CN110763234A - 一种水下机器人海底地形匹配导航路径规划方法 - Google Patents

一种水下机器人海底地形匹配导航路径规划方法 Download PDF

Info

Publication number
CN110763234A
CN110763234A CN201910975977.8A CN201910975977A CN110763234A CN 110763234 A CN110763234 A CN 110763234A CN 201910975977 A CN201910975977 A CN 201910975977A CN 110763234 A CN110763234 A CN 110763234A
Authority
CN
China
Prior art keywords
underwater robot
terrain
calculating
particle
path planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910975977.8A
Other languages
English (en)
Other versions
CN110763234B (zh
Inventor
马腾
李晔
姜言清
张强
丛正
范佳佳
贡雨森
凌宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201910975977.8A priority Critical patent/CN110763234B/zh
Publication of CN110763234A publication Critical patent/CN110763234A/zh
Application granted granted Critical
Publication of CN110763234B publication Critical patent/CN110763234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

本发明属于水下机器人的水下导航领域,具体涉及一种水下机器人海底地形匹配导航路径规划方法。本发明将地形起伏层度考虑为水下机器人状态转移概率的影响因子,可以避免传统海底地形匹配导航路径规划算法由于追求路径总地形起伏最大化导致的路径会经过某些平坦区域的问题,保证了地形匹配算法在规划得到的整条上均能得到较高的匹配精度。本发明通过粒子滤波器实时对水下机器人状态进行跟踪,并根据状态跟踪结果选择最优动作,实现了对水下机器人运动不确定性的考虑。本发明可以使水下机器人应用地形匹配导航的可靠性大大提高。

Description

一种水下机器人海底地形匹配导航路径规划方法
技术领域
本发明属于水下机器人的水下导航领域,具体涉及一种水下机器人海底地形匹配导航路径规划方法。
背景技术
随着多波束测深技术的发展,高精度海底地形测绘成为可能,因而以多波束声纳测绘得到的海底地形为信息源的海底地形匹配导航技术已经得到了世界各国的广泛重视。然而由于地形匹配精度受海底地形起伏程度影响严重,因而需要对装备海底地形匹配导航系统的水下机器人进行路径规划,使其实现对地形过于平坦区域的避让。同时,由于状态转移噪声等导致的水下机器人运动不确定性,水下机器人在执行任务过程中需要实时对自身位置进行估计并在线规划航线。
目前现有的海底地形匹配导航的路径规划方法多将地形起伏程度作为奖励函数或代价函数考虑。虽然地形起伏程度越高匹配效果越好,但两者之间的关系并非线性的,因而大多数算法所规划的最大化总地形起伏程度的路径并不能获得最好的地形匹配效果,反而会因为前往特定地形起伏极端剧烈区域导致水下机器人不得不经过某些地形平坦区域,并导致地形匹配算法失效。如公开日为2018年11月23日、公开号为CN108871351A、发明名称为“一种AUV海底地形匹配的动态路径规划方法”的专利申请,该方法将路径规划划分为了全局路径规划和局部规划两个阶段,实现了动态避障等过程。但该发明没有考虑水下机器人运动的不确定性,无法实现对水下机器人运动状态的跟踪估计,一旦水下机器人偏离航线很难及时进行补救。
发明内容
本发明的目的在于提供解决海底地形匹配导航的最优路径规划问题的一种水下机器人海底地形匹配导航路径规划方法。
本发明的目的通过如下技术方案来实现:
具体包括以下步骤:
步骤1:将水下机器人作业区域先验海底地形图进行栅格划分;
步骤2:计算每个栅格的值函数;
步骤3:粒子初始化;
步骤4:针对每个粒子,根据水下机器人的控制输入数据和先验地图进行状态更新;
步骤5:为粒子选择最优动作;
步骤6:根据多波束测深数据进行观测更新;
步骤7:计算每个粒子的权重;
步骤8:根据所有粒子对应的权重和最优动作计算水下机器人的控制输入;
步骤9:重采样更新粒子;
步骤10:判断水下机器人是否到达终点;若水下机器人到达终点,则完成路径规划;若水下机器人未到达终点。则执行控制输入后返回步骤4。
本发明还可以包括:
所述的步骤2中计算每个栅格值函数的具体方法为:
步骤2.1:若当前栅格为终点,令其值函数V(x0)为1000,否则针对当前栅格周围的八个栅格,分别计算其地形匹配过程协方差Ψ,计算公式为:
Figure BDA0002233630280000021
其中,
Figure BDA0002233630280000022
为多波束声纳单个波束测量噪声的标准差;hi(x)为海底地形平面拟合方程,a和b分别代表东向和北向;M表示地形测点个数;
步骤2.2:针对当前栅格周围的八个栅格,分别计算其参考导航协方差Σ,计算公式如下:
Figure BDA0002233630280000023
其中,σeast为参考导航系统的东向标准差;σnorth为参考导航系统的北向标准差;σeast,north为参考导航系统的东向-北向标准差;
步骤2.3:计算给定控制输入u后水下机器人由当前栅格x0转移到周边其他八个栅格xi(i=1,2,...,8)的状态转移概率p(xi|x0,u)i=1,2,...,8,计算公式为:
Figure BDA0002233630280000024
Figure BDA0002233630280000025
步骤2.5:计算当前栅格的值函数V(x0),并记录值函数所对应的水下机器人动作u;所述的当前栅格的值函数V(x0)的计算公式为:
所述的步骤4中针对每个粒子,根据水下机器人的控制输入数据和先验地图进行状态更新具体包括:针对粒子k,其中k=1,2,...,K,利用参考导航系统给出的控制输入u对其位置进行更新,得到xk′=xk+u+Q,其中Q为水下机器人状态转移噪声的协方差。
所述的步骤5中为粒子选择最优动作具体为:针对粒子k在状态转移之后的位置xk′,根据马尔科夫决策过程,以使当前栅格的值函数V(x0)最大的运动输入uk作为其对应最优控制输入。
所述的步骤6中根据多波束测深数据进行观测更新具体为:针对每个粒子,根据步骤4中的状态更新值,提取其实测地图在先验地图中对应的预测结果,并计算当前预测地形的地形粗糙度rough,对于大小为M×N的实测地图,粗糙度rough的计算公式为:
Figure BDA0002233630280000032
其中rx和ry分别为地形粗糙度在x和y方向的分量,计算公式如下:
Figure BDA0002233630280000033
其中h(i,j)为先验地图中(i,j)处的地形高程。
所述的步骤7中计算每个粒子的权重的方法具体为:针对每个粒子,根据其预测地形以及多波束声纳获得的测深数据z′(i,j),其中i∈[1,M],j∈[1,N],并计算新息量Δz:
则第k个粒子的权重wk为:
wk=Δzk·roughk
其中Δzk和roughk为该粒子对应的新息量和预测地形粗糙度。
所述的步骤8中根据所有粒子对应的权重和最优动作计算水下机器人的控制输入u的具体计算公式为:
其中K为粒子个数。
本发明的有益效果在于:
本发明将地形起伏层度考虑为水下机器人状态转移概率的影响因子,可以避免传统海底地形匹配导航路径规划算法由于追求路径总地形起伏最大化导致的路径会经过某些平坦区域的问题,保证了地形匹配算法在规划得到的整条上均能得到较高的匹配精度。本发明通过粒子滤波器实时对水下机器人状态进行跟踪,并根据状态跟踪结果选择最优动作,实现了对水下机器人运动不确定性的考虑。本发明可以使水下机器人应用地形匹配导航的可靠性大大提高。
附图说明
图1是本发明的总流程图。
图2是本发明中惩罚函数选择示意图。
具体实施方式
下面结合附图对本发明做进一步描述。
本发明的目的在于提供能够一种水下机器人海底地形匹配导航路径规划方法,该方法通过计算水下机器人的状态转移概率函数对海底地形起伏层度进行评估,利用马尔可夫决策过程选取水下机器人在各个栅格的最优动作,并通过粒子滤波实现对水下机器人状态的跟踪估计和控制输入计算,从而解决海底地形匹配导航的最优路径规划问题。
本发明将影响水下机器人地形匹配导航效果的地形起伏程度作为水下机器人状态转移概率函数的影响因子,利用马尔科夫决策过程进行最优规划;通过粒子滤波实现对水下机器人运动状态的跟踪估计,根据估计结果对路线进行在线规划。本发明将地形起伏程度作为水下机器人状态转移概率函数的影响因子,事实上是搜索了所有节点地形起伏均较为剧烈的路径,从而保证了水下机器人在整条路径上的匹配导航精度。
结合图一,本发明的具体流程如下:
步骤一、将水下机器人作业区域先验海底地形图划分为等大小的栅格。
步骤二、根据海底地形起伏程度和参考导航系统参数,计算各个栅格的值函数并执行步骤三。
步骤2.1、若当前栅格为终点,令其值函数V(x0)为1000,否则针对当前栅格周围的八个栅格,分别计算其地形匹配过程协方差Ψ,计算公式如下
Figure BDA0002233630280000051
其中,
Figure BDA0002233630280000052
为多波束声纳单个波束测量噪声的标准差,hi(x)为海底地形平面拟合方程,a和b代表东向和北向,M表示地形测点个数。
步骤2.2、针对当前栅格周围的八个栅格,分别计算其参考导航协方差Σ,计算公式如下:
Figure BDA0002233630280000053
其中参考导航系统的东向标准差σeast,北向标准差σnorth,东向-北向标准差σeast,north由参考导航系统参数给出。
步骤2.3、在通过步骤2.1和步骤2.2计算得到栅格xi(i=1,2,...,8)对应的地形匹配过程协方差Ψi和参考导航协方差Σi后,计算给定控制输入u后水下机器人由当前栅格x0转移到周边其他八个栅格xi(i=1,2,...,8)的状态转移概率p(xi|x0,u)(i=1,2,...,8),计算公式为:
Figure BDA0002233630280000054
步骤2.4、考虑水下机器人经过地形不明显区域的惩罚,结合图2可以看到,当匹配过程协方差Ψi和参考导航协方差Σi之和越大,对应概率分布越扁平,概率小于0.05的区域越大,因而令
Figure BDA0002233630280000055
步骤2.5、计算当前栅格的值函数,方程为:
Figure BDA0002233630280000056
并记录值函数所对应的水下机器人动作u。
步骤三、进行粒子初始化,执行步骤四。
步骤四、针对每个粒子,根据水下机器人的参考导航数据进行状态更新,并利用马尔可夫决策过程求解当前粒子的最优动作,执行步骤五。
步骤4.1、针对粒子k(k=1,2,...,K),利用参考导航系统给出的控制输入u对其位置进行更新,得到xk′=xk+u+Q,其中Q为水下机器人状态转移噪声的协方差。
步骤4.2、针对粒子k在状态转移之后的位置xk′,根据马尔科夫决策过程,以在步骤2.5中给出的其值函数最大的运动输入uk作为其对应最优控制输入。
步骤五、利用多波束声纳观测值进行观测更新,根据每个粒子当前状态的先验地形和多波束声纳观测值计算各个粒子权重,执行步骤六。
步骤5.1、针对每个粒子,根据步骤4.2给出的状态更新值x′,提取其实测地图在先验地图中对应的预测结果,并计算当前预测地形的地形粗糙度rough,对于大小为M×N的实测地图,其计算公式为:
Figure BDA0002233630280000061
其中rx和ry分别为地形粗糙度在x和y方向的分量,计算公式如下:
Figure BDA0002233630280000062
Figure BDA0002233630280000063
其中h(i,j)为先验地图中(i,j)处的地形高程。
步骤5.2、针对每个粒子,根据其预测地形以及多波束声纳获得的测深数据z′(i,j)(i∈[1,M],j∈[1,N]),并计算新息量Δz:
Figure BDA0002233630280000064
步骤5.3、针对第k个粒子(k=1,2,...,K),计算其权重wk
wk=Δzk·roughk
其中Δzk和roughk为该粒子对应的新息量和预测地形粗糙度。
步骤六、根据所有粒子对应的权重和最优动作计算水下机器人的控制输入u:
其中K为粒子个数。
步骤七、重采样更新粒子。
步骤八、判断水下机器人是否到达终点,是则算法结束;否则水下机器人执行控制输入后算法执行步骤四。
本发明的有益效果在于提出的海底地形匹配导航路径规划方法将地形起伏层度考虑为水下机器人状态转移概率的影响因子,可以避免传统海底地形匹配导航路径规划算法由于追求路径总地形起伏最大化导致的路径会经过某些平坦区域的问题,保证了地形匹配算法在规划得到的整条上均能得到较高的匹配精度;同时,本发明通过粒子滤波器实时对水下机器人状态进行跟踪,并根据状态跟踪结果选择最优动作,实现了对水下机器人运动不确定性的考虑。以上两点有益效果可使水下机器人应用地形匹配导航的可靠性大大提高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种水下机器人海底地形匹配导航路径规划方法,其特征在于,具体包括以下步骤:
步骤1:将水下机器人作业区域先验海底地形图进行栅格划分;
步骤2:计算每个栅格的值函数;
步骤3:粒子初始化;
步骤4:针对每个粒子,根据水下机器人的控制输入数据和先验地图进行状态更新;
步骤5:为粒子选择最优动作;
步骤6:根据多波束测深数据进行观测更新;
步骤7:计算每个粒子的权重;
步骤8:根据所有粒子对应的权重和最优动作计算水下机器人的控制输入;
步骤9:重采样更新粒子;
步骤10:判断水下机器人是否到达终点;若水下机器人到达终点,则完成路径规划;若水下机器人未到达终点。则执行控制输入后返回步骤4。
2.根据权利要求1所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤2中计算每个栅格值函数的具体方法为:
步骤2.1:若当前栅格为终点,令其值函数V(x0)为1000,否则针对当前栅格周围的八个栅格,分别计算其地形匹配过程协方差Ψ,计算公式为:
Figure FDA0002233630270000011
其中,
Figure FDA0002233630270000012
为多波束声纳单个波束测量噪声的标准差;hi(x)为海底地形平面拟合方程,a和b分别代表东向和北向;M表示地形测点个数;
步骤2.2:针对当前栅格周围的八个栅格,分别计算其参考导航协方差Σ,计算公式如下:
Figure FDA0002233630270000013
其中,σeast为参考导航系统的东向标准差;σnorth为参考导航系统的北向标准差;σeast,north为参考导航系统的东向-北向标准差;
步骤2.3:计算给定控制输入u后水下机器人由当前栅格x0转移到周边其他八个栅格xi(i=1,2,...,8)的状态转移概率p(xi|x0,u)i=1,2,...,8,计算公式为:
Figure FDA0002233630270000022
步骤2.5:计算当前栅格的值函数V(x0),并记录值函数所对应的水下机器人动作u;所述的当前栅格的值函数V(x0)的计算公式为:
Figure FDA0002233630270000023
3.根据权利要求2所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤4中针对每个粒子,根据水下机器人的控制输入数据和先验地图进行状态更新具体包括:针对粒子k,其中k=1,2,...,K,利用参考导航系统给出的控制输入u对其位置进行更新,得到xk′=xk+u+Q,其中Q为水下机器人状态转移噪声的协方差。
4.根据权利要求3所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤5中为粒子选择最优动作具体为:针对粒子k在状态转移之后的位置xk′,根据马尔科夫决策过程,以使当前栅格的值函数V(x0)最大的运动输入uk作为其对应最优控制输入。
5.根据权利要求1或2或3或4所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤6中根据多波束测深数据进行观测更新具体为:针对每个粒子,根据步骤4中的状态更新值,提取其实测地图在先验地图中对应的预测结果,并计算当前预测地形的地形粗糙度rough,对于大小为M×N的实测地图,粗糙度rough的计算公式为:
Figure FDA0002233630270000024
其中rx和ry分别为地形粗糙度在x和y方向的分量,计算公式如下:
Figure FDA0002233630270000025
Figure FDA0002233630270000026
其中h(i,j)为先验地图中(i,j)处的地形高程。
6.根据权利要求5所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤7中计算每个粒子的权重的方法具体为:针对每个粒子,根据其预测地形以及多波束声纳获得的测深数据z′(i,j),其中i∈[1,M],j∈[1,N],并计算新息量Δz:
Figure FDA0002233630270000031
则第k个粒子的权重wk为:
wk=Δzk·roughk
其中Δzk和roughk为该粒子对应的新息量和预测地形粗糙度。
7.根据权利要求6所述的一种水下机器人海底地形匹配导航路径规划方法,其特征在于:所述的步骤8中根据所有粒子对应的权重和最优动作计算水下机器人的控制输入u的具体计算公式为:
Figure FDA0002233630270000032
其中K为粒子个数。
CN201910975977.8A 2019-10-15 2019-10-15 一种水下机器人海底地形匹配导航路径规划方法 Active CN110763234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910975977.8A CN110763234B (zh) 2019-10-15 2019-10-15 一种水下机器人海底地形匹配导航路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910975977.8A CN110763234B (zh) 2019-10-15 2019-10-15 一种水下机器人海底地形匹配导航路径规划方法

Publications (2)

Publication Number Publication Date
CN110763234A true CN110763234A (zh) 2020-02-07
CN110763234B CN110763234B (zh) 2022-10-28

Family

ID=69331142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910975977.8A Active CN110763234B (zh) 2019-10-15 2019-10-15 一种水下机器人海底地形匹配导航路径规划方法

Country Status (1)

Country Link
CN (1) CN110763234B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113537628A (zh) * 2021-08-04 2021-10-22 郭宏亮 一种基于分布强化学习的通用可靠最短路算法
CN115182747A (zh) * 2022-09-13 2022-10-14 湖南大学 隧道裂缝自动修复方法、装置、系统及可读存储介质

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090861A (zh) * 2013-01-14 2013-05-08 哈尔滨工程大学 水下机器人的多线地形匹配导航方法
CN104075715A (zh) * 2014-07-07 2014-10-01 东南大学 一种结合地形和环境特征的水下导航定位方法
US20150226559A1 (en) * 2010-06-21 2015-08-13 Optimal Ranging, Inc. Autonomous vehicle power line position and load parameter estimation
CN105115492A (zh) * 2015-08-14 2015-12-02 武汉大学 基于声学多普勒计程仪的水下地形匹配导航系统
CN105424036A (zh) * 2015-11-09 2016-03-23 东南大学 一种低成本水下潜器地形辅助惯性组合导航定位方法
CN106123850A (zh) * 2016-06-28 2016-11-16 哈尔滨工程大学 Auv配载多波束声呐水下地形测绘修正方法
CN106403953A (zh) * 2016-09-05 2017-02-15 江苏科技大学 一种用于水下自主导航与定位的方法
CN106767836A (zh) * 2017-02-17 2017-05-31 哈尔滨工程大学 一种auv地形匹配导航滤波方法
CN106767834A (zh) * 2017-01-24 2017-05-31 哈尔滨工程大学 一种基于模糊熵值的auv水下地形匹配适配区划分方法
CN106885576A (zh) * 2017-02-22 2017-06-23 哈尔滨工程大学 一种基于多点地形匹配定位的auv航迹偏差估计方法
CN107314768A (zh) * 2017-07-06 2017-11-03 上海海洋大学 水下地形匹配辅助惯性导航定位方法及其定位系统
CN107589748A (zh) * 2017-08-21 2018-01-16 江苏科技大学 基于UnscentedFastSLAM算法的AUV自主导航方法
CN107643082A (zh) * 2017-09-05 2018-01-30 东南大学 基于多波束的多路径并行iccp水下地形匹配方法
US20180238710A1 (en) * 2015-08-12 2018-08-23 Atlantic Inertial Systems Limited Inertial sensor
CN108489491A (zh) * 2018-02-09 2018-09-04 上海交通大学 一种水下自主航行器的三维航迹智能规划方法
CN108562287A (zh) * 2018-01-08 2018-09-21 哈尔滨工程大学 一种基于自适应采样粒子滤波的水下地形辅助导航方法
CN108592916A (zh) * 2018-04-20 2018-09-28 杭州电子科技大学 悬浮式水下自主航行器的多航次地图定位和导航方法
CN108803313A (zh) * 2018-06-08 2018-11-13 哈尔滨工程大学 一种基于海流预测模型的路径规划方法
CN108871351A (zh) * 2018-08-02 2018-11-23 哈尔滨工程大学 一种auv海底地形匹配的动态路径规划方法
CN109000656A (zh) * 2018-06-15 2018-12-14 淮海工学院 基于空间聚类的水下地形匹配导航适配区选择方法
CN109186610A (zh) * 2018-10-15 2019-01-11 哈尔滨工程大学 一种auv地形匹配导航的鲁棒bslam方法
US20190155310A1 (en) * 2015-12-09 2019-05-23 National Institute Of Maritime, Port And Aviation Technology Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle
US20190242711A1 (en) * 2018-02-08 2019-08-08 Raytheon Company Image geo-registration for absolute navigation aiding using uncertainy information from the on-board navigation system
CN110207721A (zh) * 2019-06-06 2019-09-06 哈尔滨工程大学 一种考虑残差分布的无效地形匹配结果识别方法
CN110220510A (zh) * 2019-06-03 2019-09-10 哈尔滨工程大学 一种考虑地图准确性的水下机器人海底地形匹配导航路径规划方法
CN110244759A (zh) * 2019-06-05 2019-09-17 哈尔滨工程大学 一种基于区间优化的水下机器人时间最优路径规划方法
CN110320520A (zh) * 2019-06-26 2019-10-11 哈尔滨工程大学 一种测深信息同步定位与建图的鲁棒后端图优化方法

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150226559A1 (en) * 2010-06-21 2015-08-13 Optimal Ranging, Inc. Autonomous vehicle power line position and load parameter estimation
CN103090861A (zh) * 2013-01-14 2013-05-08 哈尔滨工程大学 水下机器人的多线地形匹配导航方法
CN104075715A (zh) * 2014-07-07 2014-10-01 东南大学 一种结合地形和环境特征的水下导航定位方法
US20180238710A1 (en) * 2015-08-12 2018-08-23 Atlantic Inertial Systems Limited Inertial sensor
CN105115492A (zh) * 2015-08-14 2015-12-02 武汉大学 基于声学多普勒计程仪的水下地形匹配导航系统
CN105424036A (zh) * 2015-11-09 2016-03-23 东南大学 一种低成本水下潜器地形辅助惯性组合导航定位方法
US20190155310A1 (en) * 2015-12-09 2019-05-23 National Institute Of Maritime, Port And Aviation Technology Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle
CN106123850A (zh) * 2016-06-28 2016-11-16 哈尔滨工程大学 Auv配载多波束声呐水下地形测绘修正方法
CN106403953A (zh) * 2016-09-05 2017-02-15 江苏科技大学 一种用于水下自主导航与定位的方法
CN106767834A (zh) * 2017-01-24 2017-05-31 哈尔滨工程大学 一种基于模糊熵值的auv水下地形匹配适配区划分方法
CN106767836A (zh) * 2017-02-17 2017-05-31 哈尔滨工程大学 一种auv地形匹配导航滤波方法
CN106885576A (zh) * 2017-02-22 2017-06-23 哈尔滨工程大学 一种基于多点地形匹配定位的auv航迹偏差估计方法
CN107314768A (zh) * 2017-07-06 2017-11-03 上海海洋大学 水下地形匹配辅助惯性导航定位方法及其定位系统
CN107589748A (zh) * 2017-08-21 2018-01-16 江苏科技大学 基于UnscentedFastSLAM算法的AUV自主导航方法
CN107643082A (zh) * 2017-09-05 2018-01-30 东南大学 基于多波束的多路径并行iccp水下地形匹配方法
CN108562287A (zh) * 2018-01-08 2018-09-21 哈尔滨工程大学 一种基于自适应采样粒子滤波的水下地形辅助导航方法
WO2019156800A1 (en) * 2018-02-08 2019-08-15 Raytheon Company Image geo-registration for absolute navigation aiding using uncertainy information from the on-board navigation system
US20190242711A1 (en) * 2018-02-08 2019-08-08 Raytheon Company Image geo-registration for absolute navigation aiding using uncertainy information from the on-board navigation system
CN108489491A (zh) * 2018-02-09 2018-09-04 上海交通大学 一种水下自主航行器的三维航迹智能规划方法
CN108592916A (zh) * 2018-04-20 2018-09-28 杭州电子科技大学 悬浮式水下自主航行器的多航次地图定位和导航方法
CN108803313A (zh) * 2018-06-08 2018-11-13 哈尔滨工程大学 一种基于海流预测模型的路径规划方法
CN109000656A (zh) * 2018-06-15 2018-12-14 淮海工学院 基于空间聚类的水下地形匹配导航适配区选择方法
CN108871351A (zh) * 2018-08-02 2018-11-23 哈尔滨工程大学 一种auv海底地形匹配的动态路径规划方法
CN109186610A (zh) * 2018-10-15 2019-01-11 哈尔滨工程大学 一种auv地形匹配导航的鲁棒bslam方法
CN110220510A (zh) * 2019-06-03 2019-09-10 哈尔滨工程大学 一种考虑地图准确性的水下机器人海底地形匹配导航路径规划方法
CN110244759A (zh) * 2019-06-05 2019-09-17 哈尔滨工程大学 一种基于区间优化的水下机器人时间最优路径规划方法
CN110207721A (zh) * 2019-06-06 2019-09-06 哈尔滨工程大学 一种考虑残差分布的无效地形匹配结果识别方法
CN110320520A (zh) * 2019-06-26 2019-10-11 哈尔滨工程大学 一种测深信息同步定位与建图的鲁棒后端图优化方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
GAO RUI: "Path Planning for Bathymetry-aided Underwater Navigation", 《2018 IEEE/OES AUTONOMOUS UNDERWATER VEHICLE WORKSHOP (AUV)》 *
HANBING WANG: "Multipath Parallel ICCP Underwater Terrain Matching Algorithm Based on Multibeam Bathymetric Data", 《IEEE ACCESS》 *
JIAN CAO: "Genetic-Algorithm-Based Global Path Planning for AUV", 《2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID)》 *
严浙平: "多域限界内多AUV巡逻航路规划方法", 《水下无人系统学报》 *
于晖: "水下爬行机器人多目标路径规划的研究", 《合肥工业大学学报(自然科学版)》 *
冯晓: "基于粒子滤波器的自主式水下机器人导航定位算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
姚绪梁: "一种时变洋流场下AUV最优能耗路径规划方法", 《控制与决策》 *
张博: "基于粒子滤波的AUV组合导航方法", 《机器人》 *
张家敏: "自主水下机器人控制系统研制及声纳目标跟踪研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
朱大奇: "自治水下机器人的自主启发式生物启发神经网络路径规划算", 《控制理论与应用》 *
王丹丹: "水下无人潜器同步定位与地图生成方法研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
王汝鹏: "AUV地形匹配导航快速收敛滤波", 《华中科技大学学报(自然科学版)》 *
马晓爽: "基于因子图的AUV多传感器组合导航算法", 《中国惯性技术学报》 *
马焱: "基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划", 《导航与控制》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113537628A (zh) * 2021-08-04 2021-10-22 郭宏亮 一种基于分布强化学习的通用可靠最短路算法
CN113537628B (zh) * 2021-08-04 2023-08-22 郭宏亮 一种基于分布强化学习的通用可靠最短路方法
CN115182747A (zh) * 2022-09-13 2022-10-14 湖南大学 隧道裂缝自动修复方法、装置、系统及可读存储介质
CN115182747B (zh) * 2022-09-13 2023-02-03 湖南大学 隧道裂缝自动修复方法、装置、系统及可读存储介质

Also Published As

Publication number Publication date
CN110763234B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN108871351B (zh) 一种auv海底地形匹配的动态路径规划方法
Shen et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles
CN111985093B (zh) 一种带噪声估计器的自适应无迹卡尔曼滤波状态估计方法
CN110726415B (zh) 一种自适应的水下多波束同步定位与建图方法
CN103776453A (zh) 一种多模型水下航行器组合导航滤波方法
CN110763234B (zh) 一种水下机器人海底地形匹配导航路径规划方法
CN110954132A (zh) Grnn辅助自适应卡尔曼滤波进行导航故障识别的方法
Wang et al. Matching error of the iterative closest contour point algorithm for terrain-aided navigation
CN111307160B (zh) 一种自主水下航行器长航时航迹的修正方法及装置
CN109460539A (zh) 一种基于简化容积粒子滤波的目标定位方法
CN110220510A (zh) 一种考虑地图准确性的水下机器人海底地形匹配导航路径规划方法
CN110487276B (zh) 一种基于相关分析的采样矢量匹配定位方法
CN110207721B (zh) 一种考虑残差分布的无效地形匹配结果识别方法
Guo et al. Sins/gnss-integrated navigation of surface vessels based on various nonlinear kalman filters and large ship dynamics
Morice et al. Terrain referencing for autonomous navigation of underwater vehicles
CN106384152A (zh) 基于萤火虫群优化的pf空间非合作目标轨道预测方法
Song et al. Cooperative mid-depth navigation aided by ocean current prediction
CN113008235B (zh) 基于矩阵k-l散度的多源导航信息融合方法
Skoglar et al. On information measures based on particle mixture for optimal bearings-only tracking
CN113503891B (zh) 一种sinsdvl对准校正方法、系统、介质及设备
CN111896002B (zh) 地形辅助导航匹配区在线规划与适配性分析方法及系统
Ma et al. A robust fusion terrain-aided navigation method with a single Beam Echo Sounder
Tian et al. Novel hybrid of strong tracking Kalman filter and improved radial basis function neural network for GPS/INS integrated navagation
Mosavi An effective method for GPS GDOP clustering using ant colony optimization algorithm
DeVon et al. Innovation-based fusion of multiple satellite positioning systems for minimizing uncertainty

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant