CN110768295B - 适用于单台双馈式风机接入受端电网电压稳定评估方法 - Google Patents

适用于单台双馈式风机接入受端电网电压稳定评估方法 Download PDF

Info

Publication number
CN110768295B
CN110768295B CN201911125844.8A CN201911125844A CN110768295B CN 110768295 B CN110768295 B CN 110768295B CN 201911125844 A CN201911125844 A CN 201911125844A CN 110768295 B CN110768295 B CN 110768295B
Authority
CN
China
Prior art keywords
voltage
receiving end
power
dynamic
power grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911125844.8A
Other languages
English (en)
Other versions
CN110768295A (zh
Inventor
李东东
孙梦显
赵耀
高晓城
段维伊
边晓燕
杨帆
林顺富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN201911125844.8A priority Critical patent/CN110768295B/zh
Publication of CN110768295A publication Critical patent/CN110768295A/zh
Application granted granted Critical
Publication of CN110768295B publication Critical patent/CN110768295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种适用于单台双馈式风机接入受端电网电压稳定评估方法,属于电力系统领域。本发明提供的一种适用于单台双馈式风机接入受端电网电压稳定评估方法,包括如下步骤:根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵;计算得到动态功率电压因子;根据动态功率电压因子得到动态短路比;当动态短路比小于1时,电压处于失稳状态,当动态短路比等于1时,电压处于临界稳定状态,当动态短路比大于1时,电压处于稳定状态。本发明可以准确判断单台双馈式风机接入受端电网系统的临界电压是否稳定,为电网运行人员提供指标依据,进而有效确保电网电压稳定。

Description

适用于单台双馈式风机接入受端电网电压稳定评估方法
技术领域
本发明涉及一种电压稳定评估方法,具体涉及一种适用于单台双馈式风机接入受端电网电压稳定评估方法,属于电力系统领域。
背景技术
电能作为人类使用最为广泛地二次能源,其在工业现代化进程中扮演着至关重要地角色。但是由于化石能源存在环境污染等问题,逐步制约着社会经济的发展。随着电力电子技术的发展,新能源(尤其是风电)由于其自身在环境友好、价格低廉等方面的优势,发展新能源已成为一种不可逆的趋势。
由于风能存在不确定性、波动性与随机性等问题,导致风力发电存在明显的波动性与间歇性,难以进行准确的预测与控制,不利于电力系统的稳定运行。同时,随着风力发电机组装机容量的增加,风电在整个电力系统中渗透率逐渐增加,系统的稳定性与潮流的可控性减弱,电力系统电压稳定问题突出。在过往的理论研究和工程应用中,通常是采用单馈入短路比指标(short circuit ratio,SCR)来评估单台风机馈入受端电力系统电压稳定性。其表达式如下式所示:
Figure BDA0002276796440000011
式中,UN为公共连接点(point of common coupling,PCC)额定电压;Z为受端交流系统戴维南等值阻抗;Pdn为双馈式风机馈入受端交流系统的有功功率。
但是,上式部分参数为系统额定值,难以有效评估电力系统实际运行过程中的动态电压稳定。另外,由于风电机组通过电力电子设备接入受端电网,其自身的动态特性,极大地转变了传统以同步机转子为主动的电力系统运行优化和稳定运行。当大量的同步机机组被新能源机组取代之后,电力系统的电压和频率支撑强度下降,高比例新能源系统表现为弱同步电网,系统的各个节点的频率在扰动发生后不再维持统一的工频。传统基于统一频率的电压稳定分析方法不再适用,且难以准确评估高比例新能源系统临界电压稳定。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种适用于单台双馈式风机接入受端电网电压稳定评估方法。
本发明提供了一种适用于单台双馈式风机接入受端电网电压稳定评估方法,具有这样的特征,包括如下步骤:S1,根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵,进入S2;S2,根据频域雅克比矩阵计算得到动态功率电压因子,进入S3;S3,根据动态功率电压因子得到动态短路比,进入S4;S4,根据动态短路比的值,判断单台双馈式风机接入受端电网电压的稳定状态,当动态短路比小于1时,单台双馈式风机接入受端电网电压处于失稳状态,当动态短路比等于1时,单台双馈式风机接入受端电网电压处于临界稳定状态,当动态短路比大于1时,单台双馈式风机接入受端电网电压处于稳定状态。
在本发明提供的适用于单台双馈式风机接入受端电网电压稳定评估方法中,还可以具有这样的特征:其中,根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵建立频域雅克比矩阵的方法为先根据单台双馈式风机接入受端电网的系统建立等效模型,再根据等效模型建立频域雅克比矩阵,
雅克比矩阵如下式所示:
Figure BDA0002276796440000031
式中,△P(s)表示频率下有功变化量,△Q(s)表示频域下无功变化量,J(s)、JPV(s)、J(s)、JQV(s)均为频域下雅克比矩阵元素,θ为换流母线电压相角,△V为换流母线电压幅值变化量,V0为初始运行点换流母线电压幅值。
在本发明提供的适用于单台双馈式风机接入受端电网电压稳定评估方法中,还可以具有这样的特征:其中,动态功率电压因子的计算公式如下式所示:
Figure BDA0002276796440000032
式中,DPVF(s)为动态功率电压因子,J(s)、JPV(s)、J(s)、JQV(s)均为频域下雅克比矩阵元素,
在本发明提供的适用于单台双馈式风机接入受端电网电压稳定评估方法中,还可以具有这样的特征:其中,将频域下雅克比矩阵元素代入上式并整理,得动态功率电压因子的计算公式:
Figure BDA0002276796440000041
式中,DPVF(s)为动态功率电压因子,θ0为初始运行点换流母线电压相角,k为旋转角速度比,Sac0为工频下受端交流系统复功率,e0为工频下受端交流系统等效电压源瞬时电压,V0为工频下公共连接点电压,ω为旋转角速度,L为受端交流系统等效电感,K(s)为元件动态特性因子,J(s)为频域下雅克比矩阵元素。
在本发明提供的适用于单台双馈式风机接入受端电网电压稳定评估方法中,还可以具有这样的特征:其中,动态短路比的定义式如下式所示:
Figure BDA0002276796440000042
式中,DSCR为动态短路比,H(s)动态运行系数,V0为工频下公共连接点电压,Sac0为工频下受端交流系统复功率,ω0为工频下旋转角速度,L为受端交流系统等效电感。
发明的作用与效果
根据本发明所涉及的适用于单台双馈式风机接入受端电网电压稳定评估方法,因为通过建立含双馈式风机的单馈入系统的等效模型,建立频域雅克比矩阵,依次推导出动态功率电压因子和动态短路比,并且给出动态短路比的理论临界值,所以,本发明可以准确判断单台双馈式风机接入受端电网系统的临界电压是否稳定,为电网运行人员提供指标依据,进而有效确保电网电压稳定。
附图说明
图1是本发明的实施例中含双馈式风机的单馈入系统;以及
图2是本发明的实施例中含双馈式风机的单馈入系统的等效模型。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
<实施例>
一种适用于单台双馈式风机接入受端电网电压稳定评估方法,步骤如下:
S1,根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵建立频域雅克比矩阵的方法为先根据单台双馈式风机接入受端电网的系统建立等效模型,再根据等效模型建立频域雅克比矩阵,进入S2。
图1是本发明的实施例中含双馈式风机的单馈入系统。
如图1所示,含双馈式风机的单馈入系统包括:双馈式风机(DFIG)、变速箱(GearBox)、Crowbar电阻(Crowbar)、转子侧换流器(RSC)、网侧换流器(GSC)以及交流电网(ACGrid)。
其中,双馈式风机(DFIG)具有定子(Stator)和转子(Rotor)。
图1中,wind代表风,AC代表交流,Ps为定子侧瞬时有功功率,Pv为网侧换流器馈入公共连接点的瞬时有功功率,Pr为转子侧瞬时有功功率,Qs为定子侧瞬时无功功率,Qv为网侧换流器馈入公共连接点的瞬时无功功率,Qr为转子侧瞬时无功功率。
根据如图1所示的含双馈式风机的单馈入系统建立含双馈式风机的单馈入系统等效模型。
图2是本发明的实施例中含双馈式风机的单馈入系统的等效模型。
如图2所示,图中,e为受端交流系统等效电压源瞬时电压,V为公共连接点处瞬时电压,Vm为异步机励磁电压瞬时值,V’r/s为转子侧换流器出口瞬时电压,Vv为网侧换流器出口瞬时电压,s为转差率,s=(ns-nr)/ns,其中,ns为同步转速,nr为转子转速,ig为受端交流系统瞬时电流,is为定子瞬时电流,ir’为转子侧瞬时电流,iv为从网侧换流器出口流入公共连接点瞬时电流,Pac为受端交流系统瞬时有功功率,Ps为定子侧瞬时有功功率,Pv为网侧换流器馈入公共连接点的瞬时有功功率,Qac为受端交流系统瞬时无功功率,Qs为定子侧瞬时无功功率,Qv为网侧换流器馈入公共连接点的瞬时无功功率,L为受端交流系统等效电感,L’T为定子并网变压器电感,L”T为网侧换流器并网变压器电感,L1s为定子漏感,Lc为网侧换流器电抗器电感,L’r为转子漏抗,Ls为定子电感,Lv为网侧换流器与环流母线之间的电感,Lm为励磁电感。
根据图2所示的含双馈式风机的单馈入系统的等效模型建立频域雅克比矩阵,频域雅克比矩阵如下式所示:
Figure BDA0002276796440000071
式中,△P(s)表示频率下有功变化量,△Q(s)表示频域下无功变化量,J(s)、JPV(s)、J(s)、JQV(s)均为频域下雅克比矩阵元素,θ为换流母线电压相角,△V为换流母线电压幅值变化量,V0为初始运行点换流母线电压幅值。
J(s)、JPV(s)、J(s)、JQV(s)的表达式为:
Figure BDA0002276796440000072
式中,各偏导表达式如下:
受端交流系统:
Figure BDA0002276796440000073
Figure BDA0002276796440000074
Figure BDA0002276796440000075
Figure BDA0002276796440000076
Figure BDA0002276796440000077
Figure BDA0002276796440000081
Figure BDA0002276796440000082
网侧换流器:
Figure BDA0002276796440000083
Figure BDA0002276796440000084
Figure BDA0002276796440000085
Figure BDA0002276796440000086
Figure BDA0002276796440000087
Figure BDA0002276796440000088
Figure BDA0002276796440000089
定子:
Figure BDA00022767964400000810
Figure BDA00022767964400000811
Figure BDA00022767964400000812
Figure BDA00022767964400000813
Figure BDA0002276796440000091
Figure BDA0002276796440000092
Figure BDA0002276796440000093
Figure BDA0002276796440000094
Figure BDA0002276796440000095
Figure BDA0002276796440000096
上述各偏导表达式中,V表示换流母线电压,Vr代表转子侧电压,Vv代表网侧换流器输出电压,下标为0的为工频下的初始值,下标为d的为d轴分量,下标为q的为q轴分量,θ0为换流母线电压的初始相位角,θr为转子侧电压的初始相位角,θv为网侧换流器输出电压的初始相位角。
S2,根据频域雅克比矩阵计算得到动态功率电压因子,进入S3。
假设在扰动发生后的瞬间,△Q(s)=0,则动态功率电压因子(dynamic powervoltage factor,DPVF)可由频域雅克比矩阵推导出下式:
Figure BDA0002276796440000097
将各频域雅可比矩阵元素代入上式,并整理可得到
Figure BDA0002276796440000098
上式中,k为旋转角速度比,表达式为:
Figure BDA0002276796440000101
式中,ω0为额定旋转角速度,ω为当前旋转角速度,f为当前频率值,f0为额定频率值。
K(s)为元件动态特性因子,表达式分别为
K(s)=DPDFIGVF(s)+DQDFIGVF(s)+DPDFIGθF(s)+DQDFIGθF(s)+DG(s)
式中,DPDFIGVF(s),DQDFIGVF(s),DPDFIGθF(s),DQDFIGθF(s),DG(s)分别是双馈式风机以及受端交流系统等效电压源的动态因子,其各自的表达式为
Figure BDA0002276796440000102
Figure BDA0002276796440000103
Figure BDA0002276796440000104
Figure BDA0002276796440000105
DG(s)=a1(k1-kQac0-kPac0)+a2k(Qaco-Pac0)
式中,Pac0,Qac0的表达式为
Figure BDA0002276796440000106
Figure BDA0002276796440000107
式中,θE0为交流系统电压源初始相角,θ0为换流母线电压初始相角。
S3,根据动态功率电压因子得到动态短路比(dynamic short circuit ratio,DSCR),进入S4。
对动态功率电压因子的计算式进行整理,得下式:
Figure BDA0002276796440000111
式中,H(s)动态运行系数,
动态运行系数的表达式为
Figure BDA0002276796440000112
式中,E0为等值电势源电压的定轴分量。
则得到动态短路比的计算公式如下:
Figure BDA0002276796440000113
式中,V0为工频下公共连接点的电压,Sac0为工频下受端交流系统复功率,ω0为工频下旋转角速度,L为受端交流系统等效电感。
S4,根据动态短路比的值,判断单台双馈式风机接入受端电网电压的稳定状态,
当动态短路比(DSCR)小于1时,单台双馈式风机接入受端电网电压处于失稳状态,
当动态短路比(DSCR)等于1时,单台双馈式风机接入受端电网电压处于临界稳定状态,
当动态短路比(DSCR)大于1时,单台双馈式风机接入受端电网电压处于稳定状态。
实施例的作用与效果
根据本实施例所涉及的适用于单台双馈式风机接入受端电网电压稳定评估方法,因为通过建立含双馈式风机的单馈入系统的等效模型,建立频域雅克比矩阵,依次推导出动态功率电压因子和动态短路比,并且给出动态短路比的理论临界值,所以,本实施例可以准确判断单台双馈式风机接入受端电网系统的临界电压是否稳定,为电网运行人员提供指标依据,进而有效确保电网电压稳定。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (2)

1.一种适用于单台双馈式风机接入受端电网电压稳定评估方法,其特征在于,包括如下步骤:
S1,根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵,进入S2;
S2,根据所述频域雅克比矩阵计算得到动态功率电压因子,进入S3;
S3,根据所述动态功率电压因子得到动态短路比,进入S4;
S4,根据所述动态短路比的值,判断所述单台双馈式风机接入受端电网电压的稳定状态,
当所述动态短路比小于1时,所述单台双馈式风机接入受端电网电压处于失稳状态,
当所述动态短路比等于1时,所述单台双馈式风机接入受端电网电压处于临界稳定状态,
当所述动态短路比大于1时,所述单台双馈式风机接入受端电网电压处于稳定状态,
其中,动态功率电压因子的计算公式如下式所示:
Figure FDA0004056921130000011
式中,DPVF(s)为动态功率电压因子,J(s)、JPV(s)、J(s)、JQV(s)均为频域下雅克比矩阵元素,
将所述频域下雅克比矩阵元素代入上式并整理,得动态功率电压因子的计算公式:
Figure FDA0004056921130000021
式中,DPVF(s)为动态功率电压因子,θ0为初始运行点换流母线电压相角,k为旋转角速度比,Sac0为工频下受端交流系统复功率,e0为工频下受端交流系统等效电压源瞬时电压,V0为工频下公共连接点电压,ω为旋转角速度,L为受端交流系统等效电感,K(s)为元件动态特性因子,J(s)为频域下雅克比矩阵元素,
所述动态短路比的定义式如下式所示:
Figure FDA0004056921130000022
式中,DSCR为动态短路比,H(s)动态运行系数,V0为工频下公共连接点电压,Sac0为工频下受端交流系统复功率,ω0为工频下旋转角速度,L为受端交流系统等效电感。
2.根据权利要求1所述的适用于单台双馈式风机接入受端电网电压稳定评估方法,其特征在于:
其中,根据单台双馈式风机接入受端电网的系统建立频域雅克比矩阵建立频域雅克比矩阵的方法为先根据所述单台双馈式风机接入受端电网的系统建立等效模型,再根据所述等效模型建立所述频域雅克比矩阵,
所述雅克比矩阵如下式所示:
Figure FDA0004056921130000023
式中,ΔP(s)表示频率下有功变化量,ΔQ(s)表示频域下无功变化量,J(s)、JPV(s)、J(s)、JQV(s)均为频域下雅克比矩阵元素,θ为换流母线电压相角,ΔV为换流母线电压幅值变化量,V0为初始运行点换流母线电压幅值。
CN201911125844.8A 2019-11-18 2019-11-18 适用于单台双馈式风机接入受端电网电压稳定评估方法 Active CN110768295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911125844.8A CN110768295B (zh) 2019-11-18 2019-11-18 适用于单台双馈式风机接入受端电网电压稳定评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911125844.8A CN110768295B (zh) 2019-11-18 2019-11-18 适用于单台双馈式风机接入受端电网电压稳定评估方法

Publications (2)

Publication Number Publication Date
CN110768295A CN110768295A (zh) 2020-02-07
CN110768295B true CN110768295B (zh) 2023-04-21

Family

ID=69338085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911125844.8A Active CN110768295B (zh) 2019-11-18 2019-11-18 适用于单台双馈式风机接入受端电网电压稳定评估方法

Country Status (1)

Country Link
CN (1) CN110768295B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270232A (zh) * 2018-02-01 2018-07-10 上海电力学院 一种双馈风电场经vsc-hvdc联接弱受端系统的控制方法
CN109066656A (zh) * 2018-08-21 2018-12-21 上海电力学院 一种基于单馈入广义运行短路比的电力系统稳定性判断方法
CN109167380A (zh) * 2018-10-31 2019-01-08 上海电力学院 一种接入电压源型换流站的多馈入系统稳定性的判断方法
CN110137976A (zh) * 2019-05-29 2019-08-16 上海电力学院 电压源型换流站接入多馈入系统的稳定性判断方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270232A (zh) * 2018-02-01 2018-07-10 上海电力学院 一种双馈风电场经vsc-hvdc联接弱受端系统的控制方法
CN109066656A (zh) * 2018-08-21 2018-12-21 上海电力学院 一种基于单馈入广义运行短路比的电力系统稳定性判断方法
CN109167380A (zh) * 2018-10-31 2019-01-08 上海电力学院 一种接入电压源型换流站的多馈入系统稳定性的判断方法
CN110137976A (zh) * 2019-05-29 2019-08-16 上海电力学院 电压源型换流站接入多馈入系统的稳定性判断方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Generalized short circuit ratio for multi-infeed LCC-HVDC systems;Feng Zhang等;《2017 IEEE Power & Energy Society General Meeting》;全文 *
基于广义短路比的电力电子多馈入系统小干扰概率稳定评估;王冠中等;《电力系统自动化》(第18期);全文 *
大规模风电经柔直并网时的系统稳态控制策略;沈同等;《电网与清洁能源》(第12期);全文 *
电力电子多馈入电力系统的广义短路比;辛焕海等;《中国电机工程学报》(第22期);全文 *
考虑直流输电系统外特性影响的多直流馈入短路比实用计算方法;郭小江等;《中国电机工程学报》(第09期);全文 *

Also Published As

Publication number Publication date
CN110768295A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110808603B (zh) 适用于多台双馈式风机接入受端电网电压稳定评估方法
Hao et al. The contribution of double-fed wind farms to transient voltage and damping of power grids
Li et al. Modeling of large wind farm systems for dynamic and harmonics analysis
CN109921421A (zh) 基于谐波电流传递函数的双馈风电机组输出谐波电流模型建立方法
CN111130135B (zh) 一种适用于高比例新能源接入下的电力系统惯量计算方法
CN106443135B (zh) 混合风电场输出工频短路电流计算方法
CN109066735A (zh) 一种不平衡电网电压下的双馈风力发电系统及其控制方法
CN110417059B (zh) 一种可再生能源发电基地暂态稳定控制方法
CN110768295B (zh) 适用于单台双馈式风机接入受端电网电压稳定评估方法
GB2420456A (en) Generator control having grid imbalance detector
CN103078352A (zh) 一种基于功率圆的风火打捆配置比例的测定方法
Bourdoulis et al. Rotor-side PI controller design of DFIG wind turbines based on direct power flow modeling
Arindya A Variable Speed Wind Generation System Based on Doubly Fed Induction Generator
CN112886611B (zh) 一种直驱风机并网系统的次同步振荡抑制方法
Abdelhameed et al. Adaptive maximum power tracking control technique for wind energy conversion systems
CN108566132A (zh) 一种撬棒保护动作后的双馈感应发电机三相短路电流的解析方法
Gursoy et al. Representation of variable speed wind turbine generators for short circuit analysis
Dongling et al. Coordination control for offshore wind power sending through hybrid HVDC
Calik et al. Investigation of Dynamic Behaviour of Double Feed Induction Generator and Permanent Magnet Synchronous Generator Wind Turbines in Failure Conditions
McArdle Dynamic modelling of wind turbine generators and the impact on small lightly interconnected grids
Shi et al. Integrated analysis and monitoring for large-scale wind farm connected with large capacity thermal power plant
CN111541242A (zh) 一种混合型风电场的次同步振荡频率的预测方法
Liu et al. Comparative analysis of wind field fault characteristics of squirrel-cage wind farms and direct-drive wind farms
Singh Study and Control of Direct Driven Type-4 Grid Connected Wind Energy Conversion System
Shobole STATCOM Application to Increase Voltage Stability of Wind Farms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant