧气调节阀8的开度;氧气流量按500~10000Nm3/h控制,氧气流速按150~280m/s控制;
4)经过富氧浓度控制系统调节后,一加热段2或一加热段2及二加热段3内的总氧气量始终与实现富氧燃烧所需的氧气量保持匹配;富氧浓度控制系统精准控制流量的氧气通过氧枪射到炉膛内,形成负压引射区,卷吸炉膛内的高温烟气及未燃尽的煤气,达到充分燃烧的目的;同时炉膛内的温度场更均匀,空气大量减少,NOx排放物降低。
所述富氧浓度控制系统根据加热炉产能进行设置;具体如下表所示:
预提高加热炉产能,且5%<提高量≤10%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按21%≤氧浓度<35%控制;
预提高加热炉产能,且10%<提高量≤18%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按35%≤氧浓度≤50%控制;
预提高加热炉产能,且18%<提高量≤25%时,18%~25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按30%≤氧浓度<60%控制;
预提高加热炉产能,且提高量>25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按60%≤氧浓度≤65%控制。
以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。下述实施例中所用方法如无特别说明均为常规方法。
【实施例】
本实施例中,对现有热轧加热炉进行技术改造,加热炉的实际热装加热能力为280.8t/h,原生产工艺为采用热值为2100cal/Nm3的混和煤气为燃料,采用空气为助燃风与煤气混合燃烧。
本实施例中,预在原有基础上提高加热炉产能10%,增设富氧浓度控制系统,并且将其与一加热段的燃烧系统连接。
实施后,煤气流量为13500Nm3/h,一加热段的氧浓度按30%控制,所需空气量由原来的29700Nm3/h降为18422Nm3/h,空气流量降低了38%,氧枪用氧气流量为2368Nm3/h。
原加热炉的煤气单耗为1.35GJ/t钢,改进后煤气单耗为1.28GJ/t钢,降低了5%;产量提高到303.3t/h,提升8%;钢坯温度均匀性(温度差)由原来的30℃减少为25℃,轧机电耗由75Kwh/t钢降为72.75Kwh/t,降低3%;NOx排放降低9%。
【实施例2】
本实施例中,对现有热轧加热炉进行技术改造,加热炉的实际热装加热能力为280.8t/h,原工艺采用热值为2100cal/Nm3的混和煤气为燃料,采用空气为助燃风与煤气混合燃烧。
本实施例中,预在原有基础上提高加热炉产能15%,增设富氧浓度控制系统,并且将其与一加热段的燃烧系统连接。
实施后,煤气流量为15500Nm3/h,一加热段的氧浓度按50%控制,所需空气量由原来的34100Nm3/h降为9067Nm3/h,空气流量降低了73.4%,氧枪用氧气流量为5257Nm3/h。
原加热炉的煤气单耗为1.35GJ/t钢,改进后煤气单耗为1.22GJ/t钢,降低了10%;产量提高到322.92t/h,提升15%;钢坯温度均匀性(温度差)由原来的30℃减少为21℃,轧机电耗由75Kwh/t钢降为71.25Kwh/t,降低5%;NOx排放降低15%。
【实施例3】
本实施例中,对现有热轧加热炉进行技术改造,加热炉的实际热装加热能力为280.8t/h,原工艺采用热值为2100cal/Nm3的混和煤气为燃料,采用空气为助燃风与煤气混合燃烧。
本实施例中,预在原有基础上提高加热炉产能25%,增设富氧浓度控制系统,并且将其同时与一加热段、二加热段的燃烧系统连接。
实施后,煤气流量为24800Nm3/h,一加热段、二加热段的氧浓度均按55%控制,所需空气量由原来的54560Nm3/h降为11866Nm3/h,空气流量降低了78.3%,氧枪用氧气流量为8966Nm3/h。
原加热炉的煤气单耗为1.35GJ/t钢,改进后煤气单耗为1.20GJ/t钢,降低了12%;产量提高到351t/h,提升25%;钢坯温度均匀性(温度差)由原来的30℃减少为20℃,轧机电耗由75Kwh/t钢降为70.5Kwh/t,降低6%;NOx排放降低21%。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种加热炉富氧燃烧系统,所述加热炉沿钢坯输送方向依次设预热段、一加热段、二加热段及均热段,其中一加热段设燃烧系统一、二加热段设燃烧系统二,燃烧系统一、燃烧系统二分别由设于炉膛两侧的多个烧嘴及氧枪组成,烧嘴上的煤气入口连接煤气管道,烧嘴上的空气入口连接空气管道;氧枪连接氧气管道;靠近烧嘴的煤气管道上设煤气调节阀,靠近烧嘴的空气管道上设空气调节阀,靠近氧枪的氧气管道上设氧气调节阀;其特征在于,所述加热炉富氧燃烧系统还包括用于控制燃烧系统一或同时控制燃烧系统一及燃烧系统二的富氧浓度控制系统;富氧浓度控制系统由炉膛温度检测模块、烧嘴负荷计算模块、煤气量控制模块及氧浓度控制模块组成;所述炉膛温度检测模块由安装在一加热段、或安装在一加热段及二加热段的温度检测装置组成,炉膛温度检测模块的信号输出端连接烧嘴负荷计算模块的信号输入端,烧嘴负荷计算模块的信号输出端分别连接煤气量控制模块的信号输入端及氧浓度控制模块的信号输入端,煤气量控制模块的信号输出端连接煤气调节阀;氧浓度控制模块的信号输出端分别连接空气调节阀及氧气调节阀。
2.根据权利要求1所述的一种加热炉富氧燃烧系统,其特征在于,所述煤气调节阀、空气调节阀及氧气调节阀均为电动调节阀。
3.根据权利要求1所述的一种加热炉富氧燃烧系统,其特征在于,所述氧枪在距离烧嘴200~450mm处设置,氧枪与烧嘴的法线夹角为0°~65°。
4.如权利要求1所述一种加热炉富氧燃烧系统的控制方法,其特征在于,包括如下步骤:
1)由所述炉膛温度检测模块将温度检测数据传送到烧嘴负荷功率计算模块;
2)当检测位置的加热炉炉膛温度发生变化时,通过烧嘴负荷功率计算模块实时计算实现富氧燃烧所需的理论煤气流量值及理论氧浓度值;其中理论氧浓度计算规则是:炉温每增加10~15℃,氧浓度提高5%~9%,并且氧浓度控制在21%~65%范围内;
3)烧嘴负荷功率计算模块将计算得到的理论煤气流量值及理论氧浓度值分别传送到煤气量控制模块、氧浓度控制模块中,煤气量控制模块根据理论煤气流量值直接控制煤气调节阀的开度;氧浓度控制模块根据理论氧浓度值分配理论空气流量值及理论氧气流量值,并对应控制空气调节阀和氧气调节阀的开度;氧气流量按500~10000Nm3/h控制,氧气流速按150~280m/s控制;
4)经过富氧浓度控制系统调节后,一加热段或一加热段及二加热段内的总氧气量始终与实现富氧燃烧所需的氧气量保持匹配;富氧浓度控制系统精准控制流量的氧气通过氧枪射到炉膛内,形成负压引射区,卷吸炉膛内的高温烟气及未燃尽的煤气,达到充分燃烧的目的;同时炉膛内的温度场更均匀,空气大量减少,NOx排放物降低。
5.根据权利要求4所述的一种加热炉富氧燃烧系统的控制方法,其特征在于,所述富氧浓度控制系统根据加热炉产能进行设置;具体如下表所示:
预提高加热炉产能,且5%<提高量≤10%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按21%≤氧浓度<35%控制;
预提高加热炉产能,且10%<提高量≤18%时,将一加热段的燃烧系统一通过富氧燃烧控制系统进行控制,一加热段炉膛内按35%≤氧浓度≤50%控制;
预提高加热炉产能,且18%<提高量≤25%时,18%~25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按30%≤氧浓度<60%控制;
预提高加热炉产能,且提高量>25%时,将一加热段的燃烧系统一和二加热段的燃烧系统二均通过富氧燃烧控制系统进行控制,一加热段、二加热段炉膛内均按60%≤氧浓度≤65%控制。
CN201910940430.4A 2019-09-30 2019-09-30 一种加热炉富氧燃烧系统及其控制方法 Active CN110793032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910940430.4A CN110793032B (zh) 2019-09-30 2019-09-30 一种加热炉富氧燃烧系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910940430.4A CN110793032B (zh) 2019-09-30 2019-09-30 一种加热炉富氧燃烧系统及其控制方法

Publications (2)

Publication Number Publication Date
CN110793032A true CN110793032A (zh) 2020-02-14
CN110793032B CN110793032B (zh) 2021-08-20

Family

ID=69438791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910940430.4A Active CN110793032B (zh) 2019-09-30 2019-09-30 一种加热炉富氧燃烧系统及其控制方法

Country Status (1)

Country Link
CN (1) CN110793032B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811257A (zh) * 2020-06-16 2020-10-23 首钢京唐钢铁联合有限责任公司 一种加热炉燃烧控制方法和装置
CN111964468A (zh) * 2020-08-04 2020-11-20 鞍钢股份有限公司 一种轧钢加热炉预混富氧燃烧系统及方法
CN111964467A (zh) * 2020-08-04 2020-11-20 鞍钢股份有限公司 轧钢加热炉预混富氧与射氧融合的富氧燃烧系统及方法
CN112710161A (zh) * 2020-12-29 2021-04-27 马鞍山钢铁股份有限公司 一种轧钢加热炉的纯氧燃烧控制系统及控制方法
CN113154874A (zh) * 2021-04-14 2021-07-23 鞍钢股份有限公司 一种基于气体燃料的加热炉低NOx燃烧控制方法
CN113446867A (zh) * 2021-05-31 2021-09-28 马鞍山钢铁股份有限公司 一种轧钢加热炉的烟气中NOx的分段监测预警系统及NOx控制方法
CN113670071A (zh) * 2021-07-27 2021-11-19 中冶长天国际工程有限责任公司 一种用于燃气燃烧的梯级供氧系统及调节方法
CN113757685A (zh) * 2021-07-26 2021-12-07 广州广钢气体能源股份有限公司 一种飞灰处置的局部富氧燃烧装置及控制方法
CN114688868A (zh) * 2022-04-07 2022-07-01 中钢集团鞍山热能研究院有限公司 一种用于轧钢加热炉的全氧燃烧系统
CN116398878A (zh) * 2023-06-01 2023-07-07 南京思墨能源科技有限公司 一种用于轧钢加热炉的组合式全氧燃烧系统及其燃烧方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071824A (ja) * 1983-09-28 1985-04-23 Sumitomo Metal Ind Ltd 酸素富化燃焼法における酸素富化率制御方法
US20020195754A1 (en) * 2001-06-26 2002-12-26 Onahama Smelting And Refining Co., Ltd Shredder dust feeding device, reverberatory furnace provided with this feeding device, and furnace for burning shredder dust
CN202658199U (zh) * 2012-07-13 2013-01-09 江苏胜达科技有限公司 热处理炉
CN203007350U (zh) * 2012-12-20 2013-06-19 北京志能祥赢节能环保科技有限公司 一种空气富氧蓄热式步进梁加热炉
CN204438744U (zh) * 2014-12-23 2015-07-01 河南豫光金铅股份有限公司 一种用于液态铜锍吹炼炼铜的顶底吹炼铜炉
CN104748568A (zh) * 2015-04-03 2015-07-01 首钢总公司 一种基于轧钢加热炉的加热方法及系统
CN205065703U (zh) * 2015-09-17 2016-03-02 鞍钢股份有限公司 一种加热炉低nox烟气循环富氧燃烧装置
CN207515522U (zh) * 2017-11-17 2018-06-19 高邑汇力瓷业有限公司 助燃风热交换富氧燃烧烧成窑
CN109078467A (zh) * 2018-08-22 2018-12-25 武汉钢铁有限公司 烧结烟气除尘脱硝一体化工艺
CN109556416A (zh) * 2018-11-28 2019-04-02 重庆赛迪热工环保工程技术有限公司 一种纯氧烟气循环加热炉控制系统及其控制方法
CN208860147U (zh) * 2018-08-01 2019-05-14 湖北新冶钢特种钢管有限公司 使用混合煤气的加热炉的节能控制系统用现场仪表

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071824A (ja) * 1983-09-28 1985-04-23 Sumitomo Metal Ind Ltd 酸素富化燃焼法における酸素富化率制御方法
US20020195754A1 (en) * 2001-06-26 2002-12-26 Onahama Smelting And Refining Co., Ltd Shredder dust feeding device, reverberatory furnace provided with this feeding device, and furnace for burning shredder dust
CN202658199U (zh) * 2012-07-13 2013-01-09 江苏胜达科技有限公司 热处理炉
CN203007350U (zh) * 2012-12-20 2013-06-19 北京志能祥赢节能环保科技有限公司 一种空气富氧蓄热式步进梁加热炉
CN204438744U (zh) * 2014-12-23 2015-07-01 河南豫光金铅股份有限公司 一种用于液态铜锍吹炼炼铜的顶底吹炼铜炉
CN104748568A (zh) * 2015-04-03 2015-07-01 首钢总公司 一种基于轧钢加热炉的加热方法及系统
CN205065703U (zh) * 2015-09-17 2016-03-02 鞍钢股份有限公司 一种加热炉低nox烟气循环富氧燃烧装置
CN207515522U (zh) * 2017-11-17 2018-06-19 高邑汇力瓷业有限公司 助燃风热交换富氧燃烧烧成窑
CN208860147U (zh) * 2018-08-01 2019-05-14 湖北新冶钢特种钢管有限公司 使用混合煤气的加热炉的节能控制系统用现场仪表
CN109078467A (zh) * 2018-08-22 2018-12-25 武汉钢铁有限公司 烧结烟气除尘脱硝一体化工艺
CN109556416A (zh) * 2018-11-28 2019-04-02 重庆赛迪热工环保工程技术有限公司 一种纯氧烟气循环加热炉控制系统及其控制方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811257B (zh) * 2020-06-16 2021-12-21 首钢京唐钢铁联合有限责任公司 一种加热炉燃烧控制方法和装置
CN111811257A (zh) * 2020-06-16 2020-10-23 首钢京唐钢铁联合有限责任公司 一种加热炉燃烧控制方法和装置
CN111964468A (zh) * 2020-08-04 2020-11-20 鞍钢股份有限公司 一种轧钢加热炉预混富氧燃烧系统及方法
CN111964467A (zh) * 2020-08-04 2020-11-20 鞍钢股份有限公司 轧钢加热炉预混富氧与射氧融合的富氧燃烧系统及方法
CN111964467B (zh) * 2020-08-04 2022-05-13 鞍钢股份有限公司 轧钢加热炉预混富氧与射氧融合的富氧燃烧系统及方法
CN112710161A (zh) * 2020-12-29 2021-04-27 马鞍山钢铁股份有限公司 一种轧钢加热炉的纯氧燃烧控制系统及控制方法
CN113154874A (zh) * 2021-04-14 2021-07-23 鞍钢股份有限公司 一种基于气体燃料的加热炉低NOx燃烧控制方法
CN113154874B (zh) * 2021-04-14 2023-03-03 鞍钢股份有限公司 一种基于气体燃料的加热炉低NOx燃烧控制方法
CN113446867A (zh) * 2021-05-31 2021-09-28 马鞍山钢铁股份有限公司 一种轧钢加热炉的烟气中NOx的分段监测预警系统及NOx控制方法
CN113757685A (zh) * 2021-07-26 2021-12-07 广州广钢气体能源股份有限公司 一种飞灰处置的局部富氧燃烧装置及控制方法
CN113670071A (zh) * 2021-07-27 2021-11-19 中冶长天国际工程有限责任公司 一种用于燃气燃烧的梯级供氧系统及调节方法
CN113670071B (zh) * 2021-07-27 2023-06-23 中冶长天国际工程有限责任公司 一种用于燃气燃烧的梯级供氧系统及调节方法
CN114688868A (zh) * 2022-04-07 2022-07-01 中钢集团鞍山热能研究院有限公司 一种用于轧钢加热炉的全氧燃烧系统
CN116398878A (zh) * 2023-06-01 2023-07-07 南京思墨能源科技有限公司 一种用于轧钢加热炉的组合式全氧燃烧系统及其燃烧方法
CN116398878B (zh) * 2023-06-01 2024-03-12 南京林普热能科技有限公司 一种用于轧钢加热炉的组合式全氧燃烧系统及其燃烧方法

Also Published As

Publication number Publication date
CN110793032B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN110793032B (zh) 一种加热炉富氧燃烧系统及其控制方法
CN103343965B (zh) 一种利用富氧燃烧的加热炉系统
CN111964467B (zh) 轧钢加热炉预混富氧与射氧融合的富氧燃烧系统及方法
CN111964468B (zh) 一种轧钢加热炉预混富氧燃烧系统及方法
WO2019042155A1 (zh) 基于等离子体加热的高炉热风系统温度调控方法与设备
CN102381830B (zh) 一种浮法玻璃生产中利用富氧空气助燃的方法及系统
CN218723229U (zh) 一种全氧加热炉组合式燃烧系统
CN205065703U (zh) 一种加热炉低nox烟气循环富氧燃烧装置
CN114838595B (zh) 基于mild富氧燃烧的余热回收轧钢加热炉及其加热方法
CN203454110U (zh) 一种利用富氧燃烧的加热炉系统
CN104006405A (zh) 一种陶瓷窑炉富氧助燃节能装置
CN102062394A (zh) 一种集中供富氧实施加热炉富氧燃烧的装置
CN108916888A (zh) 一种通过废气循环降低焦炉烟道气中的氮氧化物的装置
CN205919316U (zh) 一种全热风炉温自控燃料不换向蓄热式燃烧系统
CN114688868A (zh) 一种用于轧钢加热炉的全氧燃烧系统
CN213335575U (zh) 一种链箅机、干燥预热系统、链箅机-回转窑烧结系统
CN212082021U (zh) 一种高效余热回收烧结点火系统
CN208952122U (zh) 一种通过废气循环降低焦炉烟道气中的氮氧化物的装置
CN105645792A (zh) 一种套筒石灰窑使用高炉煤气焙烧石灰的方法
CN203190442U (zh) 一种陶瓷窑炉富氧助燃节能装置
CN111707096A (zh) 一种再生铝冶炼全氧燃烧装置及冶炼方法
CN202188508U (zh) 空燃气多通道蓄热式烧嘴
CN220867461U (zh) 一种低煤气消耗的混铁炉煤气烘烤系统
CN201289326Y (zh) 一种复合式金属换热器
CN202730198U (zh) 一种轧钢加热炉富氧鼓风装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant