CN110774177A - Tool and method for preparing structured forming grinding wheel - Google Patents
Tool and method for preparing structured forming grinding wheel Download PDFInfo
- Publication number
- CN110774177A CN110774177A CN201911070991.XA CN201911070991A CN110774177A CN 110774177 A CN110774177 A CN 110774177A CN 201911070991 A CN201911070991 A CN 201911070991A CN 110774177 A CN110774177 A CN 110774177A
- Authority
- CN
- China
- Prior art keywords
- grinding wheel
- structured
- tool
- cvd diamond
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 102
- 239000010432 diamond Substances 0.000 claims abstract description 102
- 238000005520 cutting process Methods 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 52
- 239000010959 steel Substances 0.000 claims description 52
- 239000000758 substrate Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000013461 design Methods 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 11
- 238000005070 sampling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/06—Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
- B24B53/062—Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels using rotary dressing tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/009—Tools not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
本发明公开了一种制备结构化成形砂轮的工具及方法,属于结构化砂轮的制备技术领域,该方法包括设计结构化砂轮表面的沟槽参数,优化设计CVD金刚石环的几何参数,采用短脉冲激光束制备CVD金刚石环的切削刃,组装、调试结构化工具,制备结构化成形砂轮等步骤。本发明提出的结构化成形砂轮的制备工具由多个金刚石环组成,每个金刚石环的圆周表面上制备有参数可控的切削刃,通过调节金刚石环的排布组装方式,可制备出具有不同截面形状的结构化成形砂轮,大幅降低结构化成形砂轮的制备成本,且相较于单点金刚石笔、激光束等常用结构化工具,本发明能大幅提升结构化成形砂轮的制备效率。
The invention discloses a tool and a method for preparing a structured grinding wheel, belonging to the technical field of structured grinding wheel preparation. The method includes designing groove parameters on the surface of the structured grinding wheel, optimally designing the geometric parameters of a CVD diamond ring, and using short pulses The laser beam prepares the cutting edge of the CVD diamond ring, assembles and debugs the structured tool, and prepares the structured forming grinding wheel. The preparation tool for the structured grinding wheel proposed by the present invention is composed of a plurality of diamond rings, and cutting edges with controllable parameters are prepared on the circumferential surface of each diamond ring. The structured forming grinding wheel with the cross-sectional shape greatly reduces the preparation cost of the structured forming grinding wheel, and compared with the common structured tools such as single-point diamond pen and laser beam, the present invention can greatly improve the preparation efficiency of the structured forming grinding wheel.
Description
技术领域technical field
本发明属于结构化砂轮的制备技术领域,具体涉及到一种制备结构化成形砂轮的工具及方法。The invention belongs to the technical field of preparation of structured grinding wheels, and particularly relates to a tool and a method for preparing structured shaped grinding wheels.
背景技术Background technique
砂轮作为一类重要的固结磨具,其磨削性能对加工后工件表面质量有着重要影响。制备结构化砂轮是指在砂轮制造或修整过程中对其表面微观或宏观形貌进行控制,以获得规则的磨粒排布或沟槽结构,以达到增强磨削液与磨屑的储运能力、从而改善砂轮磨削性能的目的。目前,结构化方法的制备方法主要分为两类:一类是在砂轮制备过程中实现其表面结构化(如采用磨粒有序排布、磨粒几何参数精确控制、砂轮表面结构设计等方式制备结构化砂轮;另一类则是借助修整工具(如金刚石笔/切割片、激光束)对传统砂轮磨料层进行微切除而实现其表面结构化。Grinding wheel, as an important type of bonded abrasive, its grinding performance has an important influence on the surface quality of workpiece after machining. The preparation of structured grinding wheel refers to controlling the micro or macro topography of the surface of the grinding wheel during the manufacturing or dressing process to obtain regular abrasive grain arrangement or groove structure, so as to enhance the storage and transportation capacity of grinding fluid and abrasive debris. , so as to improve the grinding performance of the grinding wheel. At present, the preparation methods of structuring methods are mainly divided into two categories: one is to realize the surface structuring during the preparation process of the grinding wheel (such as the orderly arrangement of abrasive grains, the precise control of the geometric parameters of abrasive grains, the design of the surface structure of the grinding wheel, etc.). Structured grinding wheels are prepared; the other type is surface structuring by micro-ablation of the abrasive layer of conventional grinding wheels with the aid of dressing tools (eg, diamond pen/cutting disc, laser beam).
目前,有关结构化平行砂轮的制备已经有了较多研究报导。如,在公开号为CN103465187A的“微结构化大磨粒金刚石砂轮的制造方法”专利中,通过控制砂轮与脉冲激光束的相对运动轨迹,在平行砂轮圆周面上加工出了深宽位于10μm至50μm范围内的微沟槽,所制备的结构化砂轮可显著降低磨削力和热,但砂轮表面90°方向角的沟槽在磨削时会复印到工件表面,导致磨削后工件表面精度较差;在公开号为CN107962510A的“一种表面有序微型结构化的CVD金刚石砂轮及其制备方法”专利中,先通过化学气相沉积方式在砂轮轮毂外圆周面上沉积一层金刚石膜,再采用脉冲激光束在金刚石膜外圆周面上切制出大量具有相同几何尺寸的沟槽,以此形成大量微磨削单元,所制备的结构化砂轮虽能增加磨削时砂轮的有效磨刃数量,但因金刚石薄膜厚度较小,导致砂轮的服役寿命不长,且制备过程耗时费力。在相关文献报导中,姚鹏等提出一种磨料水射流制备结构化砂轮的方法,其以磨料射流作为加工手段在砂轮表面开槽,与激光结构化方法相比,该方法具有“无焦点”加工特性,但其加工效率较低,且加工精度有限、加工装置较复杂。At present, there have been many research reports on the preparation of structured parallel grinding wheels. For example, in the "Manufacturing method of microstructured large abrasive diamond grinding wheel" patent with publication number CN103465187A, by controlling the relative motion trajectory of the grinding wheel and the pulsed laser beam, the parallel grinding wheel circumferential surface is processed with a depth and width ranging from 10 μm to 10 μm. Micro grooves in the range of 50μm, the prepared structured grinding wheel can significantly reduce the grinding force and heat, but the grooves with a 90° direction angle on the surface of the grinding wheel will be copied to the workpiece surface during grinding, resulting in the workpiece surface accuracy after grinding. Poor; in the patent of "a kind of surface-ordered micro-structured CVD diamond grinding wheel and its preparation method" with the publication number of CN107962510A, a layer of diamond film was first deposited on the outer circumferential surface of the grinding wheel hub by chemical vapor deposition, and then A large number of grooves with the same geometric size are cut on the outer circumference of the diamond film by a pulsed laser beam to form a large number of micro-grinding units. Although the prepared structured grinding wheel can increase the number of effective grinding edges of the grinding wheel during grinding However, due to the small thickness of the diamond film, the service life of the grinding wheel is not long, and the preparation process is time-consuming and laborious. In related literature reports, Yao Peng et al. proposed a method for preparing structured grinding wheel with abrasive water jet, which uses abrasive jet as a processing method to make grooves on the surface of the grinding wheel. Compared with the laser structuring method, this method has "no focus" Processing characteristics, but its processing efficiency is low, and the processing accuracy is limited, and the processing device is more complicated.
针对成形磨削中存在的工件表面烧伤、裂纹等问题,结构化成形砂轮有着广阔的应用前景。目前,结构化成形砂轮的研究还处于起步阶段,未见有相关专利报道,在文献报导中,仅有Forbrigger等人进行了沟槽型结构化成形砂轮的相关研究,其采用单点金刚石笔以设定的进给速率和切削深度沿着砂轮截面轮廓线在成形砂轮表面上加工沟槽。该方法虽能制备结构化成形砂轮,但其制备效率和精度低。因此,针对成形磨削对降低磨削力、热的需求,迫切需要一种集高效率、高精度及高质量为一体的结构化成形砂轮的制备方法。Aiming at the problems of surface burns and cracks in forming grinding, structured forming grinding wheels have broad application prospects. At present, the research on structured forming grinding wheel is still in its infancy, and there is no relevant patent report. In the literature reports, only Forbrigger et al. The set feed rate and depth of cut create grooves on the surface of the shaped wheel along the wheel profile. Although this method can prepare structured forming grinding wheel, its preparation efficiency and precision are low. Therefore, in view of the requirement of reducing grinding force and heat in forming grinding, there is an urgent need for a method for preparing a structured forming grinding wheel that integrates high efficiency, high precision and high quality.
本发明拟提出一种制备结构化成形砂轮的工具及方法,藉此改善砂轮磨削性能,解决成形磨削过程中的砂轮表面堵塞、工件表面烧伤等问题。The present invention proposes a tool and method for preparing a structured forming grinding wheel, thereby improving the grinding performance of the grinding wheel and solving the problems of surface blockage of the grinding wheel and burns on the surface of the workpiece during the forming grinding process.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提出一种制备结构化成形砂轮的工具及方法,藉此改善成形砂轮表面的冷却润滑条件。The purpose of the present invention is to propose a tool and method for preparing a structured forming grinding wheel, thereby improving the cooling and lubricating conditions of the surface of the forming grinding wheel.
一种制备结构化成形砂轮的工具,包括若干钢环、若干CVD金刚石环、定位柱、钢基体、螺纹孔;所述钢环及CVD金刚石环的中部设置有通孔;所述定位柱穿过通孔将钢环、CVD金刚石环固定在一起;所述定位柱通过螺钉与钢基体固定在一起;所述若干钢环与若干CVD金刚石环沿结构化工具的轴向交替排布,同一圆周线上的CVD金刚石环具有相同的内径和外径,沿工具轴线方向不同圆周线上的CVD金刚石环具有相同的内径、不同外径,同一圆周线上的CVD金刚石环在钢基体的圆周方向均匀分布,其金刚石环之间的夹角为γ;所述CVD金刚石环的圆周表面均加工有切削刃,切削刃之间的区域为脉冲激光扫描区域;所述工具在制备结构化成形砂轮时安装于磨床主轴上,由主轴驱动以设定的转速旋转,之后与成形砂轮接触对磨以制备结构化成形砂轮。A tool for preparing a structured forming grinding wheel, comprising a plurality of steel rings, a plurality of CVD diamond rings, a positioning column, a steel base, and a threaded hole; through holes are provided in the middle of the steel ring and the CVD diamond ring; the positioning column passes through The through hole fixes the steel ring and the CVD diamond ring together; the positioning column is fixed with the steel base by screws; the several steel rings and several CVD diamond rings are alternately arranged along the axial direction of the structural tool, and the same circumferential line The CVD diamond rings on the upper have the same inner and outer diameters, the CVD diamond rings on different circumferential lines along the tool axis direction have the same inner diameter and different outer diameters, and the CVD diamond rings on the same circumferential line are evenly distributed in the circumferential direction of the steel substrate , the angle between the diamond rings is γ; the circumferential surfaces of the CVD diamond rings are all machined with cutting edges, and the area between the cutting edges is a pulsed laser scanning area; the tool is installed on the On the main shaft of the grinding machine, it is driven by the main shaft to rotate at a set speed, and then contacts with the forming grinding wheel to grind to prepare a structured forming grinding wheel.
一种制备结构化成形砂轮的方法,包括以下步骤:A method for preparing a structured shaped grinding wheel, comprising the following steps:
步骤1,设计结构化砂轮表面的沟槽参数,特征点位于成形砂轮截面轮廓线上,砂轮工作面上有结构化沟槽,采用激光测微仪沿砂轮轴向匀速扫描,获取其轮廓线上各扫描点的高度特征数据,再利用MATLAB软件拟合得到砂轮截面的轮廓线。根据结构化砂轮对其表面沟槽轴向宽度B0、轴向间距F0的要求,在砂轮截面轮廓线上选定N个特征点,获取特征点至砂轮轴线的距离R(沿砂轮轴向依次标记为R1,R2,R3,…,RN)。优化设计砂轮圆周方向上的沟槽长度Li(i=1,2,3,…,N)与沟槽周向间距Hi(i=1,2,3,…,N)参数。Step 1: Design the groove parameters on the surface of the structured grinding wheel. The feature points are located on the contour line of the section of the forming grinding wheel. There are structured grooves on the working surface of the grinding wheel. The laser micrometer is used to scan along the axial direction of the grinding wheel at a constant speed to obtain the contour line. The height characteristic data of each scanning point is then fitted with MATLAB software to obtain the contour of the grinding wheel section. According to the requirements of the axial width B 0 and axial spacing F 0 of the surface groove of the structured grinding wheel, N feature points are selected on the profile of the grinding wheel, and the distance R from the feature point to the axis of the grinding wheel (along the axial direction of the grinding wheel) is obtained. Labeled R 1 , R 2 , R 3 , . . . , R N in turn). The parameters of the groove length Li ( i =1,2,3,...,N) and the groove circumferential spacing Hi ( i =1,2,3,...,N) in the circumferential direction of the grinding wheel are optimized.
步骤2,优化设计CVD金刚石环的几何参数。根据成形砂轮的截面几何形状及其表面沟槽轴向宽度B0、沟槽轴向间距F0等参数,优化设计CVD金刚石环的外径ri(i=1,2,3,…,N)、圆心角αi(i=1,2,3,…,N)、宽度B、数量S等参数。In
步骤3,短脉冲激光束选择性烧蚀CVD金刚石环圆周表面,制备切削刃。
步骤4,组装、调试结构化工具。将CVD金刚石环与用于分隔CVD金刚石环的钢环依次安装与钢基体上,再将工具两端的螺钉拧紧,最终得到与成形砂轮截面轮廓线相吻合的结构化工具。激光测微仪以恒定速度沿结构化工具轴向移动检测转动的结构化工具的圆跳动。重复步骤4,直至工具的径向圆跳动达15μm以下。
步骤5,对刀与结构化砂轮的制备,将成形砂轮与结构化工具分别安装于三轴联动高精度气浮主轴磨床的磨削主轴和工件主轴上,通过调节磨床主轴的相对位置,使砂轮轴线与结构化工具的轴线处于同一竖直平面内,调节工件主轴坐标位置使结构化工具向砂轮靠近,利用安装在工件主轴上的旋转AE传感器反馈结构化工具与砂轮接触产生的AE信号源,当检测到AE信号的幅值突然变化时,工件主轴停止进给,对刀完成。砂轮与结构化工具分别以设定的转速n1、n2旋转,根据结构化砂轮沟槽参数的要求,结构化工具以设定的进给速率和切削深度与砂轮接触对磨,以类似于成形磨削的方式制备结构化砂轮,可在成形砂轮表面加工出特征参数可控的间断沟槽,以此完成结构化砂轮的制备。
进一步地,步骤1中,特征点数目N与砂轮宽度M的数量关系可表示为:Further, in
式中,B0为沟槽宽度,F0为沟槽轴向间距,INT{}表示取整。In the formula, B 0 is the width of the groove, F 0 is the axial spacing of the groove, and INT{} means rounding.
进一步地,步骤1中,为使各特征点所在截面上的沟槽的数目Ki(i=1,2,3,…,N)为整数,且各沟槽在砂轮圆周方向上均匀分布,则在砂轮圆周方向上的沟槽长度Li与沟槽周向间距Hi之和应满足下式:Further, in
式中,Li(i=1,2,3,…,N)为砂轮圆周方向上的沟槽长度,Hi(i=1,2,3,…,N)为沟槽周向间距。In the formula, Li ( i =1,2,3,...,N) is the groove length in the circumferential direction of the grinding wheel, and Hi ( i =1,2,3,...,N) is the groove circumferential spacing.
进一步地,步骤2中,CVD金刚石环的外径ri、圆心角αi可表示如下:Further, in
ri=Δ+r0+P-Ri,(i=1,2,3,···,N)r i =Δ+r 0 +PR i , (i=1,2,3,...,N)
式中,r0为步骤4中钢环的外径,其值为50mm,P=MAX{R1,R2,R3,…,RN},MAX{}表示取最大值,△为满足P–Ri=0的特征点对应的CVD金刚石环相较于钢环突出的高度,其值为5mm,Ri(i=1,2,3,…,N)为各特征点至砂轮轴线的距离。根据砂轮圆周方向上沟槽的长度L和周向间距H的要求,CVD金刚石环圆心角αi(i=1,2,3,…,N)的优化设计应同时满足以下两式:In the formula, r 0 is the outer diameter of the steel ring in
式中,n2为结构化工具转速;n1为砂轮转速;Ri为各特征点到砂轮轴线的距离,ri为各特征点对应的CVD金刚石环外径。In the formula, n 2 is the rotational speed of the structured tool; n 1 is the rotational speed of the grinding wheel; Ri is the distance from each feature point to the axis of the grinding wheel, and ri is the outer diameter of the CVD diamond ring corresponding to each feature point.
进一步地,步骤2中,CVD金刚石环的宽度B与结构化沟槽的轴向宽度B0相等。Further, in
进一步地,步骤3中,CVD金刚石环圆周面上切削刃的方向角(切削刃与工具轴线之间的夹角)为30°,出刃高度h约为30–40μm。Further, in
进一步地,步骤3中,采用振镜式纳秒激光加工金刚石环,脉宽20ns、脉冲重复频率50KHz、激光功率25W。Further, in
进一步地,步骤3、4中所述的CVD金刚石环和钢环的表面预先加工有多个微孔用于组装定位,CVD金刚石环、钢环的内径D与钢基体外径相等。Further, the surfaces of the CVD diamond ring and the steel ring described in
进一步地,步骤4中,钢基体的厚度与成形砂轮的宽度M相等;Further, in
进一步地,步骤4中所述钢环的宽度F与结构化沟槽的轴向间距F0相等。Further, the width F of the steel ring in
进一步地,步骤5中,激光测微仪以恒定速度15mm/min沿结构化工具轴向移动测量以400rev/min转速转动的结构化工具,采样频率50KHz,采样间隔0.1μm。Further, in
本发明的有益效果包括:The beneficial effects of the present invention include:
1、结构化效率高。利用单点金刚石笔、脉冲激光制备结构化砂轮时,均只能将砂轮表面分为多个区域进行加工,导致其加工效率较低。本发明采用与成形砂轮轮廓形状拟合的金刚石环组装工具进行结构化,它可同时对砂轮整个工作面进行结构化,因而大幅提高了加工效率。1. High structural efficiency. When using a single-point diamond pen and a pulsed laser to prepare a structured grinding wheel, the surface of the grinding wheel can only be divided into multiple areas for processing, resulting in low processing efficiency. The invention adopts the diamond ring assembling tool that fits the contour shape of the forming grinding wheel for structuring, and can simultaneously structure the entire working surface of the grinding wheel, thereby greatly improving the processing efficiency.
2、适用范围广。本发明可用于制备各种截面轮廓的成形结构化砂轮,可根据不同的成形砂轮截面轮廓,通过组装不同外径的金刚石环,得到与砂轮截面轮廓形状拟合结构化工具。此外,采用金刚石环交错组装的方式也避免了砂轮表面的沟槽形貌复印到工件表面,导致加工后工件表面质量低。2. Wide range of application. The invention can be used for preparing shaped structured grinding wheels with various cross-sectional profiles, and can obtain structured tools that fit the cross-sectional profiles of grinding wheels by assembling diamond rings with different outer diameters according to different cross-sectional profiles of shaped grinding wheels. In addition, the method of staggered assembly of diamond rings also avoids the copying of the groove morphology on the surface of the grinding wheel to the surface of the workpiece, resulting in low surface quality of the workpiece after processing.
3、加工可控性高。本发明可通过金刚石环、分隔钢环的有序组装来准确控制结构化沟槽的宽度、圆周间距,轴向间隔等参数,且可通过控制结构化工具与砂轮之间的进给深度来控制沟槽的深度。因此,本发明能以高可控性制备不同参数要求的结构化砂轮。3. High processing controllability. The invention can accurately control parameters such as the width, circumferential spacing, axial spacing and other parameters of the structured groove through the orderly assembly of the diamond ring and the separating steel ring, and can be controlled by controlling the feed depth between the structured tool and the grinding wheel the depth of the groove. Therefore, the present invention can manufacture structured grinding wheels with different parameter requirements with high controllability.
附图说明Description of drawings
附图1结构化成形砂轮工具的结构示意图;Accompanying drawing 1 is the structural representation of structured forming grinding wheel tool;
附图2成形砂轮工作面结构化沟槽的特征参数;Accompanying drawing 2 forms the characteristic parameter of grinding wheel working face structured groove;
附图3成形砂轮轮廓线特征点的采集示意图;Accompanying drawing 3 is the collection schematic diagram of contour line feature point of forming grinding wheel;
附图4CVD金刚石环的结构示意图;The structural representation of accompanying drawing 4CVD diamond ring;
附图5同一圆周线上相邻CVD金刚石环的圆周间距示意图;5 is a schematic diagram of the circumferential spacing of adjacent CVD diamond rings on the same circumferential line;
附图6钢环结构示意图;Accompanying drawing 6 steel ring structure schematic diagram;
附图7结构化砂轮制备过程示意图。Figure 7 is a schematic diagram of the preparation process of the structured grinding wheel.
其中,1-钢环;2-CVD金刚石环;3-相邻CVD金刚石环;4-定位柱;5-钢基体;6-螺钉;7-结构化沟槽;8-砂轮轴线;9-特征点;10-CVD金刚石环切削刃;11-脉冲激光扫描区域;12-通孔;13-磨床主轴;14-工件主轴。Among them, 1-steel ring; 2-CVD diamond ring; 3-adjacent CVD diamond ring; 4-positioning post; 5-steel base; 6-screw; 7-structured groove; 8-grinding wheel axis; 9-feature 10-CVD diamond ring cutting edge; 11-Pulse laser scanning area; 12-Through hole; 13-Grinding machine spindle; 14-Workpiece spindle.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案及优点更加清晰,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。以下实施例用于说明本发明,但不用来限制本发明的范围。该实施例针对的是凹圆弧形砂轮,砂轮基体内孔直径为20mm、外径为100mm、磨料层厚度8mm,圆弧半径4mm、砂轮宽度为8mm。制备的结构化砂轮需满足以下要求:沟槽轴向宽度为1mm、砂轮轴线方向的沟槽间距为1mm、沟槽深度为3mm、沟槽圆周长度在1–30mm的范围内、沟槽的圆周间距在1–30mm的范围内。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention. This embodiment is directed to a concave arc-shaped grinding wheel, the inner hole diameter of the grinding wheel base is 20 mm, the outer diameter is 100 mm, the thickness of the abrasive layer is 8 mm, the arc radius is 4 mm, and the width of the grinding wheel is 8 mm. The prepared structured grinding wheel needs to meet the following requirements: the axial width of the groove is 1 mm, the groove spacing in the direction of the grinding wheel axis is 1 mm, the groove depth is 3 mm, the circumference of the groove is in the range of 1–30 mm, and the circumference of the groove is in the range of 1–30 mm. Spacing is in the range of 1–30mm.
实施例1Example 1
如附图1至图7所示,一种制备结构化成形砂轮的工具,包括钢环1、CVD金刚石环2、相邻金刚石环3、定位柱4、钢基体5、螺纹孔6、所述钢环1和CVD金刚石环中部设置有通孔12,所述定位柱4穿过通孔12将多个钢环、CVD金刚石环固定在一起,所述定位柱4两端通过螺钉6与钢基体5固定在一起,所述钢基体5外部设置有钢环1与CVD金刚石环,所述钢环1位于钢基体5轴线的两端,所述CVD金刚石环的圆周面设置有切削刃10,CVD金刚石环相邻切削刃10之间的区域为脉冲激光扫描区域11;所述钢环与CVD金刚石环沿结构化工具的轴向交替排布,同一圆周线上的CVD金刚石环沿钢基体的圆周方向均匀分布,相邻CVD金刚石环之间的夹角为γ。As shown in FIGS. 1 to 7 , a tool for preparing a structured forming grinding wheel includes a
用上述工具制备结构化成形砂轮的方法,包括以下步骤:A method for preparing a structured shaped grinding wheel with the above-mentioned tool, comprising the following steps:
步骤1,设计结构化砂轮表面的沟槽参数,参见图2和图3,特征点9位于砂轮截面轮廓线上,砂轮工作面上有结构化沟槽7,采用激光测微仪沿凹圆弧形砂轮轴线8匀速扫描,扫描时采样频率设定为40KHz,采样间距设定为0.1μm,获取其轮廓线上各扫描点的高度特征数据,再利用MATLAB软件拟合得到砂轮截面的轮廓线。根据结构化砂轮对其表面沟槽轴向宽度B0、轴向间距F0的要求,在砂轮截面轮廓线上选定N个特征点9,获取特征点9至砂轮轴线8的距离R,沿砂轮轴向依次标记为R1,R2,R3,…,RN,如附图3所示。特征点数目N与砂轮宽度M的数量关系可表示为:
式中,B0为沟槽宽度,F0为沟槽轴向间距,INT{}表示取整。本实施例中,砂轮宽度M为8mm,沟槽轴向宽度B0、沟槽轴向间隔F0均取1mm,带入上式计算得到特征点数目N为4,特征点位于砂轮轴向各沟槽的中心线上,测量得到各特征点到砂轮轴线的距离Ri(i=1,2,3,4)分别为56.06mm、54.29mm、54.03mm、54.88mm。In the formula, B 0 is the width of the groove, F 0 is the axial spacing of the groove, and INT{} means rounding. In this embodiment, the width M of the grinding wheel is 8 mm, the axial width B 0 of the groove and the axial interval F 0 of the groove are all taken as 1 mm, and the number N of feature points is calculated by bringing the above formula into 4, and the feature points are located in each axis of the grinding wheel. On the center line of the groove, the distance Ri ( i =1, 2, 3, 4) from each feature point to the grinding wheel axis is measured to be 56.06mm, 54.29mm, 54.03mm, and 54.88mm, respectively.
如附图2所示,为使各特征点9所在截面上的沟槽7的数目Ki(i=1,2,3,4)为整数,且各沟槽在砂轮圆周方向上均匀分布,则在砂轮圆周方向上的沟槽长度Li与沟槽周向间距Hi之和应满足下式:As shown in FIG. 2, in order to make the number K i (i=1, 2, 3, 4) of the
本实施例中,将4个特征点处的距离Ri(i=1,2,3,4)代入上式,得到4个特征点所在截面上的沟槽长度和沟槽周向间距之和(Li+Hi)应分别为352、340、340、345除以K的商。为方便后续步骤2中金刚石环参数的设计,将4个特征点所在截面上的沟槽数目Ki(i=1,2,3,4)分别取为16、20、20、15,由此计算得到对应的Li、Hi分别为L1=10mm、H1=12mm,L2=7mm、H2=10mm,L3=7mm、H3=10mm,L4=10mm、H4=13mm。In this embodiment, the distance Ri ( i =1, 2, 3, 4) at the four feature points is substituted into the above formula to obtain the sum of the groove length and the groove circumferential spacing on the section where the four feature points are located (L i + H i ) should be the quotient of 352, 340, 340, 345 divided by K, respectively. In order to facilitate the design of diamond ring parameters in the
步骤2,优化设计CVD金刚石环的几何参数。如附图4所示,根据凹圆弧形砂轮的截面几何形状及其表面沟槽轴向宽度B0、沟槽轴向间距F0参数,优化设计CVD金刚石环的外径ri(i=1,2,3,4)、圆心角αi(i=1,2,3,4)、宽度B、数量S参数,具体表达式如下:In
ri=Δ+r0+P-Ri,(i=1,2,3,4)r i =Δ+r 0 +PR i , (i=1,2,3,4)
式中,r0为附图6中分隔钢环1的外径,其值为50mm,P=MAX{R1,R2,R3,R4},MAX{}表示取最大值,△为满足P–Ri=0的特征点对应的CVD金刚石环相较于钢环突出的高度,其值为5mm。因此,本实施例中,4个特征点分别对应的CVD金刚石环外径分别为55mm,56.77mm,57.03mm,56.18mm。根据砂轮圆周方向上沟槽的长度L和周向间距H的要求,CVD金刚石环圆心角αi(i=1,2,3,4)的优化设计应同时满足以下两式:In the formula, r 0 is the outer diameter of the separating
式中,n2为结构化工具转速,其值取200r/min;n1为砂轮转速,其值取196r/min;Ri为各特征点到砂轮轴线的距离,ri为各特征点对应的CVD金刚石环外径。本实施例中,优化设计的CVD金刚石环的圆心角度分别为41°、71°、71°、65°。进一步地,各特征点对应的CVD金刚石环的数量S可分别取为6、4、4、4,对应的CVD金刚石环在圆周方向上的间隔角度γ分别为19°、19°、19°、25°,如附图5所示。此外,CVD金刚石环2的宽度B与沟槽宽度B0相等,本实施例中其值为1mm。In the formula, n 2 is the rotational speed of the structured tool, and its value is 200 r/min; n 1 is the rotational speed of the grinding wheel, and its value is 196 r/min; Ri is the distance from each feature point to the axis of the grinding wheel, and ri is the corresponding characteristic point. The outer diameter of the CVD diamond ring. In this embodiment, the central angles of the optimally designed CVD diamond rings are 41°, 71°, 71°, and 65°, respectively. Further, the number S of the CVD diamond rings corresponding to each feature point can be respectively taken as 6, 4, 4, 4, and the interval angle γ of the corresponding CVD diamond rings in the circumferential direction is 19°, 19°, 19°, 25°, as shown in Figure 5. In addition, the width B of the
步骤3,制备CVD金刚石环的切削刃。CVD金刚石环由旋转夹具固定后安装于磨床主轴上,采用振镜式短脉冲激光束去除CVD金刚石环圆周表面特定区域11的材料,加工时,等分CVD金刚石环2的圆心角α,将金刚石环圆周面均分为若干份依次加工,CVD金刚石环的角度旋转由磨床主轴精确控制,激光加工的扫描区域为一个矩形区域,其具体参数为:脉宽20ns、激光束扫描速度840mm/s、脉冲重复频率50KHz、激光功率25W、激光循环扫描次数20次。最终得到如附图4所示的CVD金刚石环表面,其表面切削刃10的出刃高度h约为30–40μm,切削刃与工具轴线之间的夹角约为30°。采用同样方法依次完成所有金刚石环的制备。
步骤4,组装、调试结构化工具。如附图1所示,将定位柱4依次穿过CVD金刚石环上的通孔12并安装于基体5上,步骤1中特征点的位置与金刚石环的位置对应,基体的厚度与砂轮的宽度M相等,其值为8mm,将用于分隔金刚石环的钢环1嵌入到相邻金刚石环之间,钢环外径为r0,内径与金刚石环内径相等,宽度F与沟槽轴向间距F0相等,其值为1mm,依次安装完所有金刚石环和钢环,再将工具两端的螺钉6拧紧,最终得到与凹圆弧形砂轮的截面轮廓线相吻合的结构化工具。激光测微仪以恒定速度15mm/min沿结构化工具轴向移动检测以400r/min转速转动的结构化工具的圆跳动,采样频率50KHz,采样间隔0.1μm。重复步骤4,直至工具的径向圆跳动达15μm以下。
步骤5,制备结构化成形砂轮。如附图7所示,将成形砂轮与结构化工具分别安装于三轴联动高精度气浮主轴磨床的磨削主轴13和工件主轴14上,通过调节磨床主轴的相对位置,使砂轮轴线与结构化工具的轴线处于同一竖直平面内,调节工件主轴坐标位置使结构化工具向砂轮靠近,利用安装在工件主轴上的旋转AE传感器反馈结构化工具与砂轮接触产生的AE信号源,当检测到AE信号的幅值突然变化时,工件主轴停止进给,对刀完成。砂轮与结构化工具分别以设定的转速n1、n2旋转,根据结构化砂轮沟槽参数的要求,结构化工具以设定的进给速率4m/min和切削深度0.05mm/次与砂轮接触对磨(顺磨),累计切削深度为3mm,以类似于成形磨削的方式制备结构化砂轮,可在成形砂轮表面加工出特征参数可控的间断沟槽,以此完成结构化砂轮的制备。In
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Within the scope of the technical solution of the present invention, personnel can make some changes or modifications to equivalent examples of equivalent changes by using the above-mentioned technical content, but any content that does not depart from the technical solution of the present invention is based on the technical solution of the present invention. Substantially any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911070991.XA CN110774177B (en) | 2019-11-05 | 2019-11-05 | Tool and method for preparing structured forming grinding wheel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911070991.XA CN110774177B (en) | 2019-11-05 | 2019-11-05 | Tool and method for preparing structured forming grinding wheel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110774177A true CN110774177A (en) | 2020-02-11 |
CN110774177B CN110774177B (en) | 2021-03-30 |
Family
ID=69389068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911070991.XA Active CN110774177B (en) | 2019-11-05 | 2019-11-05 | Tool and method for preparing structured forming grinding wheel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110774177B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115431130A (en) * | 2022-08-25 | 2022-12-06 | 山西光兴光电科技有限公司 | Correcting device for glass grinding equipment and glass grinding equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0246383A1 (en) * | 1986-05-22 | 1987-11-25 | Pierre Dupont | Process and apparatus for manufacturing rotating polishing tools |
CA2194372A1 (en) * | 1994-07-13 | 1996-02-01 | Minnesota Mining And Manufacturing Company | Holder for an abrading disk tool |
CN104582902A (en) * | 2012-08-29 | 2015-04-29 | 三菱重工业株式会社 | Grindstone tool |
CN204339568U (en) * | 2014-12-18 | 2015-05-20 | 江苏信实精密工具有限公司 | A kind of high accuracy roller conditioner discs |
CN105473283A (en) * | 2013-08-19 | 2016-04-06 | 圣戈班金刚石工具有限责任两合公司 | Form dressing roller |
CN105881218A (en) * | 2016-06-15 | 2016-08-24 | 镇江市大兴机械制造有限公司 | Grinding wheel polisher |
CN106584296A (en) * | 2016-10-31 | 2017-04-26 | 上海航天精密机械研究所 | Non-API thread ring gauge electroplating super-hard abrasive molded grinding wheel matrix structure design method |
CN108972159A (en) * | 2018-07-30 | 2018-12-11 | 大连理工大学 | A kind of sapphire ball cover double-side grinding method |
CN109070315A (en) * | 2018-05-03 | 2018-12-21 | 深圳大学 | A kind of grinding wheel tool and its manufacturing method of very low power processing |
-
2019
- 2019-11-05 CN CN201911070991.XA patent/CN110774177B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0246383A1 (en) * | 1986-05-22 | 1987-11-25 | Pierre Dupont | Process and apparatus for manufacturing rotating polishing tools |
CA2194372A1 (en) * | 1994-07-13 | 1996-02-01 | Minnesota Mining And Manufacturing Company | Holder for an abrading disk tool |
CN104582902A (en) * | 2012-08-29 | 2015-04-29 | 三菱重工业株式会社 | Grindstone tool |
CN105473283A (en) * | 2013-08-19 | 2016-04-06 | 圣戈班金刚石工具有限责任两合公司 | Form dressing roller |
CN204339568U (en) * | 2014-12-18 | 2015-05-20 | 江苏信实精密工具有限公司 | A kind of high accuracy roller conditioner discs |
CN105881218A (en) * | 2016-06-15 | 2016-08-24 | 镇江市大兴机械制造有限公司 | Grinding wheel polisher |
CN106584296A (en) * | 2016-10-31 | 2017-04-26 | 上海航天精密机械研究所 | Non-API thread ring gauge electroplating super-hard abrasive molded grinding wheel matrix structure design method |
CN109070315A (en) * | 2018-05-03 | 2018-12-21 | 深圳大学 | A kind of grinding wheel tool and its manufacturing method of very low power processing |
CN108972159A (en) * | 2018-07-30 | 2018-12-11 | 大连理工大学 | A kind of sapphire ball cover double-side grinding method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115431130A (en) * | 2022-08-25 | 2022-12-06 | 山西光兴光电科技有限公司 | Correcting device for glass grinding equipment and glass grinding equipment |
Also Published As
Publication number | Publication date |
---|---|
CN110774177B (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Grinding marks on ultra-precision grinding spherical and aspheric surfaces | |
JP4123332B2 (en) | Cutting head and method for boring cylinders, cylinder liners and the like | |
CN103802027B (en) | A kind of method of rectangle shaping super-abrasive grinding wheel of collimated beam shaping | |
CN101204786A (en) | High-precision ball double-rotating grinding disc high-efficiency grinding device | |
CN108247302A (en) | A kind of control rod drive mechanism blind hole stick stroke casing processing method and device | |
CN109926894A (en) | Turbine disc mortise form grinding process equipment and its application method | |
CN108067838B (en) | Processing method of inner hole keyway | |
CN102990308A (en) | Laser grooving machining method of dry gas seal spiral groove | |
CN109483262A (en) | It is a kind of for processing the mold and processing method of the Main Shaft Bearing of Engine inner ring containing internal diameter oil groove | |
CN110216583A (en) | A kind of the ceramic material revolving parts abrasive machining device and its remodeling method of complex curve fitting | |
CN109986305A (en) | A kind of prestress forming method for grinding of non-circular " three-section wave shape " raceway of thin-walled | |
CN103991040B (en) | A kind of processing method of engine valve shaping CBN emery wheels | |
JP2011189476A (en) | Method for polishing | |
CN113649658A (en) | Electric spark and abrasive flow combined machining method for working blade of gas compressor | |
CN106078519B (en) | A kind of method that emery wheel appearance reconstruct is carried out using diamond fiber micro-cutting | |
CN110774177A (en) | Tool and method for preparing structured forming grinding wheel | |
CN103769960A (en) | Manufacturing method of spherical milling cutter with micro-cutting milling blade array structure | |
CN107009201B (en) | Precise cutter passivating machine for hard superhard material | |
CN114311318B (en) | Semicircular arc sintering saw blade matrix and processing technology | |
CN113172486B (en) | Ultrasonic auxiliary grinding method for composite material tubular honeycomb curved surface | |
CN102601691A (en) | Conical surface grinding method | |
JPH11207592A (en) | Internal fine-groove machining device and method for cylinder bore | |
CN201058407Y (en) | High-precision ball double-rotating grinding disc high-efficiency grinding device | |
CN107775064A (en) | A kind of lateral method for milling of single-blade based on torsional ultrasonic | |
CN108381331B (en) | Device and method for global modification of plane parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |