CN110762814B - Self-cleaning control method for air conditioner - Google Patents

Self-cleaning control method for air conditioner Download PDF

Info

Publication number
CN110762814B
CN110762814B CN201810849189.XA CN201810849189A CN110762814B CN 110762814 B CN110762814 B CN 110762814B CN 201810849189 A CN201810849189 A CN 201810849189A CN 110762814 B CN110762814 B CN 110762814B
Authority
CN
China
Prior art keywords
heat exchanger
outdoor
self
outdoor heat
solution film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810849189.XA
Other languages
Chinese (zh)
Other versions
CN110762814A (en
Inventor
罗荣邦
许文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201810849189.XA priority Critical patent/CN110762814B/en
Publication of CN110762814A publication Critical patent/CN110762814A/en
Application granted granted Critical
Publication of CN110762814B publication Critical patent/CN110762814B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

The invention belongs to the technical field of air conditioners and aims to solve the problems that the self-cleaning control mode of the existing air conditioner is generally low in frosting speed, so that the whole self-cleaning time is long and the normal experience of a user is influenced. Therefore, the invention provides a self-cleaning control method for an air conditioner, the air conditioner comprises a refrigerant circulating system and a solution circulating system consisting of an indoor solution film, an outdoor solution film, a liquid pump and a liquid storage tank, the self-cleaning control method comprises the following steps: under the heating condition, the compressor is enabled to be up-converted, the opening degree of the electronic expansion valve is reduced, and the voltage of the indoor solution film and the voltage of the outdoor solution film are enabled to be increased, so that the outdoor heat exchanger is frosted; after the outdoor heat exchanger frosts, the electronic expansion valve is closed firstly, and the electromagnetic valve at the low-pressure side of the compressor is closed after the preset time; and heating the outdoor heat exchanger so as to defrost and clean the outdoor heat exchanger. The invention can improve the self-cleaning efficiency of the outdoor heat exchanger and improve the user experience.

Description

Self-cleaning control method for air conditioner
Technical Field
The invention belongs to the technical field of air conditioners, and particularly provides a self-cleaning control method for an air conditioner.
Background
The air conditioner is a device capable of refrigerating/heating indoors, dust deposits on an indoor unit and an outdoor unit of the air conditioner can be gradually increased along with the lapse of time, a large amount of bacteria can be bred after the dust deposits accumulate to a certain degree, particularly, the outdoor unit is exposed outdoors for a long time, so that external dust and bacteria are easily adhered to the outdoor unit, the heat exchange efficiency of the air conditioner can be seriously affected by the bacteria and the dust, the energy consumption of the air conditioner is increased, the service life of the air conditioner is shortened, and the air conditioner needs to be cleaned in time.
In the prior art, the cleaning mode of the air conditioner comprises manual cleaning and self-cleaning of the air conditioner, time and labor are wasted by adopting the manual cleaning, all parts of the air conditioner need to be disassembled and cleaned, and all the parts need to be reassembled after the cleaning is finished. Therefore, many air conditioners today adopt a self-cleaning manner, for example, frosting and defrosting manners can be adopted to perform self-cleaning on the air conditioner, however, the existing self-cleaning control manner generally has a slow frosting speed, so that the whole self-cleaning time is long, and the normal experience of users is affected.
Therefore, there is a need in the art for a new self-cleaning control method for an air conditioner to solve the above problems.
Disclosure of Invention
In order to solve the above problems in the prior art, that is, to solve the problem that the normal experience of the user is affected due to the fact that the whole self-cleaning time is long because the self-cleaning control mode of the existing air conditioner is generally slow, the air conditioner comprises an indoor heat exchanger, an outdoor heat exchanger, a compressor, an electronic expansion valve and a four-way valve, wherein the indoor heat exchanger, the electronic expansion valve, the outdoor heat exchanger, the compressor and the four-way valve form a closed-loop refrigerant circulation system, the air conditioner further comprises an indoor solution film, an outdoor solution film, a liquid pump and a liquid storage tank, the indoor solution film is arranged on the indoor heat exchanger, the outdoor solution film is arranged on the outdoor heat exchanger, and the indoor solution film, the liquid storage tank, the outdoor solution film and the liquid pump form a closed-loop solution circulation system, the self-cleaning control method comprises: under the heating working condition, the compressor is increased in frequency, the opening degree of the electronic expansion valve is reduced, and the voltage of the indoor solution film and the voltage of the outdoor solution film are increased, so that the outdoor heat exchanger frosts; after the outdoor heat exchanger frosts, the electronic expansion valve is closed firstly, and the electromagnetic valve at the low-pressure side of the compressor is closed after the preset time; and heating the outdoor heat exchanger, so that the outdoor heat exchanger is defrosted and cleaned.
In the preferred technical solution of the above self-cleaning control method, the step of "raising the frequency of the compressor" specifically includes: the frequency of the compressor is gradually increased to the maximum frequency.
In a preferred embodiment of the above self-cleaning control method, the step of "increasing the voltage of the indoor solution film and the voltage of the outdoor solution film" includes: the voltage of the indoor solution membrane and the voltage of the outdoor solution membrane were gradually increased to the highest voltage.
In a preferred embodiment of the above-mentioned self-cleaning control method, the step of "raising the frequency of the compressor", the step of "decreasing the opening degree of the electronic expansion valve", and the step of "raising the voltage of the indoor solution film and the voltage of the outdoor solution film" are performed simultaneously.
In a preferred technical solution of the above self-cleaning control method, at the same time as or after the step of "heating the outdoor heat exchanger", the self-cleaning control method further includes: the outdoor fan of the air conditioner is operated at high speed.
In the preferred technical scheme of the self-cleaning control method, the outdoor heat exchanger is provided with an electric heating pipe, and the step of heating the outdoor heat exchanger specifically comprises the following steps: the outdoor heat exchanger is heated by connecting high voltage to the electric heating pipe.
In the preferable technical scheme of the self-cleaning control method, the liquid pump is a water pump, and the liquid storage tank is a water storage tank.
In a preferred embodiment of the self-cleaning control method, the self-cleaning control method further includes, at the same time as the step of "raising the frequency of the compressor": the rotating speed of an outdoor fan of the air conditioner is reduced.
In a preferred embodiment of the above self-cleaning control method, the self-cleaning control method further includes, at the same time as the step of "increasing the voltage of the indoor solution film and the voltage of the outdoor solution film": the rotational speed of the liquid pump is increased.
In the preferred technical scheme of the self-cleaning control method, the step of increasing the rotation speed of the liquid pump specifically comprises the following steps: the speed of the liquid pump is gradually increased to the maximum speed.
It can be understood by those skilled in the art that, in a preferred technical solution of the present invention, under a normal heating condition, the compressor is controlled to increase the frequency and reduce the opening of the electronic expansion valve, so that the air conditioner is separated from the normal heating condition to start frosting the outdoor heat exchanger, and the voltage of the indoor solution film and the voltage of the outdoor solution film are increased, that is, the outdoor solution film can absorb more outdoor water vapor, the indoor solution film can absorb more indoor water vapor, and can be rapidly conveyed to the outdoor solution film under the action of a liquid pump (hereinafter, a water pump is taken as an example), the outdoor solution film can directly release the water vapor onto the outdoor heat exchanger for frosting, that is, both the indoor water vapor absorbed by the indoor solution film and the outdoor water vapor absorbed by the outdoor solution film can be used for humidifying the outdoor heat exchanger, thereby frosting the outdoor heat exchanger more rapidly, reducing the frosting time of the outdoor heat exchanger, improving the frosting efficiency, before frosting the outdoor heat exchanger, the electronic expansion valve and the electromagnetic valve on the low-pressure side of the compressor are closed, so that all of the refrigerant in the air conditioner is recovered to one side of the indoor heat exchanger, thereby avoiding the indoor heat exchanger from being taken away, and avoiding the subsequent waste of the outdoor heat exchanger, and further avoiding the outdoor heat exchanger.
Furthermore, the frequency of the compressor is gradually increased to the highest frequency in a short time, namely, the compressor is in the highest-frequency operation in the frosting process of the outdoor heat exchanger, so that the frosting speed of the outdoor heat exchanger is further increased, the frosting time is reduced, the self-cleaning time of the outdoor heat exchanger of the air conditioner is integrally reduced, and the self-cleaning efficiency is improved.
Furthermore, the voltage of the indoor solution film and the voltage of the outdoor solution film are raised to the highest voltage in a short time, namely, in the frosting process of the outdoor heat exchanger, the highest voltage of the indoor solution film and the highest voltage of the outdoor solution film are operated, so that the steam absorption quantity of the indoor solution film and the steam absorption quantity of the outdoor solution film are maximized, the outdoor solution film reduces the maximum quantity of water vapor to the outdoor heat exchanger, the humidification quantity of the outdoor heat exchanger is maximized, the outdoor heat exchanger is frosted quickly, the frosting time is further shortened, the self-cleaning time of the air conditioner is reduced integrally, and the self-cleaning efficiency is improved.
Furthermore, in or after the process of heating and defrosting the outdoor heat exchanger, the outdoor fan of the air conditioner runs at a high speed to improve the defrosting speed of the outdoor heat exchanger, namely, the defrosting is accelerated by blowing the frosted surface through strong wind, so that the self-cleaning time of the outdoor heat exchanger of the air conditioner is reduced on the whole, the self-cleaning efficiency is improved, and the user experience is further improved.
Furthermore, when the compressor operates in an up-conversion mode, the rotating speed of an outdoor fan of the air conditioner is reduced, so that the frosting speed of the outdoor heat exchanger can be further increased, the frosting time is shortened, the self-cleaning time of the outdoor heat exchanger of the air conditioner is reduced on the whole, and the self-cleaning efficiency is improved.
And furthermore, the voltage of the indoor solution film and the voltage of the outdoor solution film are increased, the rotating speed of the water pump is increased, even if the solution circulating system is circulated in an accelerated manner, the water vapor absorbed by the indoor solution film from the room can be rapidly conveyed to the outdoor solution film, and the water vapor can be rapidly released to the outdoor heat exchanger through the outdoor solution film, so that the outdoor heat exchanger is rapidly humidified, the outdoor heat exchanger is rapidly frosted, the frosting time of the outdoor heat exchanger is shortened, and the frosting efficiency is improved.
And furthermore, the rotating speed of the water pump is gradually increased to the highest rotating speed in a short time, namely, the water pump runs at the highest rotating speed in the frosting process of the outdoor heat exchanger, so that the water circulating system circulates at the highest speed, the frosting speed of the outdoor heat exchanger is further increased, the frosting time is reduced, the self-cleaning time of the outdoor heat exchanger of the air conditioner is integrally reduced, and the self-cleaning efficiency is improved.
Drawings
Fig. 1 is a schematic structural view of an air conditioner of the present invention;
fig. 2 is a flowchart of a self-cleaning control method of an air conditioner of the present invention;
fig. 3 is a logic control diagram of an embodiment of a self-cleaning control method of an air conditioner of the present invention.
Detailed Description
Preferred embodiments of the present invention are described below with reference to the accompanying drawings. It should be understood by those skilled in the art that these embodiments are only for explaining the technical principle of the present invention, and are not intended to limit the scope of the present invention.
It should be noted that in the description of the present invention, the terms of direction or positional relationship indicated by the terms "middle", "upper", "lower", "inner", "outer", etc. are based on the directions or positional relationships shown in the drawings, which are only for convenience of description, and do not indicate or imply that the device or element must have a specific orientation, be constructed in a specific orientation, and be operated, and thus, should not be construed as limiting the present invention. Furthermore, the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
Furthermore, it should be noted that, in the description of the present invention, unless otherwise explicitly specified or limited, the terms "disposed," "mounted," "connected," and "connected" are to be construed broadly and may be, for example, fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meanings of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
Based on the problems that the frosting speed is generally low in the self-cleaning control mode of the existing air conditioner pointed out by the background technology, the whole self-cleaning time is long, and the normal experience of a user is influenced.
Specifically, as shown in fig. 1, the air conditioner of the present invention includes an indoor heat exchanger 1, an outdoor heat exchanger 2, a compressor 3, an electronic expansion valve 4, and a four-way valve 5, where the indoor heat exchanger 1, the electronic expansion valve 4, the outdoor heat exchanger 2, the compressor 3, and the four-way valve 5 form a closed-loop refrigerant circulation system, and the four-way valve 5 is configured to change an operation condition of the air conditioner by reversing, that is, the air conditioner can be changed from a heating condition by reversing the four-way valve 5 under a cooling condition, and the air conditioner can be changed from a cooling condition by reversing the four-way valve 5 under the heating condition. The air conditioner also comprises an indoor solution film 6, an outdoor solution film 7, a liquid pump 8 and a liquid storage tank 9, wherein the indoor solution film 6 is arranged on the indoor heat exchanger 1, the outdoor solution film 7 is arranged on the outdoor heat exchanger 2, the indoor solution film 6, the liquid storage tank 9, the outdoor solution film 7 and the liquid pump 8 form a closed-loop solution circulating system, it needs to be noted that under a normal refrigeration working condition or a dehumidification working condition, the indoor solution film 6 (also called as an indoor solution dehumidification film) has the function of pre-dehumidifying the inlet air of the indoor machine, namely absorbing indoor water vapor, and the moisture absorbed by the indoor solution film 6 can be circulated to the outdoor solution film 7 for reduction, and the reduced water vapor can cool and radiate the outdoor heat exchanger 2. In the heating condition, the outdoor solution membrane 7 (also referred to as an outdoor solution dehumidification membrane) pre-dehumidifies outdoor intake air, that is, absorbs outdoor water vapor, and water absorbed by the outdoor solution membrane 7 can be circulated to the indoor solution membrane 6 to be reduced, the reduced water vapor can humidify the outdoor heat exchanger 2, water can be reduced to water vapor by supplying electricity to the indoor solution membrane 6 to humidify the indoor heat exchanger 1, and water can be reduced to water vapor by supplying electricity to the outdoor solution membrane 7 to humidify the outdoor heat exchanger 2. The invention fully utilizes the water absorbability and the electrification reducibility of the indoor solution film 6 and the outdoor solution film 7, so that when the outdoor heat exchanger 2 is self-cleaned, the outdoor solution film 7 is electrified to absorb a large amount of outdoor water vapor, meanwhile, the indoor solution film 6 absorbs a large amount of indoor water vapor, the water vapor is conveyed to the outdoor solution film 7 under the action of the liquid pump 8, and then the water vapor is released to the outdoor heat exchanger 2 through the electroreduction action, thereby realizing the frosting of the outdoor heat exchanger 2.
Specifically, as shown in fig. 1 and 2, the self-cleaning control method of the present invention includes: under the heating condition, the compressor 3 is subjected to frequency rising, the opening degree of the electronic expansion valve 4 is reduced, and the voltage of the indoor solution membrane 6 and the voltage of the outdoor solution membrane 7 are increased, so that the outdoor heat exchanger 2 is frosted; after the outdoor heat exchanger 2 frosts, the electronic expansion valve 4 is closed firstly, and the electromagnetic valve at the low-pressure side of the compressor 3 is closed after the preset time; the outdoor heat exchanger 2 is heated, so that the outdoor heat exchanger 2 is defrosted and cleaned. It should be noted that, as shown in fig. 1, in the heating condition, the refrigerant flows clockwise as shown in fig. 1, at this time, the electromagnetic valve on the low-pressure side of the compressor 3 is the second electromagnetic valve 11 in fig. 1, the electromagnetic valve on the high-pressure side of the compressor 3 is the first electromagnetic valve 10 in fig. 1, that is, the second electromagnetic valve 11 is located on the low-pressure side of the compressor 3, and the first electromagnetic valve 10 is located on the high-pressure side of the compressor 3, in the present invention, after the electronic expansion valve 4 is closed, the refrigerant is gradually recovered to the indoor side of the air conditioner along the clockwise flow direction, and after the recovery is completed, that is, a preset time is reached, the second electromagnetic valve 11 is closed, so that the refrigerant is blocked at the indoor side of the air conditioner, the refrigerant is prevented from being affected in the subsequent defrosting process of the outdoor heat exchanger 2, and the defrosting efficiency and the defrosting effect of the outdoor heat exchanger 2 are improved. The preset time can be 30 seconds, namely the second electromagnetic valve 11 is closed after 30 seconds, so that the refrigerant is guaranteed to be completely recovered to the indoor side of the air conditioner, and certainly, the preset time can also be other times. In addition, it should be noted that, in the present invention, the liquid pump 8 is preferably a water pump, and the liquid storage tank 9 is preferably a water storage tank, that is, the outdoor heat exchanger 2 is frosted by the action of water circulation, of course, other liquid pumps 8 may be selected as long as the solution in the solution circulation system can be circulated, in addition, the liquid storage tank 9 may store water, or a mixed solution of water and other solutions may be stored, that is, other solvents may be added into water, so that the frosting speed can be increased by the action of the solvent when the outdoor heat exchanger 2 is frosted, and those skilled in the art may flexibly set the type of the solution in the liquid storage tank 9 in practical application as long as the frosting of the outdoor heat exchanger 2 is facilitated.
In a preferred embodiment, the step of "raising the frequency of the compressor 3" includes: the frequency of the compressor 3 is gradually increased to the highest frequency. Under a normal heating working condition, the compressor 3 operates at a heating frequency, and after entering an outdoor self-cleaning mode, the compressor 3 is quickly increased to the maximum frequency in a short time, so that a preparation stage before frosting is completed. The frequency of the compressor 3 can be gradually increased in a linear relationship or in a nonlinear relationship, and a person skilled in the art can flexibly set the frequency increasing mode of the compressor 3 in practical application, as long as the frequency of the compressor 3 is increased to the highest frequency, and further the outdoor heat exchanger 2 is rapidly frosted in the frosting process. In another preferred embodiment, the step of "increasing the voltage of the indoor solution film 6 and the voltage of the outdoor solution film 7" may specifically include: the voltage of the indoor solution membrane 6 and the voltage of the outdoor solution membrane 7 were gradually raised to the highest voltage. Under the normal heating working condition, the voltage of the indoor solution membrane 6 and the voltage of the outdoor solution membrane 7 are both the heating working condition voltages, and after the outdoor self-cleaning mode is started, the voltage of the indoor solution membrane 6 and the voltage of the outdoor solution membrane 7 are rapidly increased, namely, the water vapor absorption amount of the indoor solution membrane 6 and the water vapor absorption amount of the outdoor solution membrane 7 are rapidly increased, so that the preparation stage before frosting is completed. The gradual increase of the voltage of the indoor solution film 6 and the voltage of the outdoor solution film 7 may be a linear increase or a nonlinear increase of the voltages of the indoor solution film 6 and the outdoor solution film 7, and those skilled in the art can flexibly set the voltage increase modes of the voltages of the indoor solution film 6 and the outdoor solution film 7 in practical applications, as long as the voltages of the indoor solution film 6 and the outdoor solution film 7 are increased to the maximum voltage, and further the outdoor heat exchanger 2 is rapidly frosted in the frosting process. It is further preferable that the above-mentioned "step of raising the frequency of the compressor 3", "step of reducing the opening degree of the electronic expansion valve 4", and "step of raising the voltage of the indoor solution film 6 and the voltage of the outdoor solution film 7" are performed simultaneously, that is, before entering the frosting mode, the preparation for frosting is completed as quickly as possible, and the time of the frosting preparation stage is shortened, so as to reduce the time of self-cleaning of the outdoor heat exchanger 2 of the air conditioner as a whole, and improve the self-cleaning efficiency.
Preferably, simultaneously with or after the step of "heating the outdoor heat exchanger 2", the self-cleaning control method of the present invention further comprises: the outdoor fan of the air conditioner is operated at high speed. The heating of the outdoor heat exchanger 2 is to make the outdoor heat exchanger 2 defrost quickly, and in the defrosting process, the air flow on the surface of the frost can be accelerated by making the outdoor fan run at a high speed, so that the defrosting is faster, and the defrosting effect and the defrosting efficiency are improved. It should be noted that the high-speed operation of the outdoor fan in the present invention means that the outdoor fan is operated at a higher rotation speed than a normal heating fan (preferably, the outdoor fan is operated at the highest heating rotation speed). Specifically, the step of providing an electric heating pipe on the outdoor heat exchanger 2 and "heating the outdoor heat exchanger 2" includes: the outdoor heat exchanger 2 is heated by connecting high voltage to the electric heating pipe. In practical application, high voltage is applied to an electric heating tube (preferably, the hairpin tube 12) to heat the electric heating tube, so that the outdoor heat exchanger 2 is heated in a short distance, and frost on the outdoor heat exchanger 2 is melted at the highest speed.
In a preferred embodiment, the self-cleaning control method further includes, in parallel with the step of "up-converting the compressor 3", the step of: the rotating speed of an outdoor fan of the air conditioner is reduced. By reducing the rotation speed of the outdoor fan of the air conditioner, the surface of the outdoor heat exchanger 2 can be frosted more quickly, and thus the frosting efficiency is improved.
Preferably, the self-cleaning control method of the present invention further includes, simultaneously with the above-mentioned step of "raising the voltage of the indoor solution membrane 6 and the voltage of the outdoor solution membrane 7": the rotating speed of the liquid pump 8 is increased, the flowing of the solution in the solution circulating system can be accelerated through the rotating speed of the liquid pump 8, and therefore the water vapor can be continuously restored to the outdoor heat exchanger 2, namely, the outdoor heat exchanger 2 is fully humidified, the rapid frosting of the outdoor heat exchanger 2 is achieved, and the frosting efficiency is improved. In a preferred embodiment, the step of "increasing the rotation speed of the liquid pump 8" includes: the speed of the liquid pump 8 is gradually increased to the maximum speed. Under the normal heating working condition, the liquid pump 8 operates at the heating rotating speed, and after the outdoor self-cleaning mode is entered, the liquid pump 8 is rapidly increased to the highest rotating speed in a short time, so that the preparation stage before frosting is completed. The gradual increase of the rotation speed of the liquid pump 8 may be a linear increase of the rotation speed of the liquid pump 8, or a non-linear increase of the rotation speed of the liquid pump 8, and a person skilled in the art can flexibly set the rotation speed increase mode of the liquid pump 8 in practical application, as long as the rotation speed of the liquid pump 8 is increased to the highest rotation speed, so that the outdoor heat exchanger 2 is rapidly frosted in the frosting process.
The solution according to the invention is further elucidated below in connection with a most preferred embodiment. As shown in fig. 1 and 3, specifically, in the case that the air conditioner performs a heating operation, after the air conditioner receives an outdoor self-cleaning command, the compressor 3 increases the frequency V from the fast rising rate to the maximum frequency fmax allowed by cooling, the outdoor fan of the air conditioner decreases from Rao to Rao-min, the electronic expansion valve 4 is closed from the state b1 to the state b2, the indoor fan of the air conditioner stops, the rotation speed of the liquid pump 8 increases from Rs to Rs-max, the voltage of the indoor solution film 6 is regulated from Vn to Vn-max, the voltage of the outdoor solution film 7 is regulated from Vao to Vao-max, the hairpin pipe 12 of the outdoor unit is in a non-energized state, and the above time lasts for t, which is a preparation stage before frosting; after the preparation stage is finished, the outdoor heat exchanger 2 starts frosting for t1, and the stage is a frosting stage; after the frost is finished, the main control board of the air conditioner sends a refrigerant recovery command, firstly, the throttling element (comprising the electronic expansion valve 4, the stop valve, the capillary tube, the throttling short tube and the like) is quickly closed, the second electromagnetic valve 11 is closed after the preset time, the refrigerant recovery is finished, the refrigerant recovery stage is a refrigerant recovery stage, the frequency of the compressor 3 in the stage is the highest refrigeration frequency, the rotating speed of the outdoor fan is the lowest, the electronic expansion valve 4 is in a b2 state to a b3 state (namely in a closed state), the liquid pump 8 is powered off, the indoor solution membrane 6 is powered off, and the outdoor solution membrane 7 is powered off; defrosting is carried out, the high-voltage power is firstly switched on to heat the hairpin tube 12 to complete defrosting, and a large amount of defrosting water is used for carrying away dust and bacteria mixture on the surface of the outdoor heat exchanger 2 for t3; then the outdoor fan runs at a high speed for t4, so that the washing process of the outdoor heat exchanger 2 is finished; and finally, resetting the compressor 3, the outdoor fan, the indoor fan, the electronic expansion valve 4 and the like to return to the initial heating state before self-cleaning in the air conditioner for continuous operation for t5, so that defrosting is finished.
So far, the technical solutions of the present invention have been described in connection with the preferred embodiments shown in the drawings, but it is easily understood by those skilled in the art that the scope of the present invention is obviously not limited to these specific embodiments. Equivalent changes or substitutions of related technical features can be made by those skilled in the art without departing from the principle of the invention, and the technical scheme after the changes or substitutions can fall into the protection scope of the invention.

Claims (6)

1. A self-cleaning control method for the outdoor heat exchanger of air conditioner is characterized by that said air conditioner includes indoor heat exchanger, outdoor heat exchanger, compressor, electronic expansion valve and four-way valve, the described indoor heat exchanger, the described electronic expansion valve, the described outdoor heat exchanger, the described compressor and the described four-way valve are formed into a closed-loop refrigerant circulating system,
the air conditioner is characterized by further comprising an indoor solution film, an outdoor solution film, a liquid pump and a liquid storage tank, wherein the indoor solution film is arranged on the indoor heat exchanger, the outdoor solution film is arranged on the outdoor heat exchanger, the indoor solution film, the liquid storage tank, the outdoor solution film and the liquid pump form a closed-loop solution circulating system, and an electric heating pipe is arranged on the outdoor heat exchanger;
the self-cleaning control method comprises the following steps:
under the heating condition, gradually increasing the frequency of the compressor to the highest frequency, reducing the opening degree of the electronic expansion valve, and gradually increasing the voltage of the indoor solution film and the voltage of the outdoor solution film to the highest voltage, so that the outdoor heat exchanger is quickly frosted by utilizing the water absorbability and the electrification reducibility of the indoor solution film and the outdoor solution film;
after the outdoor heat exchanger is frosted, firstly closing the electronic expansion valve, and closing the electromagnetic valve at the low-pressure side of the compressor after a preset time so that all refrigerants in the refrigerant circulating system are recycled to one side of an indoor unit of the air conditioner;
the electric heating pipe is connected with high voltage to heat the outdoor heat exchanger, so that the outdoor heat exchanger is defrosted and cleaned.
2. The self-cleaning control method of claim 1, wherein, simultaneously with or after the step of "heating the outdoor heat exchanger by turning on a high voltage to the electric heating tube", the self-cleaning control method further comprises:
and enabling an outdoor fan of the air conditioner to run at a high speed.
3. The self-cleaning control method of claim 1, wherein the liquid pump is a water pump and the liquid storage tank is a water storage tank.
4. The self-cleaning control method as claimed in any one of claims 1 to 3, wherein, simultaneously with the step of gradually increasing the frequency of the compressor to a highest frequency, the self-cleaning control method further comprises:
and reducing the rotating speed of an outdoor fan of the air conditioner.
5. The self-cleaning control method according to any one of claims 1 to 3, wherein, simultaneously with the step of "gradually raising the voltage of the indoor-solution film and the voltage of the outdoor-solution film to a highest voltage", the self-cleaning control method further comprises:
the rotational speed of the liquid pump is increased.
6. The self-cleaning control method of claim 5, wherein the step of "increasing the rotational speed of the liquid pump" specifically comprises:
and gradually increasing the rotation speed of the liquid pump to the highest rotation speed.
CN201810849189.XA 2018-07-28 2018-07-28 Self-cleaning control method for air conditioner Active CN110762814B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810849189.XA CN110762814B (en) 2018-07-28 2018-07-28 Self-cleaning control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810849189.XA CN110762814B (en) 2018-07-28 2018-07-28 Self-cleaning control method for air conditioner

Publications (2)

Publication Number Publication Date
CN110762814A CN110762814A (en) 2020-02-07
CN110762814B true CN110762814B (en) 2022-10-28

Family

ID=69328506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810849189.XA Active CN110762814B (en) 2018-07-28 2018-07-28 Self-cleaning control method for air conditioner

Country Status (1)

Country Link
CN (1) CN110762814B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010089909A (en) * 1998-12-07 2001-10-17 구자홍 Device and method for defrosting of air conditioner
JP2012052679A (en) * 2010-08-31 2012-03-15 Panasonic Corp Outdoor unit of air conditioner
CN106152413A (en) * 2016-07-27 2016-11-23 青岛海尔空调器有限总公司 Air-conditioning internal-external machine cleaning method
CN106594976A (en) * 2016-11-11 2017-04-26 青岛海尔空调器有限总公司 Air conditioner indoor/outdoor unit cleaning method
CN206361857U (en) * 2016-09-23 2017-07-28 青岛海尔智能技术研发有限公司 Heat reclamation type embrane method solution heat pump system
CN107152746A (en) * 2016-03-03 2017-09-12 武汉海尔电器股份有限公司 A kind of method and apparatus for controlling indoor humidity
CN107504640A (en) * 2017-08-21 2017-12-22 广东美的制冷设备有限公司 Air-conditioning system, air conditioner and refrigerant recovering control method
CN107525216A (en) * 2017-07-26 2017-12-29 青岛海尔空调器有限总公司 Air conditioner and its control method with self-cleaning function
CN107975991A (en) * 2017-11-21 2018-05-01 珠海格力电器股份有限公司 Dedusting control method and air-conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120121A (en) * 1993-10-29 1995-05-12 Daikin Ind Ltd Drive controller for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010089909A (en) * 1998-12-07 2001-10-17 구자홍 Device and method for defrosting of air conditioner
JP2012052679A (en) * 2010-08-31 2012-03-15 Panasonic Corp Outdoor unit of air conditioner
CN107152746A (en) * 2016-03-03 2017-09-12 武汉海尔电器股份有限公司 A kind of method and apparatus for controlling indoor humidity
CN106152413A (en) * 2016-07-27 2016-11-23 青岛海尔空调器有限总公司 Air-conditioning internal-external machine cleaning method
CN206361857U (en) * 2016-09-23 2017-07-28 青岛海尔智能技术研发有限公司 Heat reclamation type embrane method solution heat pump system
CN106594976A (en) * 2016-11-11 2017-04-26 青岛海尔空调器有限总公司 Air conditioner indoor/outdoor unit cleaning method
CN107525216A (en) * 2017-07-26 2017-12-29 青岛海尔空调器有限总公司 Air conditioner and its control method with self-cleaning function
CN107504640A (en) * 2017-08-21 2017-12-22 广东美的制冷设备有限公司 Air-conditioning system, air conditioner and refrigerant recovering control method
CN107975991A (en) * 2017-11-21 2018-05-01 珠海格力电器股份有限公司 Dedusting control method and air-conditioning system

Also Published As

Publication number Publication date
CN110762814A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110762719A (en) Self-cleaning control method for air conditioner
CN110762703B (en) Self-cleaning control method for air conditioner
CN110762696A (en) Self-cleaning control method for air conditioner
CN110762881A (en) Self-cleaning control method for air conditioner
CN110762722A (en) Self-cleaning control method for air conditioner
CN110762879A (en) Self-cleaning control method for air conditioner
CN110762814B (en) Self-cleaning control method for air conditioner
CN110762763B (en) Self-cleaning control method for air conditioner
CN110762765B (en) Self-cleaning control method for air conditioner
CN110762701B (en) Self-cleaning control method for air conditioner
CN110762707B (en) Self-cleaning control method for air conditioner
CN110762727B (en) Self-cleaning control method for air conditioner
CN110762759B (en) Self-cleaning control method for air conditioner
CN110762704B (en) Self-cleaning control method for air conditioner
CN110762705B (en) Self-cleaning control method for air conditioner
CN110762726A (en) Self-cleaning control method for air conditioner
CN110762751A (en) Self-cleaning control method for air conditioner
CN110762884A (en) Self-cleaning control method for air conditioner
CN110762764A (en) Self-cleaning control method for air conditioner
CN110762886A (en) Self-cleaning control method for air conditioner
CN110762749A (en) Self-cleaning control method for air conditioner
CN110762878A (en) Self-cleaning control method for air conditioner
CN110762882A (en) Self-cleaning control method for air conditioner
CN110762709A (en) Self-cleaning control method for air conditioner
CN110762724A (en) Self-cleaning control method for air conditioner

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220907

Address after: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

Applicant after: Haier Zhijia Co.,Ltd.

Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant