CN110767544A - 一种薄膜电极及其液相自攀爬制备方法与应用 - Google Patents

一种薄膜电极及其液相自攀爬制备方法与应用 Download PDF

Info

Publication number
CN110767544A
CN110767544A CN201911056964.7A CN201911056964A CN110767544A CN 110767544 A CN110767544 A CN 110767544A CN 201911056964 A CN201911056964 A CN 201911056964A CN 110767544 A CN110767544 A CN 110767544A
Authority
CN
China
Prior art keywords
hydrophobic
super
preparation
film electrode
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911056964.7A
Other languages
English (en)
Inventor
高俊宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911056964.7A priority Critical patent/CN110767544A/zh
Publication of CN110767544A publication Critical patent/CN110767544A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明公开了一种薄膜电极及其液相自攀爬制备方法与应用,所述制备方法包括以下步骤:(1)制备超亲水表面与超疏水层;(2)制备亲/疏水阵列图形;(3)制备薄膜电极。将纳米导电颗粒分散在不互溶的水油界面上,使得其在表面张力的作用下,沿着所述带有亲/疏水阵列图形的衬底的亲水性区域爬升并均匀吸附成膜,生成图形电极。本发明所提供的图形电极制备工艺流程简单高效,避免了对光刻机及其附属设备,以及传统高能耗薄膜电极沉积设备的依赖,极大地降低了器件制备成本,尤其适用于多功能半导体和微纳传感器件的制作。

Description

一种薄膜电极及其液相自攀爬制备方法与应用
技术领域
本发明属于电子技术领域,涉及一种薄膜电极及其液相自攀爬制备方法与应用。
背景技术
在半导体和微纳电子器件中,电极往往需要特定的结构,即电极是具有一定图案的图形电极。图形电极的制备一般包括图形转移和电极制备两个环节。
在图形转移的方法中,传统工艺主要采用光刻技术。光刻技术是指在光照作用下,借助光致抗蚀剂(又名光刻胶)将掩膜版上的图形转移到衬底上的技术。其主要过程为:首先,将紫外光(或者电子束、X射线、微离子束、激光等)通过掩膜版辐照到涂布有一层光刻胶薄膜的衬底表面,引起曝光区域的光刻胶发生化学反应;再通过显影液溶解去除曝光区域或未曝光区域的光刻胶(前者称正性光刻胶,后者称负性光刻胶),使掩膜版上的图形被复制到光刻胶薄膜上。光刻技术需要昂贵的设备,特征尺寸越小,投资越大,且工艺制程复杂,所需环境苛刻,需要在洁净环境下进行。
近年来,纳米压印技术也获得了广泛应用。与光刻技术不同的是,纳米压印中图案的形成采用机械转移的方法。该方法中,首先采用电子束刻蚀等手段,在硅或其他衬底上加工出所需要的结构作为模板,然后将模板与涂布有热塑胶、光固化胶等柔性高分子物质的衬底贴合,施加压力,使模板上的图案挤压入衬底,之后通过热、紫外光辐照等手段,使图形固化,之后冷却脱模。移开模板后,用刻蚀液将上一步未完全去除的光刻胶刻蚀掉,露出待加工材料表面,然后使用刻蚀的方法进行加工,完成后移除掩膜,完成图案转移。
按工艺流程的不同,常用的图形电极制备工艺主要包括抬离工艺和刻蚀工艺。
抬离工艺中,将图案转移到衬底上后,采用电子束蒸镀、蒸镀、磁控溅射等薄膜沉积技术,在带有掩膜图案的衬底上沉积电极薄膜,最后利用光刻胶在有机溶剂中的溶解性将其剥离,留下电极图案,完成图形电极制作。
与抬离工艺不同的是,刻蚀工艺首先在洁净衬底上沉积电极薄膜,之后通过光刻技术形成光刻胶掩膜图案,然后采用湿法或干法刻蚀技术选择性腐蚀未被掩膜遮盖部分,最后去掉光刻胶,完成图形电极制作。
无论采用抬离或刻蚀方法制备图形电极,电极薄膜的沉积均需使用真空设备,并采用高能耗的工艺过程蒸发或溅射生长源,使其沉积到目标衬底上。因此,这些工艺制程对高精度设备的依赖较高,造成其工艺复杂,成本高。
鉴于上述问题,本发明提供一种简单高效的低成本薄膜图形电极制备技术,避免了对高成本设备的依赖,尤其适用于多功能半导体和微纳传感器件的制作。
发明内容
为了克服现有技术的缺陷,本发明的目的在于提供一种薄膜电极及其液相自攀爬制备方法与应用,弥补了传统半导体制程设备投资昂贵、工艺复杂的缺陷。本发明的图案转移通过调控衬底表面的亲/疏水性实现,薄膜电极通过液相自攀爬法生长。
本发明的目的是通过以下技术方案之一实现的。
本发明提供了一种薄膜电极的液相自攀爬制备方法,包括以下步骤:
(1)制备超亲水表面与超疏水层:
取衬底,并清洗衬底表面有机物和杂质,对衬底进行羟基化处理,在衬底表面引入羟基,形成超亲水表面;然后生长疏水单分子层,羟基为生长疏水单分子层提供成键位点,疏水单分子层与所述羟基中的氧原子结合,形成超疏水层;
(2)制备亲/疏水阵列图形:
在超疏水层上放置掩膜板,所述掩膜板包括透光部分和不透光部分,用紫外光通过透光部分辐照到超疏水层上,超疏水层分解形成超亲水表面,得带有亲/疏水阵列图形的衬底;
(3)制备薄膜电极:
取生长容器,加入油相、水相和纳米导电颗粒,超声震荡,将带有亲/疏水阵列图形的衬底插入生长容器中,纳米导电颗粒沿着超亲水层爬升,从而形成薄膜电极。
优选地,所述疏水单分子层为带有疏水长链的硅烷或硫醇。
优选地,所述紫外光的波长为UVC波段,辐照时间为30-60 min。
优选地,油相和水相的体积比为1:1~3;所述油相为有机相。
优选地,所述纳米导电颗粒在生长容器中的浓度不高于10 mmol/L。
优选地,所述纳米导电颗粒选自有机导电材料或无机导电材料。
优选地,疏水单分子层为带有疏水长链的全氟十二烷基三氯硅烷。
优选地,超声震荡的时间为5-10 min。
本发明提供了一种所述的液相自攀爬制备方法制备的薄膜电极。
本发明还提供了所述的薄膜电极在半导体及微纳电子器件制备中的应用。
和现有技术相比,本发明具有以下有益效果和优点:
(1)本发明提供的液相自攀爬法不采用光刻流程,不需使用光刻机及其辅助设备,工艺过程复杂性降低,设备成本降低;
(2)本发明提供的液相自攀爬法不采用传统的真空蒸发、电子束蒸镀及射频/直流溅射等薄膜沉积方法,工艺过程节能环保;
(3)本发明提供的液相自攀爬法在一般的化学实验室内即可完成,不依赖于洁净室等无尘环境,灵活性较高;
(4)本发明提供的液相自攀爬法有利于纳米颗粒保持高活性表面,可应用在传感器的制备中。
附图说明
图1为亲/疏水阵列图形制备流程图;
图2为液相自攀爬法电极生长工艺示意图;
附图中:1-衬底;2-超亲水表面;3-超疏水层;4-掩膜板;5-超亲/疏水图形;6-油相;7-纳米导电颗粒;8-水相。
具体实施方式
以下结合具体实施例和附图对本发明的具体实施作进一步说明,但本发明的实施不限于此。
实施例
本实施例提供了一种薄膜电极的液相自攀爬制备方法,包括以下步骤:
(1)制备超亲水层与超疏水层:
取衬底1,并清洗衬底表面有机物和杂质,如图1所示,对衬底1进行表面修饰,首先对衬底1进行羟基化处理,在衬底表面引入羟基,形成超亲水表面2;然后生长疏水单分子层(SAM),所述疏水单分子层SAM为带有疏水长链的全氟十二烷基三氯硅烷。羟基为生长疏水单分子层提供成键位点,在生长过程中,硅烷的烷氧键醇解或水解,与所述羟基中的氧原子结合,疏水长链朝外,形成超疏水层3;
(2)制备亲/疏水阵列图形:
在超疏水层上放置掩膜板4,所述掩膜板4包括透光部分和不透光部分,用紫外光(UV)通过透光部分辐照到超疏水层上,超疏水层分解形成超亲水表面2,得带有亲/疏水阵列图形5的衬底;
(3)制备薄膜电极:
取生长容器,加入油相6、水相8和纳米导电颗粒7,超声震荡5-10 min,将带有亲/疏水图案的衬底插入生长容器中,纳米导电颗粒7沿着超亲水层爬升,从而形成薄膜电极,如图2所示。
所述紫外光的波长为254 nm,辐照30 min。
油相6和水相8的体积比为1:2,Au纳米颗粒的浓度为2.7 mmol/L。本实施例还提供了一种由所述的液相自攀爬制备方法制备的薄膜电极。
所述的薄膜电极可应用在半导体及微纳电子器件制备中,尤其是多功能半导体和微纳传感器件的制作。
以上所述,仅为本发明的较佳实施例而已,并非对本发明做任何形式上的限定。凡本领域的技术人员利用本发明的技术方案对上述实施例作出的任何等同的变动、修饰或演变等,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种薄膜电极的液相自攀爬制备方法,其特征在于,包括以下步骤:
(1)制备超亲水表面与超疏水层:
取衬底,并清洗衬底表面有机物和杂质,对衬底进行羟基化处理,在衬底表面引入羟基,形成超亲水表面;然后生长疏水单分子层,羟基为生长疏水单分子层提供成键位点,疏水单分子层与所述羟基中的氧原子结合,形成超疏水层;
(2)制备亲/疏水阵列图形:
在超疏水层上放置掩膜板,所述掩膜板包括透光部分和不透光部分,用紫外光通过透光部分辐照到超疏水层上,超疏水层分解形成超亲水表面,得带有亲/疏水阵列图形的衬底;
(3)制备薄膜电极:
取生长容器,加入油相、水相和纳米导电颗粒,超声震荡,将带有亲/疏水阵列图形的衬底插入生长容器中,纳米导电颗粒沿着超亲水层爬升,从而形成薄膜电极。
2.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,所述疏水单分子层为带有疏水长链的硅烷或硫醇。
3.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,所述紫外光的波长为UVC波段,辐照时间为30-60 min。
4.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,油相和水相的体积比为1:1~3;所述油相为有机相。
5.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,所述纳米导电颗粒在生长容器中的浓度不高于10 mmol/L。
6.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,所述纳米导电颗粒选自有机导电材料或无机导电材料。
7.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,疏水单分子层为带有疏水长链的全氟十二烷基三氯硅烷。
8.根据权利要求1所述的薄膜电极的液相自攀爬制备方法,其特征在于,超声震荡的时间为5-10 min。
9.一种由权利要求1至8所述的液相自攀爬制备方法制备的薄膜电极。
10.权利要求9所述的薄膜电极在半导体及微纳电子器件制备中的应用。
CN201911056964.7A 2019-10-31 2019-10-31 一种薄膜电极及其液相自攀爬制备方法与应用 Pending CN110767544A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911056964.7A CN110767544A (zh) 2019-10-31 2019-10-31 一种薄膜电极及其液相自攀爬制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911056964.7A CN110767544A (zh) 2019-10-31 2019-10-31 一种薄膜电极及其液相自攀爬制备方法与应用

Publications (1)

Publication Number Publication Date
CN110767544A true CN110767544A (zh) 2020-02-07

Family

ID=69335014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911056964.7A Pending CN110767544A (zh) 2019-10-31 2019-10-31 一种薄膜电极及其液相自攀爬制备方法与应用

Country Status (1)

Country Link
CN (1) CN110767544A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054194A (zh) * 2006-04-12 2007-10-17 北京化工大学 超疏水层状双羟基复合金属氧化物薄膜及其制备方法
US20080119008A1 (en) * 2004-08-31 2008-05-22 Yuji Miyato Molecular Device and Manufacturing Method for the Same
US20080241512A1 (en) * 2007-04-02 2008-10-02 Applied Microstructures, Inc. Articles with super-hydrophobic and-or super-hydrophilic surfaces and method of formation
US20130256663A1 (en) * 2012-04-02 2013-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Surface tension modification using silane with hydrophobic functional group for thin film deposition
CN106229425A (zh) * 2016-09-09 2016-12-14 广州新视界光电科技有限公司 一种顶发射全彩有机发光显示器件及制备方法
CN107177689A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片
CN109453669A (zh) * 2018-11-27 2019-03-12 上海交通大学 超疏水及双侧亲水静电纺丝纳米纤维复合膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080119008A1 (en) * 2004-08-31 2008-05-22 Yuji Miyato Molecular Device and Manufacturing Method for the Same
CN101054194A (zh) * 2006-04-12 2007-10-17 北京化工大学 超疏水层状双羟基复合金属氧化物薄膜及其制备方法
US20080241512A1 (en) * 2007-04-02 2008-10-02 Applied Microstructures, Inc. Articles with super-hydrophobic and-or super-hydrophilic surfaces and method of formation
US20130256663A1 (en) * 2012-04-02 2013-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Surface tension modification using silane with hydrophobic functional group for thin film deposition
CN106229425A (zh) * 2016-09-09 2016-12-14 广州新视界光电科技有限公司 一种顶发射全彩有机发光显示器件及制备方法
CN107177689A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片
CN109453669A (zh) * 2018-11-27 2019-03-12 上海交通大学 超疏水及双侧亲水静电纺丝纳米纤维复合膜的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.P. BINKS, J.H. CLINT ET AL.: "Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops", 《LANGMUIR》 *
CHENG HL ET AL.: "Film climbing of particle-laden interfaces", 《COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS》 *
JIANFENG WANG ET AL.: "Wetting-Induced Climbing for Transferring Interfacially Assembled Large-Area Ultrathin Pristine Graphene Film", 《ADVANCED MATERIALS》 *
K.S. MAYYA, M. SASTRY: "A new technique for the spontaneous growth of colloidal nanoparticle superlattices", 《LANGMUIR》 *

Similar Documents

Publication Publication Date Title
KR100790899B1 (ko) 얼라인 마크가 형성된 템플릿 및 그 제조 방법
US7875197B2 (en) Methods of etching articles via microcontact printing
JP2016055288A (ja) 選択的ナノ粒子組立システム及び方法
CN101520600B (zh) 基于x射线曝光技术制作透光纳米压印模板的方法
CN111606300A (zh) 一种高深宽比纳米光栅的制作方法
JPH06202343A (ja) 表面をパターンに従って化学的に変性する方法
CN107758607A (zh) 一种高深宽比高保形纳米级正型结构的制备方法
CN109437091A (zh) 一种在弹性衬底上制备微纳结构的方法
CN112558419A (zh) 一种大口径柔性光学超构表面结构的加工方法
CN107857236A (zh) 一种高深宽比高保形纳米级负型结构的制备方法
CN105204291B (zh) 溶菌酶二维纳米薄膜作为光刻胶的应用
CN110767544A (zh) 一种薄膜电极及其液相自攀爬制备方法与应用
US8658462B2 (en) Method of forming TiO2 array using ZnO template
CN116741896A (zh) 一种亚微米级图形化蓝宝石衬底及其制备方法
CN102495526B (zh) 光学曝光方法及其用于制备硅材料竖直中空结构的方法
KR100968809B1 (ko) 산화 아연 나노 패턴 형성방법
CN114749220A (zh) 一种超高品质因子的纳米光流控芯片、制备方法、及应用
Guo et al. Fabrication of sub-50 nm nanochannel array by an angle forming lift-off method
CN114014262B (zh) 一种石墨烯量子点阵列的微纳复合制备方法
CN111422861A (zh) 一种悬浮式石墨烯薄膜结构的制备方法
CN114200797B (zh) 一种用于纳米压印金属光栅拼接对齐的掩模及金属光栅拼接方法
JP2008098265A (ja) 近接場光による露光方法及びレジストパターンの形成方法
CN111439720B (zh) 一种制备变径纳米结构的方法
TWI220267B (en) Manufacturing method of transferring pattern with high aspect ratio
Yang et al. Nanotemplate Prepared by Means of Vacuum Ultraviolet Patterning of Alkylsilane Self-assembled Monolayer on ITO Using a Porous Alumina Mask: Application to the Fabrication of Gold Nanoparticle Arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200207

RJ01 Rejection of invention patent application after publication