CN110761932A - A roller type kinetic energy converter - Google Patents
A roller type kinetic energy converter Download PDFInfo
- Publication number
- CN110761932A CN110761932A CN201911153828.XA CN201911153828A CN110761932A CN 110761932 A CN110761932 A CN 110761932A CN 201911153828 A CN201911153828 A CN 201911153828A CN 110761932 A CN110761932 A CN 110761932A
- Authority
- CN
- China
- Prior art keywords
- rotor
- upflow
- plate
- kinetic energy
- plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/12—Blades; Blade-carrying rotors
- F03B3/14—Rotors having adjustable blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/08—Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
- F03B13/264—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/16—Stators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种水流动能转换设备,具体是一种滚筒式动能转换机。The invention relates to a water flow energy conversion device, in particular to a drum type kinetic energy conversion machine.
背景技术Background technique
现有利用水流能发电的动能转换设备,都属于涡(叶)轮式水流动能转换设备,其原理与风力发电的风能转换设备原理基本一致,水流的推力方向与涡(叶)轮的转动方向垂直,叶片以一定的角度接受水流推力,有效受力面积小,能量损耗大,存在动能转化效率低、设备结构复杂等不足。The existing kinetic energy conversion equipment using water flow energy to generate electricity belongs to the vortex (blade) wheel type water flow energy conversion equipment, and its principle is basically the same as that of the wind energy conversion equipment for wind power generation. The direction is vertical, the blade receives the thrust of the water flow at a certain angle, the effective force area is small, the energy loss is large, and there are shortcomings such as low kinetic energy conversion efficiency and complex equipment structure.
发明内容SUMMARY OF THE INVENTION
发明目的:Purpose of invention:
为了克服现有水流动能转换设备技术中能量损耗大、动能转化效率低、结构复杂等不足,本发明提供一种滚筒式动能转换机,使水流的推力方向与迎流板的转动方向和转子的旋转方向一致,迎流板全面受力,动能损耗大大降低,动能转化效率大大提高,设备结构相对简单。In order to overcome the disadvantages of large energy loss, low kinetic energy conversion efficiency and complex structure in the existing water flow energy conversion equipment technology, the present invention provides a drum type kinetic energy conversion machine, which makes the thrust direction of the water flow and the rotation direction of the upflow plate and the rotor The rotation direction of the machine is the same, the upflow plate is fully stressed, the kinetic energy loss is greatly reduced, the kinetic energy conversion efficiency is greatly improved, and the equipment structure is relatively simple.
技术方案:Technical solutions:
一种滚筒式动能转换机,转子通过转子轴安装在外壳上,转子垂直安装在转子仓内;迎流板与上下转子外板的边缘相连,迎流板垂直安装在上下转子外板之间。The utility model relates to a drum type kinetic energy converter. The rotor is installed on the casing through the rotor shaft, and the rotor is installed vertically in the rotor chamber. The upflow plate is connected with the edges of the upper and lower rotor outer plates, and the upflow plate is vertically installed between the upper and lower rotor outer plates.
进一步的,上下转子外板边缘周向均匀设置有若干个迎流板,迎流板通过迎流板轴与上下转子外板相连,迎流板垂直安装在上下转子外板之间;转子轴穿过上下转子外板的中心并垂直固定在上下转子外板上;转子通过转子轴与外壳上下面连接,转子垂直安装在外壳的转子仓内。Further, a number of upflow plates are evenly arranged on the periphery of the upper and lower rotor outer plates, the upflow plates are connected with the upper and lower rotor outer plates through the upflow plate shaft, and the upflow plates are vertically installed between the upper and lower rotor outer plates; It passes through the center of the upper and lower rotor outer plates and is vertically fixed on the upper and lower rotor outer plates; the rotor is connected with the upper and lower sides of the casing through the rotor shaft, and the rotor is vertically installed in the rotor compartment of the casing.
进一步的,上下转子外板边缘上下对应位置安装有若干对迎流板护轨,迎流板护轨与开启时的迎流板贴合;转子滚筒的外周设有若干个迎流板座,迎流板座与闭合时的迎流板相贴合。Further, several pairs of upflow plate guard rails are installed at the upper and lower corresponding positions of the upper and lower rotor outer plates, and the upflow plate guard rails are fitted with the upflow plates when they are opened; The flow plate seat is abutted with the upflow plate when it is closed.
进一步的,上下转子外板边缘周向均匀设置有四个迎流板,上下转子外板边缘对应位置安装四对迎流板护轨,迎流板护轨与开启时的迎流板贴合。Further, four upflow plates are evenly arranged at the edges of the upper and lower rotor outer plates in the circumferential direction, and four pairs of upflow plate guard rails are installed at corresponding positions of the upper and lower rotor outer plates, and the upflow plate guard rails fit with the open upflow plates.
进一步的,上下转子外板边缘周向均匀设置有四个迎流板,转子滚筒外周设置有四个迎流板座,迎流板座与闭合时的迎流板贴合。Further, four upflow plates are evenly arranged on the periphery of the outer plates of the upper and lower rotors, and four upflow plate seats are arranged on the outer periphery of the rotor drum, and the upflow plate seats are fitted with the upflow plates when they are closed.
进一步的,转子仓左右两端是转子仓口,转子仓通过左端的转子仓口与弧形的导流通道一端相通,导流通道另一端与外界相通;转子仓右端的转子仓口与外界相通。Further, the left and right ends of the rotor compartment are the rotor compartment openings, the rotor compartment is communicated with one end of the arc-shaped diversion channel through the rotor compartment opening at the left end, and the other end of the diversion channel is communicated with the outside world; the rotor compartment opening at the right end of the rotor compartment is communicated with the outside world. .
进一步的,转子仓左侧的导流通道通过左端的转子仓口与转子仓相连相通,转子仓右端的转子仓口与外界相通;左右两端转子仓口之间在转子仓内进流一侧形成一个α角度的弧面区域。Further, the diversion channel on the left side of the rotor chamber is connected with the rotor chamber through the rotor chamber port at the left end, and the rotor chamber port at the right end of the rotor chamber is communicated with the outside world; A cambered area that forms an alpha angle.
进一步的,转子仓左右两侧的导流通道,与转子仓的中心呈对称结构,左侧的导流通道一端与外界相通,另一端通过左端的转子仓口与转子仓相通,右侧的导流通道通过右端的转子仓口与转子仓相通。Further, the diversion channels on the left and right sides of the rotor compartment have a symmetrical structure with the center of the rotor compartment. One end of the diversion channel on the left is communicated with the outside world, and the other end is communicated with the rotor compartment through the rotor compartment port at the left end. The flow channel communicates with the rotor chamber through the rotor chamber port at the right end.
进一步的,左右两侧的导流通道通过转子仓左右两端的转子仓口与转子仓相连相通,转子仓左右两端转子仓口之间在转子仓内形成两个α角度的弧面区域。Further, the diversion channels on the left and right sides are connected with the rotor chamber through the rotor chamber openings at the left and right ends of the rotor chamber, and two α-angle arc areas are formed in the rotor chamber between the rotor chamber openings at the left and right ends of the rotor chamber.
进一步的,α角度的弧面区域中α>360°/迎流板的个数。Further, α>360°/the number of upflow plates in the arc surface area of the angle α.
优点及效果:Advantages and Effects:
本发明的有益效果是,动能损耗大大降低,动能转化效率大大提高,设备结构简单。The beneficial effects of the invention are that the kinetic energy loss is greatly reduced, the kinetic energy conversion efficiency is greatly improved, and the equipment structure is simple.
附图说明Description of drawings
图1为单向动能转换机三维立体示意图;Figure 1 is a three-dimensional schematic diagram of a one-way kinetic energy converter;
图2为单向动能转换机二维平面示意图;Fig. 2 is a two-dimensional schematic plan view of a one-way kinetic energy converter;
图3为双向动能转换机三维立体示意图;3 is a three-dimensional schematic diagram of a two-way kinetic energy converter;
图4为双向动能转换机二维平面示意图;Fig. 4 is a two-dimensional schematic plan view of a two-way kinetic energy converter;
图5为转子三维立体示意图;5 is a three-dimensional schematic diagram of a rotor;
图6为转子二维平面示意图;Fig. 6 is a two-dimensional plane schematic diagram of a rotor;
图7为单向动能转换机外壳三维立体示意图;FIG. 7 is a three-dimensional schematic diagram of a casing of a one-way kinetic energy converter;
图8为单向动能转换机外壳二维平面示意图;Fig. 8 is a two-dimensional schematic plan view of the shell of the one-way kinetic energy converter;
图9为双向动能转换机外壳三维立体示意图;FIG. 9 is a three-dimensional schematic diagram of a casing of a two-way kinetic energy converter;
图10为双向动能转换机外壳二维平面示意图;Fig. 10 is a two-dimensional schematic plan view of a two-way kinetic energy converter shell;
图11为迎流板三维立体示意图;Figure 11 is a three-dimensional schematic diagram of an upflow plate;
图12为迎流板二维平面示意图。Fig. 12 is a two-dimensional plan view of the upflow plate.
附图标记说明:Description of reference numbers:
1.外壳;2.导流通道;3.转子仓;4.转子仓口;5.α角度的弧面区域;6.转子;7.转子滚筒;8.转子外板;9.迎流板座;10.迎流板护轨;11.转子轴;12.迎流板;13.迎流板轴。1. Shell; 2. Diversion channel; 3. Rotor compartment; 4. Rotor compartment mouth; 5. Arc surface area of α angle; 6. Rotor; 7. Rotor drum; 10. Upward flow plate guard rail; 11. Rotor shaft; 12. Upward flow plate; 13. Upward flow plate shaft.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的说明:The present invention will be further described below in conjunction with the accompanying drawings:
如图1、图2、图3、图4所示,一种滚筒式动能转换机,包括外壳1和转子6。如图7、图8、图9、图10所示,外壳1内部结构包括导流通道2和转子仓3;转子仓3左右两端是转子仓口4,转子仓3通过转子仓口4与导流通道2相连相通;转子仓3左右两端转子仓口4之间形成α角度的弧面区域5;其中,α角度的弧面区域中α大于360°除以迎流板的个数,即α>360°/迎流板的个数。如图5、图6、图11、图12所示,转子6包括转子滚筒7、上下转子外板8、转子轴11和若干个迎流板12;转子滚筒7两端设有上下转子外板8;转子轴11穿过上下转子外板8的中心垂直固定安装在上下转子外板8上;迎流板12通过迎流板轴13与上下转子外板8边缘(指靠近边沿的区域,下同)相连接,垂直安装在上下转子外板8之间,迎流板轴13通过轴承安装在上下转子外板8上。如图1、图2、图3、图4所示,转子6通过转子轴11与外壳1上、下面相连接,垂直安装在转子仓3内,转子轴11通过轴承安装在外壳1上、下面。As shown in FIG. 1 , FIG. 2 , FIG. 3 , and FIG. 4 , a drum type kinetic energy converter includes a
水流从导流通道2进入,经过转子仓3一端的转子仓口4进入转子仓3,推动进入转子仓口4区域的迎流板12向闭合方向转动;迎流板12进入α角度的弧面区域5时,迎流板12与迎流板座9贴合,达到完全闭合状态;在α角度的弧面区域5内,水流以垂直方向推动迎流板12,迎流板12全面接受水流推力,在水流的推力作用下,迎流板12带动转子6旋转,转子轴11随转子6旋转并输出动能;此时,水流的推力方向、迎流板12的转动方向和转子6的旋转方向三者保持一致;当迎流板12转出α角度的弧面区域5进入转子仓3另一端的转子仓口4区域时,迎流板12正面推动其转动的水流经转子仓口4流出,迎流板12正面的水流推力逐渐消失,受其背面水阻力作用,迎流板12向开启方向转动,直至与迎流板护轨10贴合达到完全开启状态;迎流板12完全开启随转子6转动,再次进入进流一端转子仓口4区域时,再次受水流推动向闭合方向转动,开始下一个循环运动。The water flow enters from the
如图5、图6所示,迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间,受迎流板座9和迎流板护轨10限制,迎流板12可以在迎流板座9和迎流板护轨10之间往复转动;迎流板12完全闭合时与迎流板座9贴合,迎流板12完全开启时与迎流板护轨10贴合。As shown in Figures 5 and 6, the
如图1、图2、图3、图4所示,迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间;受迎流板座9和迎流板护轨10限制,迎流板12可以在迎流板座9和迎流板护轨10之间往复转动;当迎流板12进入进流一端转子仓口4区域时,受水流的推力,迎流板12及时向闭合方向转动;当迎流板12进入出流一端转子仓口4区域时,受迎流板12背面水阻力作用,迎流板12及时向开启方向转动。As shown in Figure 1, Figure 2, Figure 3, Figure 4, the
如图1、图2、图3、图4所示,导流通道2通过转子仓口4与转子仓3相连相通,导流通道2为弧形,按进流方向截面积由大变小。使通过导流通道2、转子仓口4到达α角度的弧面区域5的水流速度加快,水流方向发生变化;在α角度的弧面区域5内,水流垂直推动迎流板12。As shown in Figure 1, Figure 2, Figure 3, Figure 4, the
如图1、图2、图3、图4所示,迎流板12沿上下转子外板8边缘均匀分布,垂直安装在上下转子外板8之间,相邻迎流板12之间的夹角等于360°/迎流板12的个数,转子仓3内的α角度的弧面区域5中的α大于360°/迎流板12的个数;使始终至少有一个迎流板12处于α角度的弧面区域5内,始终至少有一个迎流板12不间断地接受水流的推力,持续地带动转子6旋转。As shown in Figure 1, Figure 2, Figure 3, Figure 4, the
如图1、图2、图3、图4所示,在α角度的弧面区域5内,迎流板12完全闭合,水流垂直推动迎流板12,迎流板12全面接受水流推力,迎流板12所受推力“最大”;当迎流板12转出α角度的弧面区域5后,再次进入进流一端转子仓口4区域前,迎流板12只是侧面受到水阻力,受力面积小,所受到的阻力“最小”;迎流板12所受的推力远大于所受的阻力,保持转子6持续旋转并输出动能。As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, in the
实施例1:Example 1:
一种单向滚筒式动能转换机。A one-way drum type kinetic energy converter.
单向滚筒式动能转换机适用于单向水流的动能转换,例如,适合安装于河流、水库和海洋中单向流动的海流环境。目前,世界最大的海流能发电机组装机容量是3.4兆瓦。经初步计算,本发明在海流环境中,单机装机容量可以达到10兆瓦以上;在河流、水库环境中,单机装机容量可以更大。The one-way drum type kinetic energy converter is suitable for the kinetic energy conversion of one-way water flow, for example, it is suitable for installation in the environment of one-way flow in rivers, reservoirs and oceans. Currently, the world's largest installed capacity of ocean current energy generators is 3.4 MW. Preliminary calculations show that the present invention can achieve a single-machine installed capacity of more than 10 MW in the ocean current environment; and can have a larger single-machine installed capacity in the river and reservoir environment.
如图1、图2所示,单向动能转换机包括外壳1和转子6。如图7、图8所示,外壳1内部结构包括导流通道2和转子仓3;转子仓3左右两端是转子仓口4;导流通道2一端与外界相通,另一端通过左端的转子仓口4与转子仓3相连相通;右端的转子仓口4与外界相通;转子仓3左右两端的转子仓口4之间,在转子仓3内进流一侧形成一个α角度的弧面区域5,本实施例1采用四个迎流板12的方案,α角度的弧面区域5中的α取值>90°。As shown in FIG. 1 and FIG. 2 , the one-way kinetic energy converter includes a
如图5、图6、图11、图12所示,转子6包括转子滚筒7、上下转子外板8、转子轴11和四个迎流板12;转子滚筒7的两端设有上下转子外板8;转子轴11穿过上下转子外板8的中心垂直固定安装在上下转子外板8上;四个迎流板12呈90°均匀分布,通过迎流板轴13与上下转子外板8边缘(指靠近边沿的区域,下同)相连接,垂直安装在上下转子外板8之间;转子滚筒7外周与四个迎流板12对应装有四个迎流板座9,迎流板座9为长条形状,其长度和迎流板12与迎流板座9贴合一边的边长相等,四个迎流板座9呈90°夹角均匀分布,其按照与上下转子外板8垂直的方向固定安装在转子滚筒的外周,迎流板座9与闭合时的迎流板12贴合;上下转子外板8边缘上下对应位置成对装有四对迎流板护轨10,迎流板护轨10为圆弧形状,其弧形和上下转子外板8的边沿、迎流板12与迎流板护轨10贴合的弧形边为同心弧,四对迎流板护轨10呈90°夹角均匀分布,迎流板护轨10与开启时的迎流板12贴合。As shown in Figure 5, Figure 6, Figure 11, Figure 12, the
如图1、图2所示,转子6通过转子轴11与外壳1上、下面相连接,垂直安装在转子仓3内。As shown in FIGS. 1 and 2 , the
水流从导流通道2进入,经过左端的转子仓口4进入转子仓3,推动进入转子仓口4区域的迎流板12向闭合方向转动;迎流板12进入α角度的弧面区域5时,迎流板12与迎流板座9贴合,达到完全闭合状态;在α角度的弧面区域5内,水流以垂直方向推动迎流板12,迎流板12全面接受水流推力,在水流的推力作用下,迎流板12带动转子6旋转,转子轴11随转子6旋转并输出动能;此时,水流的推力方向、迎流板12的转动方向和转子6的旋转方向三者保持一致;当迎流板12转出α角度的弧面区域5进入右端的转子仓口4区域时,迎流板12正面推动其转动的水流从转子仓口4流出,迎流板12正面的水流推力逐渐消失,受其背面水阻力作用,迎流板12向开启方向转动,直至与迎流板护轨10贴合达到完全开启状态;迎流板12完全开启随转子6转动,再次进入左端转子仓口4区域时,再次受水流推力作用向闭合方向转动,开始下一个循环运动。The water flow enters from the
四个迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间,受迎流板座9和迎流板护轨10限制,每个迎流板12可以在相应的迎流板座9和迎流板护轨10之间往复转动;迎流板12完全闭合时与相应的迎流板座9贴合,迎流板12完全开启时与相应的迎流板护轨10贴合。The four
四个迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间;受迎流板座9和迎流板护轨10限制,每个迎流板12可以在相应的迎流板座9和迎流板护轨10之间往复转动;当迎流板12进入左端转子仓口4区域时,受水流的推力,迎流板12及时向闭合方向转动;当迎流板12进入右端转子仓口4区域时,受迎流板12背面水阻力作用,迎流板12及时向开启方向转动。The four
导流通道2通过左端的转子仓口4与转子仓3相连相通,导流通道2为弧形,按进流方向截面积由大变小。使到达α角度的弧面区域5的水流速度加快,水流方向发生变化;在α角度的弧面区域5内,水流垂直推动迎流板12。The
如图1、图2所示,四个迎流板12沿上下转子外板8边缘均匀分布,垂直安装在上下转子外板8之间,相邻迎流板12之间的夹角为90°,转子仓3内的α角度的弧面区域5的α大于90°;使始终至少有一个迎流板12处于α角度的弧面区域5内,始终至少有一个迎流板12不间断地接受水流的推力,持续地带动转子6旋转。As shown in Figures 1 and 2, the four
在α角度的弧面区域5内,迎流板12完全闭合,水流垂直推动迎流板12,迎流板12全面接受水流推力,迎流板12所受水流推力“最大”;当迎流板12转出α角度的弧面区域5后,再次进入转子仓3左端转子仓口4区域之前,迎流板12只是侧面受到水阻力,受力面积小,迎流板12所受到的阻力“最小”;迎流板12所受的推力远大于所受的阻力,保持转子6持续旋转并输出动能。In the
实施例2:Example 2:
一种双向滚筒式动能转换机。A two-way drum type kinetic energy converter.
在海洋中,现有利用海流能发电的海(水)流动能转换设备,除了能量损耗大、动能转化效率低、设备结构复杂外,还存在安装难度大、单机装机容量小等缺陷。为此,本发明还设计了一种双向滚筒式动能转换机。在海洋潮汐流的环境中,根据潮汐流水流方向呈相反方向规律性变化的特性,双向滚筒式动能转换机可以从相反的两个方向接受海(水)流的动能进行转换。目前,世界最大海流能发电机组装机容量是3.4兆瓦。经初步计算,在海流环境中,本发明单机装机容量可以达到10兆瓦以上。In the ocean, the existing sea (water) mobile energy conversion equipment that uses ocean current energy to generate electricity, in addition to large energy loss, low kinetic energy conversion efficiency, and complex equipment structure, also has shortcomings such as difficult installation and small installed capacity of a single machine. To this end, the present invention also designs a bidirectional drum type kinetic energy converter. In the environment of ocean tidal flow, according to the characteristic that the direction of the tidal flow changes regularly in the opposite direction, the two-way drum kinetic energy converter can accept the kinetic energy of the sea (water) flow from two opposite directions for conversion. At present, the world's largest installed capacity of ocean current energy generators is 3.4 MW. Preliminary calculation shows that in the ocean current environment, the installed capacity of a single machine of the present invention can reach more than 10 megawatts.
如图3、图4所示,双向滚筒式动能转换机包括外壳1和转子6。如图9、图10所示,外壳1的内部结构两侧都设置了导流通道2,两侧的导流通道2与转子仓3的中心呈对称结构;左侧的导流通道2的一端与外界相通,另一端通过左端的转子仓口4与转子仓3相连相通,转子仓3通过右端的转子仓口4与右侧的导流通道2相连相通;左右两端的转子仓口4之间形成两个α角度的弧面区域5,本实施例2采用四个迎流板的方案,α角度的弧面区域5中的α取值>90°。As shown in FIGS. 3 and 4 , the bidirectional drum kinetic energy converter includes a
如图5、图6、图11、图12所示,转子6包括转子滚筒7、上下转子外板8、转子轴11和四个迎流板12;转子滚筒7两端设有上下转子外板8;转子轴11穿过上下转子外板8的中心垂直固定安装在上下转子外板8上;四个迎流板12呈90°均匀分布,通过迎流板轴13与上下转子外板8边缘(指靠近边沿的区域,下同)相连接,垂直安装在上下转子外板8之间;转子滚筒7外周与四个迎流板12对应装有四个迎流板座9,四个迎流板座9呈90°夹角均匀分布,迎流板座9与闭合时的迎流板12贴合;上下转子外板8边缘上下对应位置成对装有四对迎流板护轨10,四对迎流板护轨10呈90°夹角均匀分布,迎流板护轨10与开启时的迎流板12贴合。As shown in Figures 5, 6, 11 and 12, the
如图3、图4所示,转子6通过转子轴11与外壳1上、下面相连接,垂直安装在转子仓3内。As shown in FIGS. 3 and 4 , the
海(水)流从一侧的导流通道2进入,经过转子仓3进流一端的转子仓口4进入转子仓3,推动进入转子仓口4区域的迎流板12向闭合方向转动;迎流板12进入α角度的弧面区域5时,迎流板12与迎流板座9贴合,达到完全闭合状态;在α角度的弧面区域5内,海(水)流以垂直方向推动迎流板12,迎流板12全面接受海(水)流推力,在海(水)流的推力作用下,迎流板12带动转子6旋转,转子轴11随转子6旋转并输出动能;此时,海(水)流的推力方向、迎流板12的转动方向和转子6的旋转方向三者保持一致;当迎流板12转出α角度的弧面区域5进入转子仓3出流一端的转子仓口4区域时,迎流板12正面推动其转动的海(水)流经转子仓3出流一端转子仓口4从导流通道2流出,迎流板12正面的海(水)流推力逐渐消失,受其背面水阻力作用,迎流板12向开启方向转动,直至与迎流板护轨10贴合达到完全开启状态;迎流板12完全开启随转子6转动,迎流板12再次进入进流一端转子仓口4区域时,再次受海(水)流推动向闭合方向转动,开始下一个循环运动。The sea (water) flow enters from the diversion channel 2 on one side, enters the rotor chamber 3 through the rotor chamber port 4 at the inlet end of the rotor chamber 3, and pushes the upflow plate 12 entering the area of the rotor chamber port 4 to rotate in the closing direction; When the flow plate 12 enters the arc surface area 5 of the α angle, the upstream plate 12 is attached to the upstream plate seat 9 to achieve a completely closed state; in the arc surface area 5 of the α angle, the sea (water) current is pushed in a vertical direction The upstream plate 12, the upstream plate 12 fully receives the thrust of the sea (water) current, under the action of the thrust of the sea (water) current, the upstream plate 12 drives the rotor 6 to rotate, and the rotor shaft 11 rotates with the rotor 6 and outputs kinetic energy; this When the thrust direction of the sea (water) flow, the rotation direction of the upflow plate 12 and the rotation direction of the rotor 6 are consistent; When the rotor chamber port 4 is in the area of the rotor chamber 4, the sea (water) that the upstream plate 12 pushes its rotation to flow through the rotor chamber 3 and the outflow end of the rotor chamber 4 flows out from the diversion channel 2, and the sea (water) on the front of the upstream plate 12 flows out. The thrust of the flow gradually disappears, and due to the water resistance on its back, the
如图5、图6所示,四个迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间,受迎流板座9和迎流板护轨10限制,每个迎流板12可以在相应的迎流板座9和迎流板护轨10之间往复转动;迎流板12完全闭合时与相应的迎流板座9贴合,迎流板12完全开启时与相应的迎流板护轨10贴合。As shown in Figures 5 and 6, the four
四个迎流板12通过迎流板轴13与上下转子外板8边缘相连接,垂直安装在上下转子外板8之间;受迎流板座9和迎流板护轨10限制,每个迎流板12可以在相应的迎流板座9和迎流板护轨10之间往复转动;当迎流板12进入转子仓3进流一端转子仓口4区域时,受海(水)流的推力,迎流板12及时向闭合方向转动;当迎流板12进入转子仓3出流一端转子仓口4区域时,受迎流板12背面水阻力作用,迎流板12及时向开启方向转动。The four
导流通道2通过转子仓3一端的转子仓口4与转子仓3相连相通,导流通道2为弧形,按进流方向截面积由大变小。使进入α角度的弧面区域5的海(水)流速度加快,海(水)流方向发生变化;在α角度的弧面区域5内,海(水)流垂直推动迎流板12。The
如图3、图4、图5、图6所示,四个迎流板12沿上下转子外板8边缘均匀分布,垂直安装在上下转子外板8之间,相邻迎流板12之间的夹角为90°,转子仓3内的α角度的弧面区域5的α大于90°;使始终至少有一个迎流板12处于α角度的弧面区域5内,始终至少有一个迎流板12不间断地接受海(水)流的推力,持续地带动转子6旋转。As shown in Figure 3, Figure 4, Figure 5, Figure 6, the four
在α角度的弧面区域5内,迎流板12完全闭合,海(水)流垂直推动迎流板12,迎流板12全面接受海(水)流推力,迎流板12所受海(水)流推力“最大”;当迎流板12转出α角度的弧面区域5后,再次进入进流一端转子仓口4区域之前,迎流板12只是侧面受到水阻力,受力面积小,迎流板12所受到的阻力“最小”;迎流板12所受的推力远大于所受的阻力,保持转子6持续旋转并输出动能。In the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019110643768 | 2019-11-04 | ||
CN201911064376 | 2019-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110761932A true CN110761932A (en) | 2020-02-07 |
Family
ID=69339494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911153828.XA Pending CN110761932A (en) | 2019-11-04 | 2019-11-22 | A roller type kinetic energy converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110761932A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114109709A (en) * | 2021-10-18 | 2022-03-01 | 潍坊新力蒙水产技术有限公司 | Reinforcing device for bidirectional energy-gathering hydroelectric power generation device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2461983A (en) * | 2008-07-23 | 2010-01-27 | Harold Birkett | Water turbine with unidirectional rotation |
FR2976979A1 (en) * | 2011-06-23 | 2012-12-28 | Saunier Christian Georges Gerard | System for converting kinetic energy of aquatic currents naturally available across water in e.g. oceans, to rotation torque, has rotor rotated to cause flow of current to exert reverse pressure on blades to automatically open blades |
CN203130331U (en) * | 2013-03-29 | 2013-08-14 | 三峡大学 | Tangential flow passage type water turbine |
WO2014109450A1 (en) * | 2013-01-14 | 2014-07-17 | Lee Gang Hyeon | Tidal power generation apparatus |
CN106981948A (en) * | 2017-05-26 | 2017-07-25 | 彭金富 | A kind of Magnetic drive generator and electricity generation system |
CN210948969U (en) * | 2019-11-04 | 2020-07-07 | 大连宏立新能源科技有限公司 | Drum-type kinetic energy conversion machine |
-
2019
- 2019-11-22 CN CN201911153828.XA patent/CN110761932A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2461983A (en) * | 2008-07-23 | 2010-01-27 | Harold Birkett | Water turbine with unidirectional rotation |
FR2976979A1 (en) * | 2011-06-23 | 2012-12-28 | Saunier Christian Georges Gerard | System for converting kinetic energy of aquatic currents naturally available across water in e.g. oceans, to rotation torque, has rotor rotated to cause flow of current to exert reverse pressure on blades to automatically open blades |
WO2014109450A1 (en) * | 2013-01-14 | 2014-07-17 | Lee Gang Hyeon | Tidal power generation apparatus |
CN203130331U (en) * | 2013-03-29 | 2013-08-14 | 三峡大学 | Tangential flow passage type water turbine |
CN106981948A (en) * | 2017-05-26 | 2017-07-25 | 彭金富 | A kind of Magnetic drive generator and electricity generation system |
CN210948969U (en) * | 2019-11-04 | 2020-07-07 | 大连宏立新能源科技有限公司 | Drum-type kinetic energy conversion machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114109709A (en) * | 2021-10-18 | 2022-03-01 | 潍坊新力蒙水产技术有限公司 | Reinforcing device for bidirectional energy-gathering hydroelectric power generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204677357U (en) | A kind of Novel transverse Horizontal flat stream generating device | |
CN204186528U (en) | Novel two-way sea beat double-rotor machine electricity generating device | |
CN108105014A (en) | A kind of vertical axis double streamline automatic folding type hydraulic turbine | |
CN105370487B (en) | Power generation device from sea current | |
CN104481788A (en) | Bidirectional double-channel and double-rotor sea wave impact power generating device | |
CN103452741A (en) | Offshore hydroelectric generation platform | |
CN110761932A (en) | A roller type kinetic energy converter | |
CN210087532U (en) | An ocean energy turbine power generation system | |
CN210948969U (en) | Drum-type kinetic energy conversion machine | |
CN103953495A (en) | Flow collection self-adaptive tide flow power generation device | |
CN202867081U (en) | Bidirectional sea wave power generation device | |
CN111749838B (en) | River power generation device | |
CN102926912B (en) | A kind of lift vertical shaft water turbine | |
CN103967697B (en) | A kind of ocean current energy generator and unit thereof | |
CN204610121U (en) | A kind of direct current double click type horizontal shaft water-turbine | |
CN202789298U (en) | Power generation device with water turbine rotor blades in detachable blade stagger semicircle combination | |
CN202220710U (en) | Shipborne waterwheel power generation device | |
CN102943730A (en) | Wave force direct-driving hydraulic turbine | |
CN202203025U (en) | Flowing water generating set | |
CN111809581B (en) | Protruding type baffle waterwheel energizer with gradually dense hole | |
CN213807916U (en) | Flow guide cover type tidal current energy power generation device with flow guide groove structure | |
CN107524553A (en) | River cut-off formula water-power plant | |
CN108223238A (en) | A kind of wave turbine and ocean wave turbine formula hydropower generating device | |
CN202946300U (en) | Pumped water regeneration plant | |
CN202768225U (en) | Internal water power super multiplying generating system for reservoir |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |