CN110776013A - 一种薄层褶皱二硫化钼粉体的制备方法 - Google Patents

一种薄层褶皱二硫化钼粉体的制备方法 Download PDF

Info

Publication number
CN110776013A
CN110776013A CN201911225172.8A CN201911225172A CN110776013A CN 110776013 A CN110776013 A CN 110776013A CN 201911225172 A CN201911225172 A CN 201911225172A CN 110776013 A CN110776013 A CN 110776013A
Authority
CN
China
Prior art keywords
molybdenum disulfide
thin
dispersion liquid
mixed dispersion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911225172.8A
Other languages
English (en)
Inventor
邵元龙
佟晓玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201911225172.8A priority Critical patent/CN110776013A/zh
Publication of CN110776013A publication Critical patent/CN110776013A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;(2)将混合分散液放置在细胞破碎仪超声10‑40min,再放置在水浴中超声20‑120min得到二硫化钼片层混合分散液;(3)将二硫化钼片层混合分散液置于步进式注射泵中挤出,并在步进式注射泵的喷头和收集板之间,施加5‑20KV的电压,用电喷撒二硫化钼片层混合分散液到收集板表面进行沉积,得到薄层褶皱二硫化钼粉体。本发明首次采用电喷撒的方法制备薄层褶皱二硫化钼粉体,仍然呈现1T相金属特性,薄层褶皱二硫化钼粉体的薄层率高,产品分散性好,工艺、设备简单,适用于工业化规模生产;同时对环境无污染。

Description

一种薄层褶皱二硫化钼粉体的制备方法
技术领域
本发明具体涉及一种薄层褶皱二硫化钼粉体的制备方法。
背景技术
二硫化钼作为一种层状的二维晶体结构,自然界中以辉钼矿的形式存在,在工业上常被用作固体润滑剂。其金属特性的1T相具有本征的高电子电导率,在能量存储领域,引起了广泛的关注。例如,2015年美国罗格斯大学的Chhowalla教授在《NatureNanotechnology》发表了首次采用1T相MoS2作为超级电容器的电极材料,达到了700F cm-3的高体积比电容值,并研究了在不同碱金属离子水系电解液和非水系的有机电解液内的电容特性。2017年美国波士顿东北大学的Zhu教授采用水热合成的方法制备了水分子层包裹的金属相MoS2,水分子层作为有效的层间纳米通道,进一步提升了电解液离子在层间的传输,电极材料达到了380F g-1的高比电容值。这两种方法制备出的二硫化钼材料虽然具有薄层结构,但是限于层间范德华力的作用,二硫化钼粉体呈现出较为严重的层间堆叠问题,损失大量的比表面积。除此以外,限于现有发表的二硫化钼相关研究工作,至今还没有一种可以实现单分散薄层二硫化钼粉体的制备方法。鉴于薄层二硫化钼粉体对柔性电子和高性能能量存储器件的发展具有重要意义,发明一种生产方法简单,对环境绿色无污染,二硫化钼薄层率高,品质优,易于实现工业化规模生产的方法十分必要。
发明内容
本发明针对上述现有技术存在的缺陷,提供了一种薄层褶皱二硫化钼粉体的制备方法。
本发明在于提供一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;
(2)将所述混合分散液放置在细胞破碎仪超声10-40min,再放置在水浴中超声20-120min得到二硫化钼片层混合分散液;
(3)将所述二硫化钼片层混合分散液置于步进式注射泵中挤出,并在5-20KV的电压下,用电喷撒所述二硫化钼片层混合分散液到收集板表面进行沉积,得到所述薄层褶皱二硫化钼粉体。
本发明中,步骤(1)中,混合分散液中,采用异丙醇与水的混合溶液,用于实现二硫化钼单层粉体分散。
本发明中,步骤(3)中,采用5-20KV的电压,使得二硫化钼片层混合分散液从喷头喷出后,即雾化形成微米尺度的微液滴,在微液滴到达收集板之前,微液滴中的易挥发溶液在电喷撒过程中完全挥发,最终在收集板表面得到沉积的干燥薄层褶皱二硫化钼粉体。
具体地,步骤(1)中,所述二硫化钼片层水分散液采用液相剥离的方法得到,具体方法如下:将3g二硫化钼晶体分散在3mL 1.6M正丁基锂溶液中在氩气保护气氛下静置2天,形成锂插层的二硫化钼。产物用己烷清洗后,超声波剥离60min。
本发明中,采用液相剥离得到的二硫化钼片层水分散液为1T金属相,添加异丙醇是作为二硫化钼片层的混合分散剂。
具体地,步骤(1)中,所述二硫化钼片层水分散液与所述异丙醇的体积比为1:8-10。
具体地,步骤(3)中,所述挤出的速度为0.5微升-10微升/分钟。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明首次采用电喷撒的方法制备薄层褶皱二硫化钼粉体,且制备得到的二硫化钼粉体仍然呈现1T相金属特性,相同质量的薄层褶皱二硫化钼粉体的体积是相同质量的二硫化钼粉体原料和层状二硫化钼体积的40倍,薄层率高,产品分散性好,工艺、设备简单,适用于工业化规模生产;同时对环境无污染。
附图说明
图1为电喷撒制备薄层褶皱二硫化钼粉体过程示意图;插图数码照片为红外激光照射下,步进式注射泵针头的尖端多级喷射光学显微镜照片;
图2为相同质量二硫化钼粉体原料、层状二硫化钼及薄层褶皱二硫化钼粉体的对比图;
图3(a)为电喷撒过程沉积在收集板表面的薄层褶皱二硫化钼粉体的电子显微照片;图3(b)图为图3(a)的局部放大图;
图4为二硫化钼粉体原料、层状二硫化钼及薄层褶皱二硫化钼粉体的X射线光电子能谱的对比图;
图5为二硫化钼粉体原料、层状二硫化钼及薄层褶皱二硫化钼粉体的拉曼光谱对比图。
具体实施方式
本发明一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;二硫化钼片层水分散液与异丙醇的体积比为1:8-10;
(2)将混合分散液放置在细胞破碎仪超声10-40min,再放置在水浴中超声20-120min得到二硫化钼片层混合分散液;
(3)将二硫化钼片层混合分散液置于步进式注射泵中挤出(挤出的速度为0.5微升-10微升/分钟),并在5-20KV的电压下,用电喷撒二硫化钼片层混合分散液到收集板表面进行沉积,得到薄层褶皱二硫化钼粉体。
本发明中,步骤(1)中,混合分散液中,采用异丙醇与水的混合溶液,用于实现二硫化钼单层粉体分散。二硫化钼片层水分散液采用液相剥离的方法得到,具体方法如下:将3g二硫化钼晶体分散在3mL 1.6M正丁基锂溶液中在氩气保护气氛下静置2天,形成锂插层的二硫化钼。产物用己烷清洗后,超声波剥离60min。
采用液相剥离得到的二硫化钼片层水分散液为1T金属相,添加异丙醇是作为二硫化钼片层的混合分散剂。
本发明中,步骤(3)中,采用5-20KV的电压,使得二硫化钼片层混合分散液从喷头喷出后,即雾化形成微米尺度的微液滴,在微液滴到达收集板之前,微液滴中的易挥发溶液在电喷撒过程中完全挥发,最终在收集板表面得到沉积的干燥薄层褶皱二硫化钼粉体。
下面对本发明优选实施方案进行详细说明。
实施例1提供一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;二硫化钼片层水分散液与异丙醇的体积比为1:9;
(2)将混合分散液放置在细胞破碎仪超声10min,再放置在水浴中超声20min得到二硫化钼片层混合分散液;
(3)将二硫化钼片层混合分散液置于步进式注射泵中挤出(挤出的速度为0.5微升/分钟),并在5KV的电压下,用电喷撒二硫化钼片层混合分散液到收集板表面进行沉积,得到薄层褶皱二硫化钼粉体。
实施例2提供一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;二硫化钼片层水分散液与异丙醇的体积比为1:8;
(2)将混合分散液放置在细胞破碎仪超声40min,再放置在水浴中超声60min得到二硫化钼片层混合分散液;
(3)将二硫化钼片层混合分散液置于步进式注射泵中挤出(挤出的速度为5微升/分钟),并在5KV的电压下,用电喷撒二硫化钼片层混合分散液到收集板表面进行沉积,得到薄层褶皱二硫化钼粉体,与实施例1类似。
实施例3提供一种薄层褶皱二硫化钼粉体的制备方法,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;二硫化钼片层水分散液与异丙醇的体积比为1:10;
(2)将混合分散液放置在细胞破碎仪超声30min,再放置在水浴中超声120min得到二硫化钼片层混合分散液;
(3)将二硫化钼片层混合分散液置于步进式注射泵中挤出(挤出的速度为10微升/分钟),并在5KV的电压下,用电喷撒二硫化钼片层混合分散液到收集板表面进行沉积,得到薄层褶皱二硫化钼粉体,与实施例1类似。
将实施例1制备得到的薄层褶皱二硫化钼粉体,与二硫化钼粉体原料和层状二硫化钼对比,三者相同质量的图片如图2所示,薄层褶皱二硫化钼粉体的薄层率高,相同质量的薄层褶皱二硫化钼粉体的体积是相同质量的二硫化钼粉体原料和层状二硫化钼体积的40倍,产品分散性好;三者的X射线光电子能谱的对比图如图4所示,本发明电喷撒的方法制备的薄层褶皱二硫化钼粉体仍然呈现较高含量的1T金属相;三者的拉曼光谱对比图如图5所示,同样可以证明薄层褶皱二硫化钼分体具有较高含量的1T金属相。本发明的工艺、设备简单,适用于工业化规模生产;同时对环境无污染。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种薄层褶皱二硫化钼粉体的制备方法,其特征在于,包括如下步骤:
(1)在二硫化钼片层水分散液中加入异丙醇,得到混合分散液;
(2)将所述混合分散液放置在细胞破碎仪超声10-40min,再放置在水浴中超声20-120min得到二硫化钼片层混合分散液;
(3)将所述二硫化钼片层混合分散液置于步进式注射泵中挤出,并在所述步进式注射泵的喷头和收集板之间,施加5-20KV的电压,用电喷撒所述二硫化钼片层混合分散液到收集板表面进行沉积,得到所述薄层褶皱二硫化钼粉体。
2.根据权利要求1所述薄层褶皱二硫化钼粉体的制备方法,其特征在于:步骤(1)中,所述二硫化钼片层采用液相剥离的方法得到。
3.根据权利要求1所述薄层褶皱二硫化钼粉体的制备方法,其特征在于:步骤(1)中,所述二硫化钼片层水分散液与所述异丙醇的体积比为1:8-10。
4.根据权利要求1所述薄层褶皱二硫化钼粉体的制备方法,其特征在于:步骤(3)中,所述挤出的速度为0.5微升-10微升/分钟。
CN201911225172.8A 2019-12-04 2019-12-04 一种薄层褶皱二硫化钼粉体的制备方法 Pending CN110776013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911225172.8A CN110776013A (zh) 2019-12-04 2019-12-04 一种薄层褶皱二硫化钼粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911225172.8A CN110776013A (zh) 2019-12-04 2019-12-04 一种薄层褶皱二硫化钼粉体的制备方法

Publications (1)

Publication Number Publication Date
CN110776013A true CN110776013A (zh) 2020-02-11

Family

ID=69393733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911225172.8A Pending CN110776013A (zh) 2019-12-04 2019-12-04 一种薄层褶皱二硫化钼粉体的制备方法

Country Status (1)

Country Link
CN (1) CN110776013A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252158A (zh) * 2019-06-24 2019-09-20 西南石油大学 一种MoS2/GO/CA复合膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252158A (zh) * 2019-06-24 2019-09-20 西南石油大学 一种MoS2/GO/CA复合膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUAN WANG等: ""Interlayered MoS2/rGO thin film for efficient lithium storage produced by electrospray deposition and far-infrared reduction"", 《APPLIED SURFACE SCIENCE》 *

Similar Documents

Publication Publication Date Title
Xu et al. A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitors
Yang et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes
Liu et al. Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors
Kumar et al. Low temperature synthesis of MnO2 nanostructures for supercapacitor application
Miniach et al. MnO2/thermally reduced graphene oxide composites for high-voltage asymmetric supercapacitors
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
Antiohos et al. Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications
Song et al. Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window
Zhou et al. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes
CN104157833B (zh) 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
Luo et al. Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors
Li et al. Rational design of porous MnO2 tubular arrays via facile and templated method for high performance supercapacitors
Wei et al. Soft-template hydrothermal systhesis of nanostructured copper (II) tungstate cubes for electrochemical charge storage application
Iqbal et al. Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications
Majid High performance super-capacitive behaviour of deposited manganese oxide/nickel oxide binary electrode system
Qian et al. Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors
CN111883371B (zh) 一种超级电容器柔性自支撑电极及其制备方法和应用
Guo et al. Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors
Yang et al. Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor
CN106784693B (zh) 一种表面具有均匀碳包覆层的富氮纳米钛酸锂电极材料的制备方法
Wang et al. Glucose–ethanol-assisted synthesis of amorphous CoO@ C core–shell composites for electrochemical capacitors electrode
Sima et al. Study of dye sensitized solar cells based on ZnO photoelectrodes deposited by laser ablation and doctor blade methods
Peng et al. Mesoporous V 2 O 5/Ketjin black nanocomposites for all-solid-state symmetric supercapacitors
Zhao et al. Fabrication of nanoarchitectured TiO2 (B)@ C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors
Su et al. Enhanced cycling performance of Si/C composite prepared by spray-drying as anode for Li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200211

RJ01 Rejection of invention patent application after publication