CN110777067A - 一种光热质耦合的微藻养殖方法及其装置 - Google Patents

一种光热质耦合的微藻养殖方法及其装置 Download PDF

Info

Publication number
CN110777067A
CN110777067A CN201911087886.7A CN201911087886A CN110777067A CN 110777067 A CN110777067 A CN 110777067A CN 201911087886 A CN201911087886 A CN 201911087886A CN 110777067 A CN110777067 A CN 110777067A
Authority
CN
China
Prior art keywords
microalgae
pipeline
flue gas
heating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911087886.7A
Other languages
English (en)
Inventor
余昭胜
廖珊
马晓茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911087886.7A priority Critical patent/CN110777067A/zh
Publication of CN110777067A publication Critical patent/CN110777067A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/24Recirculation of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/04Seals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/20Heat exchange systems, e.g. heat jackets or outer envelopes the heat transfer medium being a gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/14Drying
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Thermal Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了一种光热质耦合的微藻养殖方法及其装置,包括至少一个微藻养殖单元,所述微藻养殖单元包括加热管道、透明管道、螺旋隔板和气路通道,加热管道具有第一口和第二口;透明管道位于加热管道外,透明管道和加热管道之间形成第一空间,透明管道能允许微藻养殖生长所需的光照进入第一空间;螺旋隔板套装在加热管道外,且螺旋隔板位于第一空间内形成螺旋状的微藻培养通道;所述气路通道用于将加热管道中烟气中含有的气体供至微藻培养通道。由于能量的有效利用和培养方法的调整,可以连续高效大量地获得所需的微藻。本发明具有技术手段简便易行、资源利用率高、微藻培养连续高效的优点,可广泛地适用于不同的地域,应用前景较广。

Description

一种光热质耦合的微藻养殖方法及其装置
技术领域
本发明涉及微藻大规模连续性养殖研究领域,特别是涉及一种烟气的余热和二氧化碳综合利用的光热质耦合的微藻养殖方法及其装置。
背景技术
随着全球能源资源日渐匮乏和生态环境不断恶化,环境友好型的生物能源技术日益获得人们的青睐,而微藻由于生长速率快、储存能量高、适应范围广等特征,被公认为是最具发展潜力的第三代生物能源原料。研究结果表明,微藻生物质产量可达到陆地植物的300倍。微藻产油效率高,其脂类的含量在20%~70%,在一年生长期中,1公顷玉米平均产油172升生物质柴油,油菜籽为1190升,棕榈树产油量为5950升,而微藻可以生产95000升生物质柴油。
在微藻进行光合自养过程中,可以利用太阳光作为能量来源、同时捕集CO2,并最终通过光合作用将化学能转化成生物能。平均地,每生产一吨干藻,可以固定1.6吨的CO2,因此我国的微藻培养基地往往会搭建在电厂附近,以便获得大量的碳源,也可以解决电厂烟气排放问题。目前,微藻大规模养殖的藻种有螺旋藻和小球藻等,各自的最适宜养殖温度分别为35℃与30℃。同时,由于微藻对气候,水源及阳光的特殊需求,微藻产业主要分布东南区域,南北兼有,西部较少,具有一定的集中性分布。为了解决地域的局限性,微藻培养装置逐渐室内化。
目前,微藻光能自养的培养装置主要分为开放式反应器和封闭式的光生物反应器。开放式反应器价格低廉,低能耗,同时也有着低的生产率和不稳定的培养环境,主要类别为跑道池反应器。封闭式光生物反应器主体为透明材料,设计有光源系统,并且能够很好地控制微藻生长所需要的条件,不受地域的限制。光生物反应器多种多样,从外形上主要可以分为管式、平板式、圆柱式,近年来还有圆锥型、螺旋型等新的反应器。然而这些新型的反应器只是对内部隔板或者外部玻璃形状进行了改进,缺乏对微藻最佳温度和CO2浓度分布等的精确化控制。
根据《火电厂大气污染物排放标准》(GB13223-2011),燃煤锅炉二氧化硫的排放限值为50mg/m3。各个地区又有着自己的更高要求,例如广东《锅炉大气污染物排放标准》(DB44/765-2019)规定,二氧化硫排放限值为35mg/m3
因此,在节约能源和高效用能的要求下,应当有效地利用好生产中的每一处资源。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种微藻养殖方法及其装置,技术手段简便易行、资源利用率高、微藻培养连续高效。
根据本发明的第一方面实施例,提供一种光热质耦合的微藻养殖装置,包括至少一个微藻养殖单元,所述微藻养殖单元包括:
加热管道,所述加热管道具有供烟气进入的第一口和供烟气排出的第二口;
透明管道,所述透明管道位于加热管道外,透明管道和加热管道之间形成第一空间,所述透明管道能允许微藻养殖生长所需的光照进入第一空间;
螺旋隔板,所述螺旋隔板套装在加热管道外,且螺旋隔板位于第一空间内形成螺旋状的微藻培养通道;以及
气路通道,所述气路通道用于将加热管道中烟气中含有的气体供至微藻培养通道。
上述微藻养殖装置至少具有以下有益效果:加热管道的嵌入,提供微藻生长需要的热量,控制最佳温度;螺旋隔板的设计,加大了微藻培养液与热源、CO2的接触面积。本发明利用光-热-质耦合,促进微藻大规模养殖。由于能量的有效利用和培养方法的调整,可以连续高效大量地获得所需的微藻。本发明具有技术手段简便易行、资源利用率高、微藻培养连续高效的优点,可广泛地适用于不同的地域,应用前景较广。
根据本发明第一方面实施例所述的微藻养殖装置,所述气路通道包括设置在加热管道侧壁的第一中空腔、设置在螺旋隔板内的第二中空腔以及设置在螺旋隔板的多个气体分布孔,所述气体分布孔与第二中空腔连通,所述气体分布孔内设有透气不透液体的膜通道,所述第二中空腔和第一中空腔连通,所述加热管道侧壁设有连通第一中空腔的烟气入口。一方面,由于加热管道与螺旋隔板的内部连通,烟气可以通过螺旋隔板与微藻培养液进行热交换;另一方面,螺旋隔板有均匀的气体分布孔,与其他光生物反应器比较,气体分布孔所占的面积显著增大。气体分布孔排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板上液体的螺旋流动,影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。
根据本发明第一方面实施例所述的微藻养殖装置,所述气路通道包括设置在加热管道侧壁多个气体分布孔,所述气体分布孔连通加热管道内部和第一空间,所述气体分布孔的一端设有透气不透液体的膜通道。烟气经加热管道侧壁的气体分布孔进入第一空间,气体分布孔排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板上液体的螺旋流动,影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。
根据本发明第一方面实施例所述的微藻养殖装置,所述气路通道包括设置在加热管道侧壁的第一中空腔以及设置在加热管道外侧壁的多个气体分布孔,所述气体分布孔连通第一中空腔和第一空间,所述气体分布孔内设有透气不透液体的膜通道,所述加热管道的内侧壁设有连通第一中空腔的烟气入口。加热管道侧壁做成中空装,烟气进入第一中空腔后,与微藻培养液进行热交换,加热管道外侧壁的多个气体分布孔,气体分布孔所占的面积显著增大。气体分布孔排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板上液体的螺旋流动,影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。
根据本发明第一方面实施例所述的微藻养殖装置,所述烟气入口设有烟气过滤装置。烟气过滤装置用于过滤有害气体等杂质,防止有害气体进入到微藻培养通道内。
根据本发明第一方面实施例所述的微藻养殖装置,所述加热管道的一端或两端设有烟气过滤装置。通过加热管道的烟气先经过烟气过滤装置过滤,防止有害气体进入加热管道,再进入到微藻培养通道内。
根据本发明第一方面实施例所述的微藻养殖装置,还包括定距安装在透明管道内壁的温度传感器。温度传感器实时监测微藻培养液的温度。
根据本发明第一方面实施例所述的微藻养殖装置,所述温度传感器固定在透明管道内,温度传感器的角度与微藻培养液流动的速度方向垂直,便于温度传感器能准确检测到微藻培养液的温度,减少检测温度的误差。
根据本发明第一方面实施例所述的微藻养殖装置,多个微藻养殖单元通过连接件串联,所述连接件为直管、弯管或U形管。多个微藻养殖单元通过连接件串联,可以在流动的管程中进行一个微藻生长周期的活动。
根据本发明的第二方面实施例,提供一种光热质耦合的微藻养殖方法,往加热管道内连续通入烟气,往微藻培养通道连续通入微藻培养液,微藻培养液在微藻培养通道螺旋流动,加热管道的烟气和微藻培养通道的微藻培养液进行热交换,通过温度传感器、控制烟气和微藻培养液的通入量维持微藻的生长温度,烟气中含有的CO2供至微藻培养通道,CO2溶解于流动的微藻培养液,为微藻供给碳源,光透过透明管道,为微藻提供光照,经过微藻完整的生长周期后,得到所需细胞密度的微藻。
上述微藻养殖方法至少具有以下有益效果:本发明利用光-热-质耦合,促进微藻大规模养殖。由于能量的有效利用和培养方法的调整,可以连续高效大量地获得所需的微藻。本发明具有技术手段简便易行、资源利用率高、微藻培养连续高效的优点,可广泛地适用于不同的地域,应用前景较广。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。
图1是本发明实施例中微藻养殖单元的结构示意图;
图2是A-A向的剖视图;
图3是图2中圆B所框选的局部放大图;
图4是本发明实施例中多个微藻养殖单元的结构示意图;
图5是本发明实施例中螺旋藻生长时的结构示意图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1~图4,一种光热质耦合的微藻养殖装置,包括至少一个微藻养殖单元10,所述微藻养殖单元10包括加热管道11、透明管道13、螺旋隔板12以及气路通道,所述加热管道11具有供烟气进入的第一口31和供烟气排出的第二口32;所述透明管道13位于加热管道11外,透明管道13和加热管道11之间形成第一空间,所述透明管道13能允许微藻养殖生长所需的光照进入第一空间;所述螺旋隔板12套装在加热管道11外,且螺旋隔板12位于第一空间内形成螺旋状的微藻培养通道17;所述气路通道用于将加热管道11中烟气中含有的气体供至微藻培养通道17。
外部动力循环装置用于控制着培养液与烟气的流动,外部动力循环装置包括外部水泵20和气体流动控制器21。外部水泵20与微藻培养通道的下端连通,以一定的压力输送微藻培养液自下而上地进入微藻培养通道17。气体流动控制器21与加热管道11连通,气体流动控制器21使烟气以一定的流量和流速进入烟气加热管道11。气体流动控制器21一般将烟气收集装置22的烟气通入加热管道11。
透明管道13优选为玻璃管道,透明管道13与螺旋隔板12接触的地方进行胀管密封。
加热管道11的嵌入,提供微藻生长需要的热量,控制最佳温度;螺旋隔板12的设计,加大了微藻培养液与热源、CO2的接触面积。本发明利用光-热-质耦合,促进微藻大规模养殖。由于能量的有效利用和培养方法的调整,可以连续高效大量地获得所需的微藻。本发明具有技术手段简便易行、资源利用率高、微藻培养连续高效的优点,可广泛地适用于不同的地域,应用前景较广。
优选地,所述气路通道包括设置在加热管道11侧壁的第一中空腔14、设置在螺旋隔板12内的第二中空腔15以及设置在螺旋隔板12的多个气体分布孔16,所述气体分布孔16与第二中空腔15连通,所述气体分布孔16内设有透气不透液体的膜通道,所述第二中空腔15和第一中空腔14连通,所述加热管道11侧壁设有连通第一中空腔14的烟气入口。在此实施例中,螺旋隔板12和加热管道11为一体成型。一方面,由于加热管道11与螺旋隔板12的内部连通,烟气可以通过螺旋隔板12与微藻培养液进行热交换;另一方面,螺旋隔板12有均匀的气体分布孔16,从加热管道11流入的CO2通过气体分布孔分散到微藻培养通道内,与其他光生物反应器比较,气体分布孔16所占的面积显著增大。气体分布孔16排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板12上液体的螺旋流动,使培养液有效,并影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。膜通道的两侧分别为烟气和微藻培养液,因此,膜通道使用一种气体能够单向流动、而液体物质无法通过的选择膜,选择膜优选为透气不透水的PTFE空气过滤膜。
优选地,所述气路通道包括设置在加热管道11侧壁多个气体分布孔16,所述气体分布孔16连通加热管道11内部和第一空间,所述气体分布孔16的一端设有透气不透液体的膜通道。烟气经加热管道11侧壁的气体分布孔16进入第一空间,气体分布孔16排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板12上液体的螺旋流动,使培养液有效,并影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。膜通道的两侧分别为烟气和微藻培养液,因此,膜通道使用一种气体能够单向流动、而液体物质无法通过的选择膜,选择膜优选为透气不透水的PTFE空气过滤膜。
优选地,所述气路通道包括设置在加热管道11侧壁的第一中空腔14以及设置在加热管道11外侧壁的多个气体分布孔16,所述气体分布孔16连通第一中空腔14和第一空间,所述气体分布孔16内设有透气不透液体的膜通道,所述加热管道11的内侧壁设有连通第一中空腔14的烟气入口。加热管道11侧壁做成中空装,烟气进入加热管道11后,部分烟气进入第一中空腔14后,加热管道11和第一中空腔14中的烟气与微藻培养液进行热交换,加热管道11外侧壁的多个气体分布孔16,进入第一中空腔14的烟气经气体分布孔16进入微藻培养通道,气体分布孔16沿加热管道的外壁均为分布,气体分布孔16所占的面积显著增大。气体分布孔16排出的CO2利用本身的余热,能更好地溶解于周围液体,便于微藻吸收。最后,螺旋隔板12上液体的螺旋流动,使培养液有效,并影响着CO2在液体中的传递过程与微藻的分布状况,进而影响微藻的光合固碳。膜通道的两侧分别为烟气和微藻培养液,因此,膜通道使用一种气体能够单向流动、而液体物质无法通过的选择膜,选择膜优选为透气不透水的PTFE空气过滤膜。
优选地,所述烟气入口设有烟气过滤装置。烟气过滤装置用于过滤有害气体等杂质,防止有害气体进入到微藻培养通道17内。
优选地,所述加热管道11的一端或两端设有烟气过滤装置。通过加热管道11的烟气先经过烟气过滤装置过滤,防止有害气体进入加热管道11,再进入到微藻培养通道17内。
优选地,还包括定距安装在透明管道13内壁的温度传感器。温度传感器实时监测微藻培养液的温度。
优选地,所述温度传感器固定在透明管道13内,温度传感器的角度与微藻培养液流动的速度方向垂直,便于温度传感器能准确检测到微藻培养液的温度,减少检测温度的误差。
优选地,多个微藻养殖单元10通过连接件18串联,所述连接件18为直管、弯管或U形管。多个微藻养殖单元10通过连接件18串联,可以在流动的管程中进行一个微藻生长周期的活动。
一种光热质耦合的微藻养殖方法,往加热管道11内连续通入烟气,往微藻培养通道17连续通入微藻培养液,微藻培养液在微藻培养通道17螺旋流动,加热管道11的烟气和微藻培养通道17的微藻培养液进行热交换,通过温度传感器监测,输出信号控制烟气和微藻培养液的通入量维持微藻的生长温度,烟气中含有的CO2供至微藻培养通道17,CO2溶解于流动的微藻培养液,为微藻供给碳源,光透过透明管道13,为微藻提供光照,经过微藻完整的生长周期后,得到所需细胞密度的微藻。
具体地,微藻培养液由外部水泵20输送到微藻培养通道17内,并沿由加热管道11外壁、螺旋隔板12和透明管道13内壁之间的微藻培养通道17螺旋流动。同时,在烟气收集装置22出口中引出一根管道通入加热管道11内,烟气在加热管道11外壁的第一中空腔14和螺旋隔板12的第二中空腔15内与微藻培养液进行热交换,由温度传感器实时监测微藻生长温度,并作为反馈信号控制烟气流速和流量以维持微藻的最佳生长温度。在微藻随微藻培养液在微藻培养通道连续流动过程中,螺旋隔板12上的气体分布孔16通入一定量富含CO2的烟气,CO2溶解于周围缓慢流动的微藻培养液,供给微藻稳定的碳源,同时光源系统24输出光透过透明管道13,提供微藻稳定的光照。由于微藻培养通道17的入口连续不断地输入新的微藻培养液,经过微藻完整的生长周期后,最终能够将达到一定细胞密度的微藻连续地输出。加热管道的第二口流出的烟气进入到烟气收集装置22。获得的一定密度的微藻经过简单的机械脱水后,可以在烟气余热作用下实现干燥。
以下是本发明优选的实施例。
如图5所示,从电厂排气处引入的烟气管道进入烟气收集装置22,由气体流动控制器21连接的加热管道11的入口,经过加热管道11的烟气回到烟气收集装置22,微藻培养液经外部水泵20进入微藻培养通道17,经过1个生产周期的微藻进入干燥炉23进行简单的机械脱水,微藻培养液进行回收,干燥炉23通入烟气后对微藻进行初步干燥。
该实例中选用螺旋藻作为大规模养殖藻种。螺旋藻喜高温,高碱的环境,其最佳生长温度为28℃-35℃,最适培养液pH为8-11,生长周期约为11h。
微藻培养液由配置好的螺旋藻原液,必要生长营养素等组成,控制培养液的pH为8-11。螺旋藻进入微藻培养通道17后,随微藻培养液围绕加热管道11螺旋流动,此时打开光源系统24、气体分布孔16的阀门以及加热管道11的阀门。透明管道上分布的温度传感器将温度数据实时输出,温度传感器的数据输出作为信号源控制通入烟气的速度和流量,使培养液的温度维持在28℃-35℃。螺旋藻在吸收特定波长的光源和所需CO2后,进行光合自养。当螺旋藻培养液在串联式微藻养殖单元10中连续流动11h后,从U形管的连接处提取一定的液体进行微藻细胞密度和营养物质的含量检测。没有达到特定细胞密度的液体继续流动繁殖,缺失的营养物质通过U形管的连接处进行补充。
该实例中选用蛋白核小球藻作为大规模养殖藻种,进行半连续培养。蛋白核小球藻最佳生长温度为30℃,最适培养液pH为7-8。
在半连续培养之前小球藻在MBG-11培养基中分批培养4天,之后进入微藻养殖装置中。分批培养后的小球藻接种到培养液中,加入酸碱缓冲剂使pH维持在7-8。小球藻进入微藻培养通道17后,随微藻培养液围绕加热管道11螺旋流动,此时打开光源系统24、气体分布孔16的阀门以及加热管道11的阀门。透明管道上分布的温度传感器将温度数据实时输出,温度传感器的数据输出作为信号源控制通入烟气的速度和流量,使培养液的温度维持在30℃。小球藻在吸收特定波长的光源和所需CO2后,进行光合自养。通过U形管的连接处以一定的更新率对流动的藻液进行NaNO3的补充,每天更新一次。当小球藻培养液在串联式微藻养殖单元10中连续流动1天后,从U形管的连接处提取一定的液体进行微藻细胞密度检测,并对小球藻的油脂含量进行检测,达到一定标准的小球藻溶液连续输出。
以上是对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种光热质耦合的微藻养殖装置,其特征在于,包括至少一个微藻养殖单元,所述微藻养殖单元包括:
加热管道,所述加热管道具有供烟气进入的第一口和供烟气排出的第二口;
透明管道,所述透明管道位于加热管道外,透明管道和加热管道之间形成第一空间,所述透明管道能允许微藻养殖生长所需的光照进入第一空间;
螺旋隔板,所述螺旋隔板套装在加热管道外,且螺旋隔板位于第一空间内形成螺旋状的微藻培养通道;以及
气路通道,所述气路通道用于将加热管道中烟气中含有的气体供至微藻培养通道。
2.根据权利要求1所述的光热质耦合的微藻养殖装置,其特征在于:所述气路通道包括设置在加热管道侧壁的第一中空腔、设置在螺旋隔板内的第二中空腔以及设置在螺旋隔板的多个气体分布孔,所述气体分布孔与第二中空腔连通,所述气体分布孔内设有透气不透液体的膜通道,所述第二中空腔和第一中空腔连通,所述加热管道侧壁设有连通第一中空腔的烟气入口。
3.根据权利要求1所述的光热质耦合的微藻养殖装置,其特征在于:所述气路通道包括设置在加热管道侧壁多个气体分布孔,所述气体分布孔连通加热管道内部和第一空间,所述气体分布孔的一端设有透气不透液体的膜通道。
4.根据权利要求1所述的光热质耦合的微藻养殖装置,其特征在于:所述气路通道包括设置在加热管道侧壁的第一中空腔以及设置在加热管道外侧壁的多个气体分布孔,所述气体分布孔连通第一中空腔和第一空间,所述气体分布孔内设有透气不透液体的膜通道,所述加热管道的内侧壁设有连通第一中空腔的烟气入口。
5.根据权利要求2或4所述的光热质耦合的微藻养殖装置,其特征在于:所述烟气入口设有烟气过滤装置。
6.根据权利要求2或3或4所述的光热质耦合的微藻养殖装置,其特征在于:所述加热管道的一端或两端设有烟气过滤装置。
7.根据权利要求1所述的光热质耦合的微藻养殖装置,其特征在于:还包括定距安装在透明管道内壁的温度传感器。
8.根据权利要求7所述的光热质耦合的微藻养殖装置,其特征在于:所述温度传感器固定在透明管道内,温度传感器的角度与微藻培养液流动的速度方向垂直。
9.根据权利要求1所述的光热质耦合的微藻养殖装置,其特征在于:多个微藻养殖单元通过连接件串联,所述连接件为直管、弯管或U形管。
10.一种光热质耦合的微藻养殖方法,其特征在于:往加热管道内连续通入烟气,往微藻培养通道连续通入微藻培养液,微藻培养液在微藻培养通道螺旋流动,加热管道的烟气和微藻培养通道的微藻培养液进行热交换,通过温度传感器、控制烟气和微藻培养液的通入量维持微藻的生长温度,烟气中含有的CO2供至微藻培养通道,CO2溶解于流动的微藻培养液,为微藻供给碳源,光透过透明管道,为微藻提供光照,经过微藻完整的生长周期后,得到所需细胞密度的微藻。
CN201911087886.7A 2019-11-08 2019-11-08 一种光热质耦合的微藻养殖方法及其装置 Pending CN110777067A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911087886.7A CN110777067A (zh) 2019-11-08 2019-11-08 一种光热质耦合的微藻养殖方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911087886.7A CN110777067A (zh) 2019-11-08 2019-11-08 一种光热质耦合的微藻养殖方法及其装置

Publications (1)

Publication Number Publication Date
CN110777067A true CN110777067A (zh) 2020-02-11

Family

ID=69389665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911087886.7A Pending CN110777067A (zh) 2019-11-08 2019-11-08 一种光热质耦合的微藻养殖方法及其装置

Country Status (1)

Country Link
CN (1) CN110777067A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774283A (zh) * 2022-04-29 2022-07-22 西南科技大学 一种利用高浓度co2燃煤烟气养殖微藻的方法
CN116200262A (zh) * 2023-04-27 2023-06-02 日照职业技术学院 一种基于间歇光照的微藻养殖装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245754A (zh) * 2008-12-11 2011-11-16 焦耳无限公司 太阳能生物工厂、光生物反应器、被动热调节系统以及用于生产产品的方法
CN102329732A (zh) * 2011-09-28 2012-01-25 福清市新大泽螺旋藻有限公司 提高微藻养殖过程中二氧化碳利用率的方法及专用装置
CN102586075A (zh) * 2012-01-12 2012-07-18 天津大学 自清洁型管式光生物反应器
CN102660448A (zh) * 2012-04-27 2012-09-12 天津大学 利用废气废热规模化培养微藻的套管式光生物反应系统
WO2016165660A1 (zh) * 2015-04-17 2016-10-20 上海希明生物科技有限公司 一种淡水真核微藻养殖方法
CN205954004U (zh) * 2016-06-23 2017-02-15 广州市惠政生物科技有限公司 大型生物发酵罐用多级空气除菌设备
CN109136082A (zh) * 2018-09-03 2019-01-04 东南大学 一种微藻和甲烷氧化菌共生强化沼气制取生物油脂的膜生物反应器和菌藻共生体系

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245754A (zh) * 2008-12-11 2011-11-16 焦耳无限公司 太阳能生物工厂、光生物反应器、被动热调节系统以及用于生产产品的方法
CN102329732A (zh) * 2011-09-28 2012-01-25 福清市新大泽螺旋藻有限公司 提高微藻养殖过程中二氧化碳利用率的方法及专用装置
CN102586075A (zh) * 2012-01-12 2012-07-18 天津大学 自清洁型管式光生物反应器
CN102660448A (zh) * 2012-04-27 2012-09-12 天津大学 利用废气废热规模化培养微藻的套管式光生物反应系统
WO2016165660A1 (zh) * 2015-04-17 2016-10-20 上海希明生物科技有限公司 一种淡水真核微藻养殖方法
CN205954004U (zh) * 2016-06-23 2017-02-15 广州市惠政生物科技有限公司 大型生物发酵罐用多级空气除菌设备
CN109136082A (zh) * 2018-09-03 2019-01-04 东南大学 一种微藻和甲烷氧化菌共生强化沼气制取生物油脂的膜生物反应器和菌藻共生体系

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774283A (zh) * 2022-04-29 2022-07-22 西南科技大学 一种利用高浓度co2燃煤烟气养殖微藻的方法
CN116200262A (zh) * 2023-04-27 2023-06-02 日照职业技术学院 一种基于间歇光照的微藻养殖装置

Similar Documents

Publication Publication Date Title
CN102134553B (zh) 管式光生物反应器、培养微藻细胞的系统和方法
CN101597567B (zh) 光生物反应器
CN101050419B (zh) 一种培养微藻的生产装置及其生产方法
CN102533528B (zh) 基于模拟微藻扩大培养的封闭连续培养实验装置
CN101280271A (zh) 一种微藻产业化生产装置及生产微藻的方法
CN101497473A (zh) 曝气式光生物反应器及其应用方法
CN102160505A (zh) 为温室大棚提供二氧化碳和热量的方法和系统
CN102660448A (zh) 利用废气废热规模化培养微藻的套管式光生物反应系统
CN102008930A (zh) 一种脱除烟气中二氧化碳的光生物反应装置
CN101748054B (zh) 微藻培养的光生物反应器
CN110777067A (zh) 一种光热质耦合的微藻养殖方法及其装置
CN201046966Y (zh) 一种培养微藻的生产装置
CN106957790A (zh) 一种微藻藻种光生物反应半封闭式培养管道及其使用方法
CN102199533A (zh) 室外温控微藻光生物反应系统
CN104031834B (zh) 一种光合细菌连续反应制氢方法
CN102172473B (zh) 一种生物质高温烟气的处理方法及处理系统
CN102911856B (zh) 一种适于微藻高效培养的相切套管内置曝气光生物反应器
CN109182102A (zh) 一种用于微藻培养的圆环型光生物反应器
CN101306879A (zh) 三相流态化藻类光生物反应器处理高浓度有机废水系统
CN211522201U (zh) 一种光热质耦合的微藻养殖装置
CN202730113U (zh) 一种微藻高密度培养设备
CN202078852U (zh) 一种生物质高温烟气的处理系统
CN202489019U (zh) 一种温室内部物质与能量闭锁循环利用系统
CN106635768B (zh) 生物微藻光合反应器及其使用方法
CN109251847A (zh) 利用阳光培养光合微生物的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination