CN110760511B - gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy - Google Patents

gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy Download PDF

Info

Publication number
CN110760511B
CN110760511B CN201810851087.1A CN201810851087A CN110760511B CN 110760511 B CN110760511 B CN 110760511B CN 201810851087 A CN201810851087 A CN 201810851087A CN 110760511 B CN110760511 B CN 110760511B
Authority
CN
China
Prior art keywords
seq
dna
artificial sequence
grna
expression vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810851087.1A
Other languages
Chinese (zh)
Other versions
CN110760511A (en
Inventor
祝海宝
喻小鲁
黄雨亭
陶米林
罗思施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Chimeng Medical Technology Co ltd
Original Assignee
Guangdong Chimeng Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Chimeng Medical Technology Co ltd filed Critical Guangdong Chimeng Medical Technology Co ltd
Priority to CN201810851087.1A priority Critical patent/CN110760511B/en
Publication of CN110760511A publication Critical patent/CN110760511A/en
Application granted granted Critical
Publication of CN110760511B publication Critical patent/CN110760511B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides a gRNA for treating Duchenne muscular dystrophy, which comprises a gRNA for knocking out an intron 43 of a Dys gene and a gRNA for knocking out an intron 54 of the Dys gene. The invention also provides a gRNA, an expression vector, a CRISPR-Cas9 system for treating Duchenne muscular dystrophy, and uses thereof. Compared with the prior art, the invention can cover not less than 60% of DMD patients; the utilization of the CRISPR-SaCas9 system is beneficial to using AAV as a therapeutic vector, has higher pertinence and higher safety; the gRNA screened by the invention has higher targeting efficiency, so that the correction efficiency of the Dys gene reading frame is higher.

Description

gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy
Technical Field
The invention relates to a gRNA for treating duchenne muscular dystrophy, an expression vector, a CRISPR-Cas9 system and application thereof.
Background
Rare diseases refer primarily to chronic, degenerative diseases with very low incidence. More than 7000 known rare diseases are inherited, 80% of which are caused by genetic defects. The rare diseases are not rare, and according to statistics, about 3.5 hundred million rare patients exist in the world, China accounts for over 2000 ten thousand, and more than 20 ten thousand new born patients are born each year. China mainly depends on means such as prenatal diagnosis and labor induction to control the expansion of rare disease groups. However, the rare diseases relate to complex and various genes, the pathogenesis is unclear, the conventional items of marriage detection and production detection are not listed, the cognition of the national and basic medical and health institutions to the diseases is to be enhanced, the diagnosis technology is not complete, and the like, so that the birth rate of the children is high. Patients with rare diseases face the dilemma of ' no medical treatment and ' no medical treatment ' once birth, because the rare diseases which can be treated currently only account for 5 percent, and in addition, 95 percent of patients are not available with medical treatment. Mainly because the research and development difficulty of rare medicines is high, the cost is high, the audiences are few, and few pharmaceutical enterprises are willing to invest in research and development. In the face of 7000 rare diseases around the world, the medicines with specific therapeutic action are only 400-500, while the medicines on the market in China are less than 20%, and the majority are imported medicines.
Duchenne muscular dystrophy, also known as pseudohypertrophic muscular dystrophy (DMD), is caused by mutations in the Dystrophin gene (Dys), which has a total length of about 2220kb, contains 79 exons, and has a cDNA length of 14kb, which is the largest human gene known at present. DMD is recessive inheritance of the X chromosome, mainly occurs in boys, women are carriers of pathogenic genes, the prevalence rate is about 3.3/10 ten thousand, and accounts for 20-30/10 ten thousand of born boys and boys, wherein about 1/3 is sporadic cases and has no family history.
For a long time, there are no effective clinical intervention measures or drugs for DMD at home and abroad. In 2016, 9 months, the U.S. FDA approved a new drug, Exondys 51(Eteplirsen), an injection by Sarepta Therapeutics, the first approved drug in the world for the treatment of DMD, by an expedited approval process (only 12 clinical trials). Eteplirsen injection can only be used for patients with deletion of exon 51 of the Dys gene (about 13% of patients with DMD), and there is currently no sufficient evidence for the therapeutic effect of Eteplirsen on DMD. Eteplirsen is a phosphorylmorpholine oligonucleotide that targets exon 51, and promotes dystrophin production by inducing skipping of exon 51 of the Dys gene, thereby converting lethal DMD to Becker Muscular Dystrophy (BMD), which is a less clinical phenotype. Except that No. 51 exon of the Dys gene was deleted, mutations of the Dys gene were mostly concentrated in the No. 2-20 exon regions and the No. 45-53 exon regions. Therefore Sarepta Therapeutics is also developing 7 additional exon skipping products that treat DMD patients with other gene mutations by skipping exons 53, 45, 50, 44, 52, 55 and 8.
Exon skipping products developed by Sarepta Therapeutics require regular injections. With the development of science, genetic defects are corrected directly at the genome level by a gene editing technology, so that the method is considered to be an effective means for treating monogenic genetic diseases, and the treatment is effective for a lifetime without repeated administration. CRISPR-Cas9 is known as a third-generation gene editing technology, its use and design are simpler, mutation of a target gene is also more efficient, as long as a specific gRNA sequence is designed according to the target gene, Cas9 can be guided to be cut near a target site to generate Double Strand Break (DSB), and the broken DNA double strand can be re-linked in a non-homologous end joining (NHEJ) manner (as shown in fig. 1).
In the prior art, Sp.CRISPR-Cas9 gene editing technology is adopted to respectively design gRNAs aiming at an intron 44 and an intron 55 of a Dys gene, DNA double-strand cutting is induced and connected through NHEJ, exons 45-55 which are most easy to mutate are cut off, and a reading frame of the Dys gene is corrected to express dystrophin with certain function.
However, sp.crispr-gRNA designed for intron 44 and intron 55 of the Dys gene is less efficient, resulting directly in less efficient NHEJ after DNA double strand cleavage.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a gRNA, an expression vector and a CRISPR-Cas9 system for treating Duchenne muscular dystrophy, and also provides application of the gRNA, the expression vector and the CRISPR-Cas9 system. The gRNA screened by the invention has higher targeting efficiency, so that the correction efficiency of the Dys gene reading frame is higher. In addition, the Sa.Cas9 nucleic acid sequence adopted by the invention has the full length (including a nuclear localization signal) of 3258bp, can be used for effectively packaging AAV (adeno-associated virus), and has more advantages for local intramuscular injection in the treatment process. AAV is one of the most commonly used gene therapy vectors in the world, has the advantages of wide host range, high safety, low immunogenicity, stable expression, stable physical properties and the like, and has been widely applied to basic research and clinical trials. AAV has multiple serotypes, each directed against different tissues and cells, and can be selected according to clinical needs. The AAV has genome of about 4700bp and can load maximum fragment of about 4500bp of exogenous nucleic acid sequence. The total length of the Sp.Cas9 nucleic acid sequence (containing a nuclear localization signal) is 4200bp, and the total length is more than 4500bp after a promoter and polyA are added, so that the AAV cannot be effectively packaged.
In order to realize the purpose, the technical scheme is as follows: a gRNA for treating Duchenne muscular dystrophy, comprising a gRNA for knockout of intron 43 of the Dys gene and a gRNA for knockout of intron 54 of the Dys gene.
Preferably, the target sequence of the gRNA for knocking out intron 43 of the Dys gene is shown in at least one of SEQ ID NO. 1-SEQ ID NO. 50; preferably, the target sequence of the gRNA for knocking out the No. 43 intron of the Dys gene is shown as at least one of SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 28, SEQ ID NO. 33, SEQ ID NO. 34, SEQ ID NO. 37, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 44 and SEQ ID NO. 50.
Preferably, the target sequence of the gRNA for knocking out intron 54 of the Dys gene is shown in at least one of SEQ ID NO. 51-SEQ ID NO. 65; preferably, the target sequence of the gRNA for knocking out intron 54 of the Dys gene is shown in at least one of SEQ ID NO 51, SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 58, SEQ ID NO 59, SEQ ID NO 60, SEQ ID NO 63 and SEQ ID NO 64.
Preferably, the gRNA consists of a gRNA with a target sequence shown in one of SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 16, SEQ ID NO 22 and SEQ ID NO 39 and a gRNA with a target sequence shown in one of SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 58, SEQ ID NO 59 and SEQ ID NO 63, or consists of a gRNA with a target sequence shown in SEQ ID NO 55 and a gRNA with a target sequence shown in SEQ ID NO 53.
The invention provides an expression vector for treating duchenne muscular dystrophy, wherein the expression vector expresses the gRNA; preferably, the base vector of the expression vector is an AAV vector.
The invention provides a CRISPR-Cas9 system for treating duchenne muscular dystrophy, which comprises the gRNA and the Cas9 protein; preferably, the Cas9 protein is a SaCas9 protein.
The invention provides an expression vector for treating duchenne muscular dystrophy, which expresses Cas9 protein and the gRNA.
Preferably, the cas9 protein is a SaCas9 protein, and the basic vector of the expression vector is an AAV vector.
The invention provides application of the gRNA or the expression vector in preparing a medicament for preventing or treating Duchenne muscular dystrophy.
The invention provides application of the CRISPR-Cas9 system or the expression vector in preparing a medicament for preventing or treating Duchenne muscular dystrophy.
The present invention provides a method for treating duchenne muscular dystrophy, comprising administering the expression vector described above to a patient suffering from duchenne muscular dystrophy.
The invention adopts a CRISPR-SacAS9 gene editing system derived from Staphylococcus aureus (Staphylococcus aureus), and designs a pair of gRNAs to guide Sa.Cas9 to respectively perform double-strand cleavage at the upstream and the downstream of No. 45-53 exon in a Dys gene mutation hotspot region, so that large fragment deletion is generated between the upstream and the downstream of No. 45-53 exon, thereby correcting a reading frame of a Dys gene (see figure 2) and converting a DMD patient to a BMD with lighter symptoms. The treatment method is a broad-spectrum and universal treatment technology, is suitable for all mutation types (about 60 percent of DMD patients) such as deletion, duplication, insertion and the like of No. 45-53 exon regions, corrects the reading frame error of (3N +1) or (3N +2) into (3N), and converts DMD into non-lethal BMD.
The invention has the beneficial effects that: compared with the prior art, the invention can cover not less than 60% of DMD patients; the utilization of the CRISPR-SaCas9 system is beneficial to using AAV as a therapeutic vector, has higher pertinence and higher safety; the gRNA screened by the invention has higher targeting efficiency, so that the correction efficiency of the Dys gene reading frame is higher.
Drawings
Fig. 1 is a schematic diagram of CRISPR-Cas 9-mediated non-homologous end joining repair;
FIG. 2 is a CRISPR-Sa.Cas9 mediated large fragment deletion between the upstream and downstream of No. 45-53 exon of Dys gene;
FIG. 3 is a diagram of plasmid pX 601;
FIG. 4 shows the results of the detection of SEQ ID NO. 1 to SEQ ID NO. 5 in example 1 of the present invention;
FIG. 5 shows the results of the detection of SEQ ID NO. 6 to SEQ ID NO. 15 in example 1 of the present invention;
FIG. 6 shows the result of detection of SEQ ID NO. 16 in example 1 of the present invention;
FIG. 7 shows the results of the detection of SEQ ID NO 17 to SEQ ID NO 23 in example 1 of the present invention;
FIG. 8 shows the results of the detection of SEQ ID NO. 24 to SEQ ID NO. 26 in example 1 of the present invention;
FIG. 9 shows the result of detection of SEQ ID NO. 27 in example 1 of the present invention;
FIG. 10 shows the results of the detection of SEQ ID NO 28 to SEQ ID NO 31 in example 1 of the present invention;
FIG. 11 shows the results of the detection of SEQ ID NO 32 to SEQ ID NO 37 in example 1 of the present invention;
FIG. 12 shows the results of the detection of SEQ ID NO 38 to SEQ ID NO 41 in example 1 of the present invention;
FIG. 13 shows the results of the detection of SEQ ID NO 42 to SEQ ID NO 50 in example 1 of the present invention;
FIG. 14 shows the results of the detection of SEQ ID NO 51 to SEQ ID NO 53 in example 2 of the present invention;
FIG. 15 shows the result of detection of SEQ ID NO. 54 in example 2 of the present invention;
FIG. 16 shows the results of the detection of SEQ ID NO:55 to SEQ ID NO:60 in example 2 of the present invention;
FIG. 17 shows the results of the detection of SEQ ID NOS 61 to 65 in example 2 of the present invention;
FIG. 18 shows the results of PCR detection of Group NO:3-Group NO:24 in example 3 of the present invention;
FIG. 19 shows the results of PCR detection of Group NO:1-Group NO:2 in example 3 of the present invention,
FIG. 20 shows the results of PCR detection of Group NO:25-Group NO:26 in example 3 of the present invention.
Detailed Description
To better illustrate the objects, aspects and advantages of the present invention, the present invention will be further described with reference to specific examples.
Example 1 Dys Gene intron 43 Sa-gRNA screening
1.1 gRNA preparation
(1) Designing a 21nt gRNA sequence according to a Dys gene sequence, wherein a target sequence of the gRNA is shown in Table 1 and is shown in one of SEQ ID NO 1-SEQ ID NO 55;
(2) synthesizing a sense strand and an antisense strand of the DNA sequence of the gRNA respectively (the 5 '-end of the sense strand is added with cacc, if the first nucleotide at the 5' -end of the sense strand is not guanine G, caccG is added at the 5 '-end of the sense strand; aaac is added at the 5' -end of the antisense strand, and if the first nucleotide at the 5 '-end of the sense strand is not guanine G, C is added at the 3' -end of the antisense strand);
(3) mixing the sense strand and the antisense strand of the gRNA, treating at 90 ℃, naturally cooling to room temperature for annealing treatment, and synthesizing double-stranded gRNA with a sticky end.
TABLE 1 sense strand of Sa-gRNA DNA sequence designed for intron No. 43 of Dys gene and detection primer thereof
Figure BDA0001745987570000061
Figure BDA0001745987570000071
Figure BDA0001745987570000081
1.2 vector preparation
(1) The pX601 plasmid (fig. 3) was amplified and extracted, and the plasmid concentration was determined;
(2) the pX601 is cut by restriction enzyme Bsa I, and the reaction is terminated by adding loading buffer after 1h of enzyme cutting at 37 ℃.
(3) After agarose gel electrophoresis, cutting gel and recovering linearized plasmid pX601, and determining the concentration of the recovered product, and storing at-20 ℃ for later use.
1.3 ligation transformation
(1) Performing a connection reaction on the linearized pX601 vector recovered from the gel cutting and the annealed gRNA double strand;
(2) and (3) transforming the escherichia coli competent cell TOP10 by a ligation product heat shock method, adding a sterile LB liquid culture medium (without antibiotics) into each centrifuge tube after transformation, uniformly mixing, and placing in a constant temperature shaking table at 37 ℃ and 200rpm for shaking culture for 45min to recover the thalli.
(3) Recovered TOP10 cells were plated on LB solid plates (Amp)+) And inversely placing the mixture in a constant temperature incubator at 37 ℃ for static culture for 12-16 h.
(4) Single colonies were picked from the above plates and inoculated into LB liquid medium (Amp)+) Medium-scale culture.
(5) The above-mentioned bacterial solutions were sequenced using primer 601SaF-F (5'-TTCCTTgACCCTggAAggTg-3') (SEQ ID NO:66), respectively;
(6) extracting plasmids from the bacterial liquid with correct sequencing, measuring the concentration of the plasmids, and storing at-20 ℃ for later use.
1.4 transfection of cells
(1) HEK293T cell plating;
(2) respectively transfecting HEK293T cells with the plasmids extracted in the step 1.3(6) by using a Lipofectamine 3000 kit;
(3) the transfected cells were cultured for 48 hours and harvested by centrifugation.
1.5 enzyme digestion analysis of mutation efficiency of T7E1
(1) Extracting cell genome from the cells collected in the step 1.4(3), and detecting the genome concentration;
(2) designing PCR primers respectively upstream and downstream of the gRNA binding site, as shown in Table 1;
(3) amplifying target fragments with target sites by using a PCR method respectively;
(4) purifying and recovering PCR products, and determining the product concentration;
(5) annealing the purified PCR product, namely heating to 95 ℃, preserving heat for 10min, and then cooling to room temperature at the speed of reducing the temperature by 2-3 ℃ every 30 s;
(6) t7 endonuclease 1(T7E1) was added to each tube of the annealed product, and mock (untransformed cells) and blank (ddH without T7E1) were set2O), digesting for 1h at 37 ℃.
(7) The cleavage effect was examined by 2% agarose gel electrophoresis using DL2,000 DNArker from Takara as a reference (2000 bp, 1000bp, 750bp, 500bp, 250bp, and 100bp bands in this order from top to bottom (TAKARA DL2000 Marker is used for all the electrophoretograms described below).
The results are shown in the following figure (lane numbers in the figure correspond to those of SEQ ID NO), FIG. 4 is the sequence of SEQ ID NO:1-SEQ ID NO:5, detecting the result of the detection, and determining the result, FIG. 5 is the sequence of SEQ ID NO:6-SEQ ID NO:15, the result of the detection is that, FIG. 6 is the sequence of SEQ ID NO:16, fig. 7 shows the results of SEQ ID NO:17-SEQ ID NO:23, as a result of the detection, a, FIG. 8 is the amino acid sequence of SEQ ID NO:24-SEQ ID NO: as a result of the detection 26, it is, FIG. 9 is SEQ ID NO:27, fig. 10 shows the results of SEQ ID NO:28-SEQ ID NO:31 the result of the detection is detected by the detector, FIG. 11 is the amino acid sequence of SEQ ID NO:32-SEQ ID NO:37, the result of the detection is that, FIG. 12 is SEQ ID NO:38-SEQ ID NO:41, the result of the detection is detected, FIG. 13 is SEQ ID NO:42-SEQ ID NO: and (5) detecting results by 50.
According to the principle of T7E1 detection, the brighter the cleavage band and the higher the cleavage efficiency, the higher the mutation efficiency of the gRNA. In the figure, SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, SEQ ID NO 14, SEQ ID NO 16, SEQ ID NO 22, SEQ ID NO 23, SEQ ID NO 28, SEQ ID NO 33, SEQ ID NO 34, SEQ ID NO 37, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 44 and SEQ ID NO 50 have high cleavage efficiency.
Example 2 Dys Gene intron 54 Sa-gRNA screening
2.1 gRNA preparation
(1) Designing a gRNA sequence of 21nt according to the sequence of a Dys gene, wherein the target sequence of the gRNA is shown in one of SEQ ID NO 56-SEQ ID NO 69 as shown in Table 2;
(2) synthesizing a sense strand and an antisense strand of the DNA sequence of the gRNA respectively (the 5 '-end of the sense strand is added with cacc, if the first nucleotide at the 5' -end of the sense strand is not guanine G, caccG is added at the 5 '-end of the sense strand; aaac is added at the 5' -end of the antisense strand, and if the first nucleotide at the 5 '-end of the sense strand is not guanine G, C is added at the 3' -end of the antisense strand);
(3) mixing the sense strand and the antisense strand of the gRNA, treating at 90 ℃, naturally cooling to room temperature for annealing treatment, and synthesizing double-stranded gRNA with a sticky end.
TABLE 2 sense strand of Sa-gRNA DNA sequence designed for intron No. 54 of Dys gene and detection primer thereof
Figure BDA0001745987570000101
Figure BDA0001745987570000111
2.2 vector preparation
(1) The pX601 plasmid (fig. 3) was amplified and extracted, and the plasmid concentration was determined;
(2) the pX601 is cut by restriction enzyme Bsa I, and the reaction is terminated by adding loading buffer after 1h of enzyme cutting at 37 ℃.
(3) After agarose gel electrophoresis, cutting gel and recovering linearized plasmid pX601, and determining the concentration of the recovered product, and storing at-20 ℃ for later use.
2.3 ligation transformation
(1) Performing a connection reaction on the linearized pX601 vector recovered from the gel cutting and the annealed gRNA double strand;
(2) and (3) transforming the escherichia coli competent cell TOP10 by a ligation product heat shock method, adding a sterile LB liquid culture medium (without antibiotics) into each centrifuge tube after transformation, uniformly mixing, and placing in a constant temperature shaking table at 37 ℃ and 200rpm for shaking culture for 45min to recover the thalli.
(3) Recovered TOP10 cells were plated on LB solid plates (Amp)+) And inversely placing the mixture in a constant temperature incubator at 37 ℃ for static culture for 12-16 h.
(4) Single colonies were picked from the above plates and inoculated into LB liquid medium (Amp)+) Medium-scale culture.
(5) The above-mentioned bacterial solutions were sequenced using primer 601SaF-F (5'-TTCCTTgACCCTggAAggTg-3') (SEQ ID NO:66), respectively;
(6) extracting plasmids from the bacterial liquid with correct sequencing, measuring the concentration of the plasmids, and storing at-20 ℃ for later use.
2.4 transfection of cells
(1) HEK293T cell plating;
(2) respectively transfecting HEK293T cells with the plasmids extracted in the step 2.3(6) by using a Lipofectamine 3000 kit;
(3) the transfected cells were cultured for 48 hours and harvested by centrifugation.
2.5 enzyme digestion analysis of mutation efficiency of T7E1
(1) Extracting cell genome from the cells collected in the step 2.4(3), and detecting the genome concentration;
(2) designing PCR primers respectively upstream and downstream of the gRNA binding site, as shown in Table 2;
(3) amplifying target fragments with target sites by using a PCR method respectively;
(4) purifying and recovering PCR products, and determining the product concentration;
(5) annealing the purified PCR product, namely heating to 95 ℃, preserving heat for 10min, and then cooling to room temperature at the speed of reducing the temperature by 2-3 ℃ every 30 s;
(6) t7 endonuclease 1(T7E1) was added to each tube of the annealed product, and mock (untransformed cells) and blank (ddH without T7E1) were set2O), digesting for 1h at 37 ℃.
(7) The cleavage effect was examined by 2% agarose gel electrophoresis using DL2,000 DNA Marker from Takara as a reference.
The results are shown in the following figures (the numbers of lanes in the figure correspond to those of SEQ ID NO), FIG. 14 shows the results of detection of SEQ ID NO:51 to SEQ ID NO:53, FIG. 15 shows the results of detection of SEQ ID NO:54, FIG. 16 shows the results of detection of SEQ ID NO:55 to SEQ ID NO:60, and FIG. 17 shows the results of detection of SEQ ID NO:61 to SEQ ID NO: 65.
According to the principle of T7E1 detection, the brighter the enzyme digestion band, the higher the enzyme digestion efficiency, indicating that the mutation efficiency of the gRNA is higher. In the figure, the cleavage efficiency of SEQ ID NO 51, 53, 54, 58, 59, 60, 63 and 64 is high.
Example 3 Combined screening of upstream and downstream Sa-gRNA of exons 43-55 of the Dys Gene
3.1 Sa-gRNA combinations
Combining the target point of example 1 with the target point of example 2, as shown in table 3;
TABLE 3 combination of upstream and downstream Sa-gRNAs for exons 43-55 of the Dys gene
Figure BDA0001745987570000131
Figure BDA0001745987570000141
3.2 transfection of cells
(1) HEK293T cell plating;
(2) the plasmids extracted in 1.3(6) and 2.3(6) were transfected into HEK293T cells according to the combination in 3.1, respectively, using a Lipofectamine 3000 kit;
(3) the transfected cells were cultured for 48 hours and harvested by centrifugation.
3.3 PCR detection of mutation Effect and sequencing analysis
(1) Extracting cell genome from the cells collected in the step 3.2(3), and detecting the genome concentration;
(2) PCR primers were designed upstream and downstream of the gRNA binding sites, respectively, as shown in Table 4;
TABLE 4 PCR assay primer List
Figure BDA0001745987570000142
Figure BDA0001745987570000151
(3) Amplifying target fragments with target sites by using a PCR method respectively;
(4) the targeting knockout effect was examined by 1% agarose gel electrophoresis using DL2,000 DNA Marker of Takara as a reference.
The results are shown in the following graph (lane numbers correspond to Group NO numbers in the figure), in which FIG. 18 shows the results of PCR detection of Group NO:3-Group NO:24, in which FIG. 19 shows the results of PCR detection of Group NO:1-Group NO:2, and in which FIG. 20 shows the results of PCR detection of Group NO:25-Group NO: 26.
Following genome disruption, the cell will tend to link the two DNA breaks to each other according to the principle of nonhomologous end-joining repair. After co-transformation of the vectors in 1.3(6) and 2.3(6) into cells according to Table 3, the DNA fragment between the two Sa-gRNAs was excised, and the DNA ends were ligated to each other to repair them. Primers are designed at the 5 'end of the Sa-gRNA of the intron 43 of the Dys gene and the 3' end of the Sa-gRNA of the intron 54 of the Dys gene for PCR, and whether non-homologous end connection occurs or not can be judged according to the size of a PCR product. In FIG. 18, the numbers below the lanes indicate the sizes of PCR products obtained after repair of non-homologous end joining between two Sa-gRNAs, and the arrows indicate the positions of the aforementioned PCR products.
The PCR product was recovered by cutting gel, and the band indicated by the arrow was subjected to sanger generation sequencing and analyzed by comparison with the Dys genome. PCR forward primers were used for all PCR product sequencing. The results are shown in Table 5: all Sa-gRNA combinations are subjected to sequence excision between two targets, the 3 rd base position at the 5 'end of the upstream target PAM sequence is subjected to non-homologous end connection with the 3 rd base position at the 5' end of the downstream target PAM sequence, exons 44 to 54 of the Dys gene are excised, and the frame reading error of (3N +1) or (3N +2) is corrected to be (3N), so that the DMD is converted into non-lethal BMD. Group NO 1(SEQ ID NO:105)392bp position is a non-homologous end connecting site; 399bp of Group NO 3(SEQ ID NO:107) is a non-homologous end connecting site; group NO:4(SEQ ID NO:108)394bp is a non-homologous end connection site; group NO:5(SEQ ID NO:109)401bp is a non-homologous end connection site; group NO:6(SEQ ID NO:110)410bp is a non-homologous end connection site; 417bp of Group NO:7(SEQ ID NO:11) is a non-homologous end connection site; 418bp of Group NO 8(SEQ ID NO:112) is a non-homologous end connection site; 421bp of Group NO:9(SEQ ID NO:113) is a non-homologous end connection site; group NO:10(SEQ ID NO:114)424bp is a non-homologous end connection site; 290bp of Group NO:11(SEQ ID NO:115) is a non-homologous end connection site; 12(SEQ ID NO:116)289bp of Group NO: a non-homologous end connection site; 13(SEQ ID NO:117)289bp of GroupNO is a non-homologous end connecting site; 292bp of Group NO:14(SEQ ID NO:118) is a non-homologous end connection site; group NO:15(SEQ ID NO:119)289bp is a non-homologous end connection site; 486bp of Group NO:16(SEQ ID NO:120) is a non-homologous end connecting site; the 488bp position of Group NO:17(SEQ ID NO:121) is a non-homologous end connecting site; is a non-homologous end connection site; group NO 19(SEQ ID NO:123)487bp is a non-homologous end connection site; 486bp of Group NO:20(SEQ ID NO:124) is a non-homologous end connecting site; 286bp of Group NO:21(SEQ ID NO:125) is a non-homologous end connection site; 286bp of Group NO:22(SEQ ID NO:126) is a non-homologous end connection site; group NO:23(SEQ ID NO:127)289bp is a non-homologous end connection site; 288bp of Group NO:24(SEQ ID NO:128) is a non-homologous end connection site; the position 298bp of Group NO:25(SEQ ID NO:129) is a non-homologous end connection site; group NO:26(SEQ ID NO:130)528bp is a non-homologous end joining site.
TABLE 5 sequencing results of upstream and downstream Sa-gRNA combined Sanger generation of exons 43-55 of Dys gene
Figure BDA0001745987570000171
Figure BDA0001745987570000181
Figure BDA0001745987570000191
Figure BDA0001745987570000201
Figure BDA0001745987570000211
Figure BDA0001745987570000221
Figure BDA0001745987570000231
NG-012232.1, the Dys gene NCBI Sequence ID, the Dys gene intron 43 Sequence range from 1057082 to 1127546, and the Dys gene intron 54 Sequence range from 1686618 to 1716744.
Finally, it should be noted that the above embodiments are only used for illustrating the technical solutions of the present invention and not for limiting the protection scope of the present invention, and although the present invention is described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions can be made on the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention.
Sequence listing
<110> Guangdong Chimeng medical science & technology Limited
<120> a gRNA, an expression vector, a CRISPR-Cas9 system for treating Duchenne muscular dystrophy
<130> 2018
<160> 130
<170> PatentIn version 3.3
<210> 1
<211> 21
<212> DNA
<213> Artificial sequence
<400> 1
attggtacgg gtctgtggct c 21
<210> 2
<211> 21
<212> DNA
<213> Artificial sequence
<400> 2
gaatcgggtc cctaacaggc a 21
<210> 3
<211> 21
<212> DNA
<213> Artificial sequence
<400> 3
gaggtggagc tcaggcagaa a 21
<210> 4
<211> 21
<212> DNA
<213> Artificial sequence
<400> 4
gcagctagat ggtcccatct g 21
<210> 5
<211> 21
<212> DNA
<213> Artificial sequence
<400> 5
aaaggaagct caaggctccc a 21
<210> 6
<211> 21
<212> DNA
<213> Artificial sequence
<400> 6
tttgggacat ggccagggca t 21
<210> 7
<211> 21
<212> DNA
<213> Artificial sequence
<400> 7
cctggccatg tcccaaatca g 21
<210> 8
<211> 21
<212> DNA
<213> Artificial sequence
<400> 8
aagaaggggg tggtgagaag t 21
<210> 9
<211> 21
<212> DNA
<213> Artificial sequence
<400> 9
ccatgaccac gagagaccag a 21
<210> 10
<211> 21
<212> DNA
<213> Artificial sequence
<400> 10
tagacagcag ggacggcagt g 21
<210> 11
<211> 21
<212> DNA
<213> Artificial sequence
<400> 11
aagctgccga aatcgcagtt g 21
<210> 12
<211> 21
<212> DNA
<213> Artificial sequence
<400> 12
gtgggcggat cacctgaggt c 21
<210> 13
<211> 21
<212> DNA
<213> Artificial sequence
<400> 13
tgccttagcc tcctgagtag c 21
<210> 14
<211> 21
<212> DNA
<213> Artificial sequence
<400> 14
tctcaccaca acctatgcct c 21
<210> 15
<211> 21
<212> DNA
<213> Artificial sequence
<400> 15
cttcgctctt gttgccccag c 21
<210> 16
<211> 21
<212> DNA
<213> Artificial sequence
<400> 16
agtcctgagg ctagcagtgt g 21
<210> 17
<211> 21
<212> DNA
<213> Artificial sequence
<400> 17
actgtgggag cagggcagtt c 21
<210> 18
<211> 21
<212> DNA
<213> Artificial sequence
<400> 18
catacaggct agggagtggg t 21
<210> 19
<211> 21
<212> DNA
<213> Artificial sequence
<400> 19
ggctagggag tgggtaggag t 21
<210> 20
<211> 21
<212> DNA
<213> Artificial sequence
<400> 20
atatgccagg ggccccttat t 21
<210> 21
<211> 21
<212> DNA
<213> Artificial sequence
<400> 21
tggacccgtt ccctctgcct t 21
<210> 22
<211> 21
<212> DNA
<213> Artificial sequence
<400> 22
tgcacccata aggcagaggg a 21
<210> 23
<211> 21
<212> DNA
<213> Artificial sequence
<400> 23
ccttatgggt gcaactcccg g 21
<210> 24
<211> 21
<212> DNA
<213> Artificial sequence
<400> 24
cactttggga ggccgaggca g 21
<210> 25
<211> 21
<212> DNA
<213> Artificial sequence
<400> 25
cctttctccc gcctcagctt c 21
<210> 26
<211> 21
<212> DNA
<213> Artificial sequence
<400> 26
gtctcgctct gtcaaccagg c 21
<210> 27
<211> 21
<212> DNA
<213> Artificial sequence
<400> 27
ccaggaacag cgcttagtac c 21
<210> 28
<211> 21
<212> DNA
<213> Artificial sequence
<400> 28
acacctgctc tgccttccac c 21
<210> 29
<211> 21
<212> DNA
<213> Artificial sequence
<400> 29
gagagagagt tggtggtggg g 21
<210> 30
<211> 21
<212> DNA
<213> Artificial sequence
<400> 30
gtggggcctg gtgagaggtg a 21
<210> 31
<211> 21
<212> DNA
<213> Artificial sequence
<400> 31
ccaggcccca cctccaacat t 21
<210> 32
<211> 21
<212> DNA
<213> Artificial sequence
<400> 32
gacttcccag cctccagaac t 21
<210> 33
<211> 21
<212> DNA
<213> Artificial sequence
<400> 33
tcccagcctc cagaactgtg a 21
<210> 34
<211> 21
<212> DNA
<213> Artificial sequence
<400> 34
ttggtctggg tgatggtcac c 21
<210> 35
<211> 21
<212> DNA
<213> Artificial sequence
<400> 35
catggttggc catgcctatc c 21
<210> 36
<211> 21
<212> DNA
<213> Artificial sequence
<400> 36
cagggatagg catggccaac c 21
<210> 37
<211> 21
<212> DNA
<213> Artificial sequence
<400> 37
catgctagtg tctctctggt g 21
<210> 38
<211> 21
<212> DNA
<213> Artificial sequence
<400> 38
acacaaaggc agacagagtg g 21
<210> 39
<211> 21
<212> DNA
<213> Artificial sequence
<400> 39
taccttccca ctctgcccct t 21
<210> 40
<211> 21
<212> DNA
<213> Artificial sequence
<400> 40
gggcagagtg ggaaggtagt g 21
<210> 41
<211> 21
<212> DNA
<213> Artificial sequence
<400> 41
gctccattaa ttgggctgcc c 21
<210> 42
<211> 21
<212> DNA
<213> Artificial sequence
<400> 42
tccaggccca caagagggag g 21
<210> 43
<211> 21
<212> DNA
<213> Artificial sequence
<400> 43
ccagctctgt cttacagagc t 21
<210> 44
<211> 21
<212> DNA
<213> Artificial sequence
<400> 44
ctcagactgt ggtagcagga g 21
<210> 45
<211> 21
<212> DNA
<213> Artificial sequence
<400> 45
ctgtggtagc aggaggaggg t 21
<210> 46
<211> 21
<212> DNA
<213> Artificial sequence
<400> 46
actgatgtcc tgggcagaga a 21
<210> 47
<211> 21
<212> DNA
<213> Artificial sequence
<400> 47
tatggtgctg cctcagagta c 21
<210> 48
<211> 21
<212> DNA
<213> Artificial sequence
<400> 48
ttaccggcta tggtgctgcc t 21
<210> 49
<211> 21
<212> DNA
<213> Artificial sequence
<400> 49
agcaccatag ccggtaatct g 21
<210> 50
<211> 21
<212> DNA
<213> Artificial sequence
<400> 50
agttggtctg gaatggagcc c 21
<210> 51
<211> 21
<212> DNA
<213> Artificial sequence
<400> 51
ccctcccaag ctccagttta g 21
<210> 52
<211> 21
<212> DNA
<213> Artificial sequence
<400> 52
tccagctaaa ctggagcttg g 21
<210> 53
<211> 21
<212> DNA
<213> Artificial sequence
<400> 53
tgggtgtgtg gagtgagata c 21
<210> 54
<211> 21
<212> DNA
<213> Artificial sequence
<400> 54
gcttgggcca tcaaggagca t 21
<210> 55
<211> 21
<212> DNA
<213> Artificial sequence
<400> 55
gctgggaagg gtagggggtg a 21
<210> 56
<211> 21
<212> DNA
<213> Artificial sequence
<400> 56
tggtggttac ctgatgctgg g 21
<210> 57
<211> 21
<212> DNA
<213> Artificial sequence
<400> 57
tgtggagggt gggaggagcg a 21
<210> 58
<211> 21
<212> DNA
<213> Artificial sequence
<400> 58
tgctggggaa gtgagactgg a 21
<210> 59
<211> 21
<212> DNA
<213> Artificial sequence
<400> 59
gtggtgctgg ggaagtgaga c 21
<210> 60
<211> 21
<212> DNA
<213> Artificial sequence
<400> 60
agagagagag ggaggtggaa g 21
<210> 61
<211> 21
<212> DNA
<213> Artificial sequence
<400> 61
agcactttgg gaggccgagg t 21
<210> 62
<211> 21
<212> DNA
<213> Artificial sequence
<400> 62
gggaggccga ggtgggggtg g 21
<210> 63
<211> 21
<212> DNA
<213> Artificial sequence
<400> 63
gtgggaggat cactagaggc c 21
<210> 64
<211> 21
<212> DNA
<213> Artificial sequence
<400> 64
gtctcactac gtcacccagg c 21
<210> 65
<211> 21
<212> DNA
<213> Artificial sequence
<400> 65
tacctcggcc tcccaaagtg c 21
<210> 66
<211> 20
<212> DNA
<213> Artificial sequence
<400> 66
ttccttgacc ctggaaggtg 20
<210> 67
<211> 24
<212> DNA
<213> Artificial sequence
<400> 67
ccaaaattgt aatgggtaga cttc 24
<210> 68
<211> 22
<212> DNA
<213> Artificial sequence
<400> 68
aatccagctt tcacttatcc ca 22
<210> 69
<211> 23
<212> DNA
<213> Artificial sequence
<400> 69
ccaactctac cttttacttc cca 23
<210> 70
<211> 23
<212> DNA
<213> Artificial sequence
<400> 70
accatgtttt ccattaaccc tac 23
<210> 71
<211> 23
<212> DNA
<213> Artificial sequence
<400> 71
cttctagctt ctcctatgct ctc 23
<210> 72
<211> 22
<212> DNA
<213> Artificial sequence
<400> 72
ctagttgggc aagatgtact ag 22
<210> 73
<211> 21
<212> DNA
<213> Artificial sequence
<400> 73
agtacatctt gcccaactag c 21
<210> 74
<211> 20
<212> DNA
<213> Artificial sequence
<400> 74
gcacgaggga aatgttcttg 20
<210> 75
<211> 21
<212> DNA
<213> Artificial sequence
<400> 75
caggtttaga catgtgcctt c 21
<210> 76
<211> 22
<212> DNA
<213> Artificial sequence
<400> 76
tgaaaccaat ctcaaaggtt gc 22
<210> 77
<211> 20
<212> DNA
<213> Artificial sequence
<400> 77
tgccaccatt gagcacttac 20
<210> 78
<211> 21
<212> DNA
<213> Artificial sequence
<400> 78
ccacactaaa tgctccctaa g 21
<210> 79
<211> 21
<212> DNA
<213> Artificial sequence
<400> 79
ttaggatggt gttgaacttg c 21
<210> 80
<211> 21
<212> DNA
<213> Artificial sequence
<400> 80
acctcacttc ctactttggt c 21
<210> 81
<211> 22
<212> DNA
<213> Artificial sequence
<400> 81
tctagcttgg aaatcattga ct 22
<210> 82
<211> 23
<212> DNA
<213> Artificial sequence
<400> 82
cttcaactaa catctacagc agg 23
<210> 83
<211> 20
<212> DNA
<213> Artificial sequence
<400> 83
tcagtcagct tgctctcttg 20
<210> 84
<211> 21
<212> DNA
<213> Artificial sequence
<400> 84
catctggcag tgttccacaa g 21
<210> 85
<211> 20
<212> DNA
<213> Artificial sequence
<400> 85
agcagcacaa ttcacagttg 20
<210> 86
<211> 22
<212> DNA
<213> Artificial sequence
<400> 86
ctcatggtcc aaactgtatg tg 22
<210> 87
<211> 22
<212> DNA
<213> Artificial sequence
<400> 87
gcacataaat gaagcagcag tg 22
<210> 88
<211> 22
<212> DNA
<213> Artificial sequence
<400> 88
tgctactgtc ttaggacttg tg 22
<210> 89
<211> 20
<212> DNA
<213> Artificial sequence
<400> 89
gtttagcagt tgcatgctgt 20
<210> 90
<211> 22
<212> DNA
<213> Artificial sequence
<400> 90
cattgttcca tactggtgag ac 22
<210> 91
<211> 20
<212> DNA
<213> Artificial sequence
<400> 91
acttggcctc tgttttctcc 20
<210> 92
<211> 21
<212> DNA
<213> Artificial sequence
<400> 92
gaaccagggc tgtatgttta c 21
<210> 93
<211> 20
<212> DNA
<213> Artificial sequence
<400> 93
acttggccct gaaacttctc 20
<210> 94
<211> 21
<212> DNA
<213> Artificial sequence
<400> 94
acaaggctta gtttgaggag a 21
<210> 95
<211> 22
<212> DNA
<213> Artificial sequence
<400> 95
ggcaaacttg aatatggagc tg 22
<210> 96
<211> 20
<212> DNA
<213> Artificial sequence
<400> 96
agcagcagga tctacatgtc 20
<210> 97
<211> 21
<212> DNA
<213> Artificial sequence
<400> 97
agatatgggt gagactcaag g 21
<210> 98
<211> 22
<212> DNA
<213> Artificial sequence
<400> 98
tgccatcctg tcatagttgt ag 22
<210> 99
<211> 22
<212> DNA
<213> Artificial sequence
<400> 99
acatactcaa gtctccctca tc 22
<210> 100
<211> 20
<212> DNA
<213> Artificial sequence
<400> 100
tcagatgcca gttacccctc 20
<210> 101
<211> 20
<212> DNA
<213> Artificial sequence
<400> 101
tcatcagatg ttgggcactg 20
<210> 102
<211> 20
<212> DNA
<213> Artificial sequence
<400> 102
cctgaagagc cgaaagacac 20
<210> 103
<211> 22
<212> DNA
<213> Artificial sequence
<400> 103
gaattgaatg accacagaga cg 22
<210> 104
<211> 21
<212> DNA
<213> Artificial sequence
<400> 104
gacaactact cccttgctgt c 21
<210> 105
<211> 526
<212> DNA
<213> Artificial sequence
<400> 105
attaaagatg acttatgtct ctgatctttt tttccttcta agtaataact accttgcaga 60
gttattactt gaattggcca taaggtaaag aggacaccaa atacagtaaa taataacata 120
ataataaaga aaccttatga attctattca gtgatatcca tattgaggta tttaaggtga 180
atgatactga tgtcagcagt ttacctggat atgcatcaaa aatatgattg attgatggat 240
ggatcggagg aaggaaaaga tatgtgatca aaacgagtat agtaaaatgt tcatggtgga 300
atctagatat atagatatca cttgtaattt ttaaaaatgt tattgcattt ttgaaatttg 360
ttatgttaaa atattgggtg aaaattctga tgtctcactc cacacaccca atgggaaaat 420
ttgtggaggg caatatgact cgtcacttca tttcccatta tatatgaatg gaaattaaca 480
gcgcttatag acagtatctc ctcaaactaa agccatatca aaagat 526
<210> 106
<211> 816
<212> DNA
<213> Artificial sequence
<400> 106
ccaactctac cttttacttc ccatgtgaac attaaaagat gacttaatgt ctctgaatct 60
ttttttcctt ctaagtaata actaccttgc agagttatta cttgaattgg ccataaggta 120
aagaggacac caaatacagt aaataataac ataataataa agaaacctta tgaattctat 180
tcagtgatat ccatattgag gtatttaagg tgaatgatac tgatgtcagc agtttacctg 240
gatatgcatc aaaaatatga ttgattgatg gatggatcgg aggaaggaaa agatatgtga 300
tcaaaacgag tatagtaaaa tgttcatggt ggaatctaga tatatagata tcacttgtaa 360
tttttaaaaa tgttattgca tttttgaaat ttgttatgtt aaaatattgg gtgaaaattc 420
tgatgctcct tgatggccca agccactctc tcagtttttt aaaaaattgt tttatcaagg 480
tctctggatt cttcatggga atgacttcca gtttatattt tttggcttgg ttccaaaaag 540
ctatcagcta aggaatgcat atacttactt cccctatggg taaagtaaat gagaatttta 600
gaagccaact cacattttta gcctgtacag aatctgcaat tcaccaagct acttctgact 660
catgtctata aagttcttcc ctgttctttt ctcacttcac atgtactctt tgcaagaatt 720
catccacttg tgtagtttca gtctgttgat gactacccat ctataattcc agctgagaat 780
gatcttttga gttttagaca tgtagatcct gctgct 816
<210> 107
<211> 989
<212> DNA
<213> Artificial sequence
<400> 107
gggaaattaa agatggactt aatgtctctg atcttttttt ccttctaagt aataactacc 60
ttgcagagtt attacttgaa ttggccataa ggtaaagagg acaccaaata cagtaaataa 120
taacataata ataaagaaac cttatgaatt ctattcagtg atatccatat tgaggtattt 180
aaggtgaatg atactgatgt cagcagttta cctggatatg catcaaaaat atgattgatt 240
gatggatgga tcggaggaag gaaaagatat gtgatcaaaa cgagtatagt aaaatgttca 300
tggtggaatc tagatatata gatatcactt gtaattttta aaaatgttat tgcatttttg 360
aaatttgtta tgttaaaata ttgggtgaaa attctgatga gtctcacttc cccagcacca 420
ccactttatg aaaacaagga cttactaaga tcatcagtga ctttgtaata gctaattagt 480
gtattttaat tcgtccatct tcttgactat attttaacat tgatcctgtt ggtcaactct 540
gctaatcaaa actttatcct ccttggttcc cagaacaata ttatcttgaa tatctcattt 600
ctctaatcat ataataattg tgaggtgctt ggcacaatgc ctagtgcgta gtaagaactc 660
agtaaaatat catctgccat cgacaccata aaaattaatt tacttactca acaaatactt 720
ttgtatgaag tttgtgctag gtaggcccag taattggtac ttggtataga gcaatgaaaa 780
gccctaaccc tcataaagct tatattcttg gaagcagaag ttggaagaca gacattgaca 840
aataaaaatt aaatacatga tgtgtcagat ggtcatacac acagtgtgga agaacaaaga 900
ggaaaacaag tggagagaga gagggaggtg ggaagaggag tgctgccatg aaaatgtggt 960
aattcaaaaa aggtctttac tgaaaaggt 989
<210> 108
<211> 1000
<212> DNA
<213> Artificial sequence
<400> 108
attaaaagga tgacttatgt ctctgatctt tttttccttc taagtaataa ctaccttgca 60
gagttattac ttgaattggc cataaggtaa agaggacacc aaatacagta aataataaca 120
taataataaa gaaaccttat gaattctatt cagtgatatc catattgagg tatttaaggt 180
gaatgatact gatgtcagca gtttacctgg atatgcatca aaaatatgat tgattgatgg 240
atggatcgga ggaaggaaaa gatatgtgat caaaacgagt atagtaaaat gttcatggtg 300
gaatctagat atatagatat cacttgtaat ttttaaaaat gttattgcat ttttgaaatt 360
tgttatgtta aaatattggg tgaaaattct gatgtcactt ccccagcacc accactttat 420
gaaaacaagg acttactaag atcatcagtg actttgtaat agctaattag tgtattttaa 480
ttcgtccatc ttcttgacta tattttaaca ttgatcctgt tggtcaactc tgctaatcaa 540
aactttatcc tccttggttc ccagaacaat attatcttga atatctcatt tctctaatca 600
tataataatt gtgaggtgct tggcacaatg cctagtgcgt agtaagaact cagtaaaata 660
tcatctgcca tcgacaccat aaaaattaat ttacttactc aacaaatact tttgtatgaa 720
gtttgtgcta ggtaggccca gtaattggta cttggtatag agcaatgaaa agccctaccc 780
tcataaagct tatattcttg gaagcagaag ttggaagaca gacattgaca aataaaaatt 840
aaatacatga tgtgtcagat ggtcatacac acagtgtgaa gacaagagga aaacaagtga 900
gagagagagg gagtggagag agtgctgcca tgaaattgtg taatcaaaaa gtcttactga 960
aagtggcatt aagcaattct aaagactgag atgtggcata 1000
<210> 109
<211> 562
<212> DNA
<213> Artificial sequence
<400> 109
aggggactta aagaatgact ttaatgtctc tgatcttttt ttccttctaa gtaataacta 60
ccttgcagag ttattacttg aattggccat aaggtaaaga ggacaccaaa tacagtaaat 120
aataacataa taataaagaa accttatgaa ttctattcag tgatatccat attgaggtat 180
ttaaggtgaa tgatactgat gtcagcagtt tacctggata tgcatcaaaa atatgattga 240
ttgatggatg gatcggagga aggaaaagat atgtgatcaa aacgagtata gtaaaatgtt 300
catggtggaa tctagatata tagatatcac ttgtaatttt taaaaatgtt attgcatttt 360
tgaaatttgt tatgttaaaa tattgggtga aaattctgat ggccaagagt ttgagaccag 420
cctgggcaac atagtgagat accatttcta caaaacataa aaaaaaaaaa aaaaaggcca 480
gttttttgtc cccccctctt tgggaagggg aggcaaagga tttttttgaa ccaaggattt 540
catttcaggg ggccgggggc ta 562
<210> 110
<211> 540
<212> DNA
<213> Artificial sequence
<400> 110
tttaagatga cttatgtctc tgatcttttt ttccttctaa gtaataacta ccttgcagag 60
ttattacttg aattggccat aaggtaaaga ggacaccaaa tacagtaaat aataacataa 120
taataaagaa accttatgaa ttctattcag tgatatccat attgaggtat ttaaggtgaa 180
tgatactgat gtcagcagtt tacctggata tgcatcaaaa atatgattga ttgatggatg 240
gatcggagga aggaaaagat atgtgatcaa aacgagtata gtaaaatgtt catggtggaa 300
tctagatata tagatatcac ttgtaatttt taaaaatgtt attgcatttt tgaaatttgt 360
tatgttaaaa tattgggtga aaattctgat gccctggcca tgtcccaaat tctcactcca 420
cacacccaat gggaaaattt gtggagggca atatgactcg tcacttcatt tcccattata 480
tatgaatgga aattaacagc gcttatagac agtatctcct caaactaagc cttgtgggag 540
<210> 111
<211> 813
<212> DNA
<213> Artificial sequence
<400> 111
aggaatttta agatgactta atgtctctga tctttttttc cttctaagta ataactacct 60
tgcagagtta ttacttgaat tggccataag gtaaagagga caccaaatac agtaaataat 120
aacataataa taaagaaacc ttatgaattc tattcagtga tatccatatt gaggtattta 180
aggtgaatga tactgatgtc agcagtttac ctggatatgc atcaaaaata tgattgattg 240
atggatggat cggaggaagg aaaagatatg tgatcaaaac gagtatagta aaatgttcat 300
ggtggaatct agatatatag atatcacttg taatttttaa aaatgttatt gcatttttga 360
aatttgttat gttaaaatat tgggtgaaaa ttctgatgcc ctggccatgt cccaaatctc 420
cttgatggcc caagccactc tctcagtttt ttaaaaaatt gttttatcaa ggtctctgga 480
ttcttcatgg gaatgacttc cagtttatat tttttggctt ggttccaaaa agctatcagc 540
taaggaatgc atatacttac ttcccctatg ggtaaagtaa atgagaattt tagaagccaa 600
ctcacatttt tagcctgtac agaatctgca attcaccaag ctacttctga ctcatgtcta 660
taaagttctt ccctgttctt ttctcacttc acatgtactc tttgcaagaa ttcatccact 720
tgtgtagttt cagtctgttg atgactaccc aatctataaa ttccagcaga gaatgatctt 780
ttgagtttta gacatgtaga tacactgctg ctc 813
<210> 112
<211> 939
<212> DNA
<213> Artificial sequence
<400> 112
ggggttaaat taagatgact tatgtctctg atcttttttt ccttctaagt aataactacc 60
ttgcagagtt attacttgaa ttggccataa ggtaaagagg acaccaaata cagtaaataa 120
taacataata ataaagaaac cttatgaatt ctattcagtg atatccatat tgaggtattt 180
aaggtgaatg atactgatgt cagcagttta cctggatatg catcaaaaat atgattgatt 240
gatggatgga tcggaggaag gaaaagatat gtgatcaaaa cgagtatagt aaaatgttca 300
tggtggaatc tagatatata gatatcactt gtaattttta aaaatgttat tgcatttttg 360
aaatttgtta tgttaaaata ttgggtgaaa attctgatgc cctggccatg tcccaaatag 420
tctcacttcc ccagcaccac cactttatga aaacaaggac ttactaagat catcagtgac 480
tttgtaatag ctaattagtg tattttaatt cgtccatctt cttgactata ttttaacatt 540
gatcctgttg gtcaactctg ctaatcaaaa ctttatcctc cttggttccc agaacaatat 600
tatcttgaat atctcatttc tctaatcata taataattgt gaggtgcttg gcacaatgcc 660
tagtgcgtag taagaactca gtaaaatatc atctgccatc gacaccataa aaattaattt 720
acttactcaa caaatacttt tgtatgaagt ttgtgctagg taggcccagt aattggtact 780
tggtatagag caatgaaaag ccctaccctc ataaagctta tattcttgga agcagaagtt 840
ggaagacaga cattgacaaa taaaaattaa atacatgatg tgtcagatgg tcatacacac 900
agtgtgggaa gacaaagagg aaaacaagtg gagagagag 939
<210> 113
<211> 928
<212> DNA
<213> Artificial sequence
<400> 113
tggggttcta taaaagaaga cttaatgtct ctgatctttt tttccttcta agtaataact 60
accttgcaga gttattactt gaattggcca taaggtaaag aggacaccaa atacagtaaa 120
taataacata ataataaaga aaccttatga attctattca gtgatatcca tattgaggta 180
tttaaggtga atgatactga tgtcagcagt ttacctggat atgcatcaaa aatatgattg 240
attgatggat ggatcggagg aaggaaaaga tatgtgatca aaacgagtat agtaaaatgt 300
tcatggtgga atctagatat atagatatca cttgtaattt ttaaaaatgt tattgcattt 360
ttgaaatttg ttatgttaaa atattgggtg aaaattctga tgccctggcc atgtcccaaa 420
ttcacttccc cagcaccacc actttatgaa aacaaggact tactaagatc atcagtgact 480
ttgtaatagc taattagtgt attttaattc gtccatcttc ttgactatat tttaacattg 540
atcctgttgg tcaactctgc taatcaaaac tttatcctcc ttggttccca gaacaatatt 600
atcttgaata tctcatttct ctaatcatat aataattgtg aggtgcttgg cacaatgcct 660
agtgcgtagt aagaactcag taaaatatca tctgccatcg acaccataaa aattaattta 720
cttactcaac aaatactttt gtatgaagtt tgtgctaggt aggcccagta attggtactt 780
ggtatagagc aatgaaaagc cctaccctca taaagcttat attcttggaa gcagaagttg 840
gaagacagac attgacaaat aaaaattaaa tacatgatgt gtcagatggt catacacaca 900
gtgtgggaag aacaaaggag gaaaacaa 928
<210> 114
<211> 522
<212> DNA
<213> Artificial sequence
<400> 114
aggggttcca ttaggatgac tttaattgtc tctgaatctt tttttccttc taagtaaata 60
actaccttgc agagttatta cttgaattgg ccataaggta aagaggacac caaatacagt 120
aaataataac ataataataa agaaacctta tgaattctat tcagtgatat ccatattgag 180
gtatttaagg tgaatgatac tgatgtcagc agtttacctg gatatgcatc aaaaatatga 240
ttgattgatg gatggatcgg aggaaggaaa agatatgtga tcaaaacgag tatagtaaaa 300
tgttcatggt ggaatctaga tatatagata tcacttgtaa tttttaaaaa tgttattgca 360
tttttgaaat ttgttatgtt aaaatattgg gtgaaaattc tgatgccctg gccatgtccc 420
aaatgccaag agtttgagac cagcctgggc aacatagtga gataccattt ctacaaaaca 480
taaaaaaaaa aaaaaaaagc caattttttt gtccccggct ac 522
<210> 115
<211> 422
<212> DNA
<213> Artificial sequence
<400> 115
gcggtgactc gttcatgcac tggttgaaat atgctcccca ccccagtaac atcagcatca 60
gacctctgca accagaaaga ttccataggt aatgaaatcc aaatgctggc atttggaagt 120
caaaccagtg tattttgaaa tggaaaggca aggggaagtg catggagcaa gtacagcatg 180
tgctacaact tcagttcata ccctccttaa aatactgtgc aactaaactg tcaattgccc 240
attgatagag atagtatctt tttcagcttt acaccttccg aattcaacac tctcactcca 300
cacacccaat gggaaaattt gtggagggca atatgactcg tcacttcatt tcccattata 360
tatgaatgga aattaacagc gcttatagac agtatctcct caaactaaga cttgagaaaa 420
aa 422
<210> 116
<211> 690
<212> DNA
<213> Artificial sequence
<400> 116
ccgtgaatcg tcatgcactg gttgaaaata tgctccccac cccagtaaca tcagcatcag 60
acctctgcaa ccagaaagat tccataggta atgaaatcca aatgctggca tttggaagtc 120
aaaccagtgt attttgaaat ggaaaggcaa ggggaagtgc atggagcaag tacagcatgt 180
gctacaactt cagttcatac cctccttaaa atactgtgca actaaactgt caattgccca 240
ttgatagaga tagtatcttt ttcagcttta caccttccga attcaacacc tccttgatgg 300
cccaagccac tctctcagtt ttttaaaaaa ttgttttatc aaggtctctg gattcttcat 360
gggaatgact tccagtttat attttttggc ttggttccaa aaagctatca gctaaggaat 420
gcatatactt acttccccta tgggtaaagt aaatgagaat tttagaagcc aactcacatt 480
tttagcctgt acagaatctg caattcacca agctacttct gactcatgtc tataaagttc 540
ttccctgttc ttttctcact tcacatgtac tctttgcaag aattcatcca cttgtgtagt 600
ttcagtctgt tgatgactac ccatctataa ttccagcaga gaatgatctt ttgagtttta 660
gacatgtaga tcacagcaga gctgaaatgg 690
<210> 117
<211> 994
<212> DNA
<213> Artificial sequence
<400> 117
gcgttacttc atcatgcact ggttgaaata tgctccccac cccagtaaca tcagcatcag 60
acctctgcaa ccagaaagat tccataggta atgaaatcca aatgctggca tttggaagtc 120
aaaccagtgt attttgaaat ggaaaggcaa ggggaagtgc atggagcaag tacagcatgt 180
gctacaactt cagttcatac cctccttaaa atactgtgca actaaactgt caattgccca 240
ttgatagaga tagtatcttt ttcagcttta caccttccga attcaacaca gtctcacttc 300
cccagcacca ccactttatg aaaacaagga cttactaaga tcatcagtga ctttgtaata 360
gctaattagt gtattttaat tcgtccatct tcttgactat attttaacat tgatcctgtt 420
ggtcaactct gctaatcaaa actttatcct ccttggttcc cagaacaata ttatcttgaa 480
tatctcattt ctctaatcat ataataattg tgaggtgctt ggcacaatgc ctagtgcgta 540
gtaagaactc agtaaaatat catctgccat cgacaccata aaaattaatt tacttactca 600
acaaatactt ttgtatgaag tttgtgctag gtaggcccag taattggtac ttggtataga 660
gcaatgaaaa gccctaccct cataaagctt atattcttgg aagcagaagt tggaagacag 720
acattgacaa ataaaaatta aatacatgat gtgtcagatg gtcatacaca cagtgtggaa 780
gaacaaagag gaaaacaagt ggagagagag agggaggtgg aagaggagtg ctgccatgaa 840
aatgtggtaa tcaaaaaagg tcttactgaa aaaggtggca tttaagcaaa ttctaaaaga 900
cctgaggatg tgggcctatg tatattgggg ggggaaaagt aatccaggag agtcctaaat 960
aattaaaatg cccaagcagg aattttcttg gcat 994
<210> 118
<211> 889
<212> DNA
<213> Artificial sequence
<400> 118
cgggtgaaat tcttcatgca ctggttgaaa atatgctccc caccccagta acatcagcat 60
cagacctctg caaccagaaa gattccatag gtaatgaaat ccaaatgctg gcatttggaa 120
gtcaaaccag tgtattttga aatggaaagg caaggggaag tgcatggagc aagtacagca 180
tgtgctacaa cttcagttca taccctcctt aaaatactgt gcaactaaac tgtcaattgc 240
ccattgatag agatagtatc tttttcagct ttacaccttc cgaattcaac actcacttcc 300
ccagcaccac cactttatga aaacaaggac ttactaagat catcagtgac tttgtaatag 360
ctaattagtg tattttaatt cgtccatctt cttgactata ttttaacatt gatcctgttg 420
gtcaactctg ctaatcaaaa ctttatcctc cttggttccc agaacaatat tatcttgaat 480
atctcatttc tctaatcata taataattgt gaggtgcttg gcacaatgcc tagtgcgtag 540
taagaactca gtaaaatatc atctgccatc gacaccataa aaattaattt acttactcaa 600
caaatacttt tgtatgaagt ttgtgctagg taggcccagt aattggtact tggtatagag 660
caatgaaaag ccctaccctc ataaagctta tattcttgga agcagaagtt ggaagacaga 720
cattgacaaa taaaaattaa atacatgatg tgtcagatgg tcatacacac agtgtggaag 780
aacaaagagg aaaacaagtg gagagagaga gggaggtgga aagaggagtg ctgccatgaa 840
aatgttggta atcaaaaaag gtcttactga agaggtggct atttaagca 889
<210> 119
<211> 730
<212> DNA
<213> Artificial sequence
<400> 119
gcgtggatct tcatgcactg gttgaaaata tgctccccac cccagtaaca tcagcatcag 60
acctctgcaa ccagaaagat tccataggta atgaaatcca aatgctggca tttggaagtc 120
aaaccagtgt attttgaaat ggaaaggcaa ggggaagtgc atggagcaag tacagcatgt 180
gctacaactt cagttcatac cctccttaaa atactgtgca actaaactgt caattgccca 240
ttgatagaga tagtatcttt ttcagcttta caccttccga attcaacacg ccaagagttt 300
gagaccagcc tgggcaacat agtgagatac catttctaca aaacataaaa aaaaaaaaaa 360
aaaagccaat tttttttccc cccctcttgg gaaacttggg gaaaaagatt tttttgaccc 420
agggatttct tttcaggggg ggggggggct taaaaaagcc cagggtcccc cccccggggg 480
gacgtaggga aaccccctcc ttaaaattta attaaatttt aagggtaaaa gggcccccaa 540
accccccgtt cacccccccc attttttaaa accccatttt aaatcctcct taggaaaatt 600
acccttgttg ctctttttag ggggggaagg gtttgggtat gtttaaaaat taatccgttt 660
aacaactctt tttggacctt aggaattaaa aaatgttcct tttggctctt ggggaaaaaa 720
aaaaataaat 730
<210> 120
<211> 622
<212> DNA
<213> Artificial sequence
<400> 120
gcggggcaag tttatgaatg tagtagtttt atgccaagaa catttccctc gtgcacctgt 60
gttttaataa gatagaatat aaaatagcaa aaggggcccg acttttgtga tgatatttac 120
tcataaggta gtaagtcaga tgtgatgaca ttttctttga cttagagctg ctatacttgg 180
gtcagatttc agttcagtaa atttgcagtg aagttgtctt tctaacatgg tgtcatcctg 240
gaactgccct gctcccacag ttacatacag gctagggagt gggtaggagt gggggtgaaa 300
tcctcttaat gtttatggtg tcagtagatt caaactaaaa ttagccttac agccatactc 360
ctaataaggg gcccctggca tatttaattg atttaacaaa tttatcaaaa atagataaac 420
tgaaatctgc cttgaaatta attactgtat ctctattttt ataagaaaat attttggacc 480
cgttcctctc actccacaca cccaatggga aaatttgtgg agggcaatat gactcgtcac 540
ttcatttccc attatatatg aatggaaatt aacagcgctt atagacagta tctcctcaaa 600
ctaagccctt tggtgggggt gg 622
<210> 121
<211> 893
<212> DNA
<213> Artificial sequence
<400> 121
ggcgggggga aaaattatga tgtagtagtt ttatgccaag aacatttccc tcgtgcacct 60
gtgttttaat aagatagaat ataaaatagc aaaaggggcc cgacttttgt gatgatattt 120
actcataagg tagtaagtca gatgtgatga cattttcttt gacttagagc tgctatactt 180
gggtcagatt tcagttcagt aaatttgcag tgaagttgtc tttctaacat ggtgtcatcc 240
tggaactgcc ctgctcccac agttacatac aggctaggga gtgggtagga gtgggggtga 300
aatcctctta atgtttatgg tgtcagtaga ttcaaactaa aattagcctt acagccatac 360
tcctaataag gggcccctgg catatttaat tgatttaaca aatttatcaa aaatagataa 420
actgaaatct gccttgaaat taattactgt atctctattt ttataagaaa atattttgga 480
cccgttccct ccttgatggc ccaagccact ctctcagttt tttaaaaaat tgttttatca 540
aggtctctgg attcttcatg ggaatgactt ccagtttata ttttttggct tggttccaaa 600
aagctatcag ctaaggaatg catatactta cttcccctat gggtaaagta aatgagaatt 660
ttagaagcca actcacattt ttagcctgta cagaatctgc aattcaccaa gctacttctg 720
actcatgtct ataaagttct tccctgttct tttctcactt cacatgtact ctttgcaaga 780
attcatccac ttgtgtagtt tcagtctgtt gatgactacc catctataat tccagcagag 840
aatgatcttt tgagttttag acatgtagac cctgccagtg aaagaaaaaa agg 893
<210> 122
<211> 1323
<212> DNA
<213> Artificial sequence
<400> 122
caggtttaga catgtgcctt ccggtgtggg aaagaaaaaa tttaatgaat gtagtagttt 60
tatgccaaga acatttccct cgtgcacctg tgttttaata agatagaata taaaatagca 120
aaaggggccc gacttttgtg atgatattta ctcataaggt agtaagtcag atgtgatgac 180
attttctttg acttagagct gctatacttg ggtcagattt cagttcagta aatttgcagt 240
gaagttgtct ttctaacatg gtgtcatcct ggaactgccc tgctcccaca gttacataca 300
ggctagggag tgggtaggag tgggggtgaa atcctcttaa tgtttatggt gtcagtagat 360
tcaaactaaa attagcctta cagccatact cctaataagg ggcccctggc atatttaatt 420
gatttaacaa atttatcaaa aatagataaa ctgaaatctg ccttgaaatt aattactgta 480
tctctatttt tataagaaaa tattttggac ccgttccagt ctcacttccc cagcaccacc 540
actttatgaa aacaaggact tactaagatc atcagtgact ttgtaatagc taattagtgt 600
attttaattc gtccatcttc ttgactatat tttaacattg atcctgttgg tcaactctgc 660
taatcaaaac tttatcctcc ttggttccca gaacaatatt atcttgaata tctcatttct 720
ctaatcatat aataattgtg aggtgcttgg cacaatgcct agtgcgtagt aagaactcag 780
taaaatatca tctgccatcg acaccataaa aattaattta cttactcaac aaatactttt 840
gtatgaagtt tgtgctaggt aggcccagta attggtactt ggtatagagc aatgaaaagc 900
cctaccctca taaagcttat attcttggaa gcagaagttg gaagacagac attgacaaat 960
aaaaattaaa tacatgatgt gtcagatggt catacacaca gtgtggaaga acaaagagga 1020
aaacaagtgg agagagagag ggaggtggaa gaggagtgct gccatgaaaa tgtggtaatc 1080
aaaaaaggtc ttactgaaaa ggtggcattt aagcaaattc taaaagacct gaggatgtgg 1140
gccatatgta taattggggg ggaaaaagta gtccaggaga gtcctaataa gttaaaatgc 1200
cccaaagcag gaatattctt ggcatgttga aggaacctta aaagggagat cagttaggca 1260
gaaaaggatc aagcgagcag gaaggtagtt gacaataaat ttagaggggt aactggcatc 1320
tga 1323
<210> 123
<211> 964
<212> DNA
<213> Artificial sequence
<400> 123
cgcgggtgga aatttatgat gtagtagttt tatgccaaga acatttccct cgtgcacctg 60
tgttttaata agatagaata taaaatagca aaaggggccc gacttttgtg atgatattta 120
ctcataaggt agtaagtcag atgtgatgac attttctttg acttagagct gctatacttg 180
ggtcagattt cagttcagta aatttgcagt gaagttgtct ttctaacatg gtgtcatcct 240
ggaactgccc tgctcccaca gttacataca ggctagggag tgggtaggag tgggggtgaa 300
atcctcttaa tgtttatggt gtcagtagat tcaaactaaa attagcctta cagccatact 360
cctaataagg ggcccctggc atatttaatt gatttaacaa atttatcaaa aatagataaa 420
ctgaaatctg ccttgaaatt aattactgta tctctatttt tataagaaaa tattttggac 480
ccgttcctca cttccccagc accaccactt tatgaaaaca aggacttact aagatcatca 540
gtgactttgt aatagctaat tagtgtattt taattcgtcc atcttcttga ctatatttta 600
acattgatcc tgttggtcaa ctctgctaat caaaacttta tcctccttgg ttcccagaac 660
aatattatct tgaatatctc atttctctaa tcatataata attgtgaggt gcttggcaca 720
atgcctagtg cgtagtaaga actcagtaaa atatcatctg ccatcgacac cataaaaatt 780
aatttactta ctcaacaaat acttttgtat gaagtttgtg ctaggtaggc ccagtaattg 840
gtacttggta tagagcaatg aaaagcccta ccctcataaa gcttatattc ttggaagcag 900
aagttggaag acagacattg acaaataaaa atttaaatac atgatgtgtc agatggtcat 960
acac 964
<210> 124
<211> 900
<212> DNA
<213> Artificial sequence
<400> 124
cgcgggtgga aattatgatg tagtagtttt atgccaagaa catttccctc gtgcacctgt 60
gttttaataa gatagaatat aaaatagcaa aaggggcccg acttttgtga tgatatttac 120
tcataaggta gtaagtcaga tgtgatgaca ttttctttga cttagagctg ctatacttgg 180
gtcagatttc agttcagtaa atttgcagtg aagttgtctt tctaacatgg tgtcatcctg 240
gaactgccct gctcccacag ttacatacag gctagggagt gggtaggagt gggggtgaaa 300
tcctcttaat gtttatggtg tcagtagatt caaactaaaa ttagccttac agccatactc 360
ctaataaggg gcccctggca tatttaattg atttaacaaa tttatcaaaa atagataaac 420
tgaaatctgc cttgaaatta attactgtat ctctattttt ataagaaaat attttggacc 480
cgttccgcca agagtttgag accagcctgg gcaacatagt gagataccat ttctacaaaa 540
cataaaaaaa aaaaaaaaaa acccagtttg tgactccccc ccatttggaa attggaggaa 600
aaagattttt ttgaaccaag aatttctttt aagggggggg ggggcctata atatggccgg 660
gtaatcccgc cggggggaaa ggagggaaac ccccccctta aaattaaatt aaatttaaaa 720
gctaaaaata acccaaaacc cccgttaccc cccccaattt ttaaaaccca ttttaaattt 780
ccccttgtcg aaagggcctt gtatcccttt ttaggaataa aagattgggt ggttaaaaaa 840
taatccatta ccaatccctt gggacctagc aaattaaaat ggctcttcgc cccctcagaa 900
<210> 125
<211> 417
<212> DNA
<213> Artificial sequence
<400> 125
agcattctgc tgtgagaaca gcaggaggcc ctcaccagac accaaatgcc agagccttta 60
tcttggactt cccagcctcc agaactgtga gtgaatacat tggtattatt tgtaaattac 120
ccagtctcag gcattttgtt ataacagcac aaacagacta agacaatcat acagtgagaa 180
attaatcaac aactaataag caaagaggta gattaatctt gaaactatga tatagagtgt 240
tccatttggc tgctggaagt tttatttctt ggtctgggtg atggtctctc actccacaca 300
cccaatggga aaatttgtgg agggcaatat gactcgtcac ttcatttccc attatatatg 360
aatggaaatt aacagcgctt atagacagta tctcctcaaa ctaaagccat gagaaaa 417
<210> 126
<211> 685
<212> DNA
<213> Artificial sequence
<400> 126
ccatctgcat gtgagaacag caggaaggcc ctcaccagac accaaatgcc agagccttta 60
tcttggactt cccagcctcc agaactgtga gtgaatacat tggtattatt tgtaaattac 120
ccagtctcag gcattttgtt ataacagcac aaacagacta agacaatcat acagtgagaa 180
attaatcaac aactaataag caaagaggta gattaatctt gaaactatga tatagagtgt 240
tccatttggc tgctggaagt tttatttctt ggtctgggtg atggtcctcc ttgatggccc 300
aagccactct ctcagttttt taaaaaattg ttttatcaag gtctctggat tcttcatggg 360
aatgacttcc agtttatatt ttttggcttg gttccaaaaa gctatcagct aaggaatgca 420
tatacttact tcccctatgg gtaaagtaaa tgagaatttt agaagccaac tcacattttt 480
agcctgtaca gaatctgcaa ttcaccaagc tacttctgac tcatgtctat aaagttcttc 540
cctgttcttt tctcacttca catgtactct ttgcaagaat tcatccactt gtgtagtttc 600
agtctgttga tgactaccca tctataattc cagcagagaa tgatcttttg agttttagac 660
atgtagaaca agctgcctga aaaaa 685
<210> 127
<211> 979
<212> DNA
<213> Artificial sequence
<400> 127
cacatttctg cctgtgagat acagcaggag gccctcacca gacaccaaat gccagagcct 60
ttatcttgga cttcccagcc tccagaactg tgagtgaata cattggtatt atttgtaaat 120
tacccagtct caggcatttt gttataacag cacaaacaga ctaagacaat catacagtga 180
gaaattaatc aacaactaat aagcaaagag gtagattaat cttgaaacta tgatatagag 240
tgttccattt ggctgctgga agttttattt cttggtctgg gtgatggtca gtctcacttc 300
cccagcacca ccactttatg aaaacaagga cttactaaga tcatcagtga ctttgtaata 360
gctaattagt gtattttaat tcgtccatct tcttgactat attttaacat tgatcctgtt 420
ggtcaactct gctaatcaaa actttatcct ccttggttcc cagaacaata ttatcttgaa 480
tatctcattt ctctaatcat ataataattg tgaggtgctt ggcacaatgc ctagtgcgta 540
gtaagaactc agtaaaatat catctgccat cgacaccata aaaattaatt tacttactca 600
acaaatactt ttgtatgaag tttgtgctag gtaggcccag taattggtac ttggtataga 660
gcaatgaaaa gccctaccct cataaagctt atattcttgg aagcagaagt tggaagacag 720
acattgacaa ataaaaatta aatacatgat gtgtcagatg gtcatacaca cagtgtggaa 780
gaacaaagag gaaaacaagt ggagagagag agggaggtgg aagaggagtg ctgccatgaa 840
aatgtggtaa tcaaaaaagg tcttactgaa aaggtggcat ttaagcaatt ctaaagacct 900
gaggatgtgg gccatatgta taattggggg ggaaaagtag tccaggagag tcctaataag 960
ttaaaatgcc ccaaagcag 979
<210> 128
<211> 989
<212> DNA
<213> Artificial sequence
<400> 128
accttctgcg tgtgagatac agcaggaagg ccctcaccag acaccaaatg ccagagcctt 60
tatcttggac ttcccagcct ccagaactgt gagtgaatac attggtatta tttgtaaatt 120
acccagtctc aggcattttg ttataacagc acaaacagac taagacaatc atacagtgag 180
aaattaatca acaactaata agcaaagagg tagattaatc ttgaaactat gatatagagt 240
gttccatttg gctgctggaa gttttatttc ttggtctggg tgatggtctc acttccccag 300
caccaccact ttatgaaaac aaggacttac taagatcatc agtgactttg taatagctaa 360
ttagtgtatt ttaattcgtc catcttcttg actatatttt aacattgatc ctgttggtca 420
actctgctaa tcaaaacttt atcctccttg gttcccagaa caatattatc ttgaatatct 480
catttctcta atcatataat aattgtgagg tgcttggcac aatgcctagt gcgtagtaag 540
aactcagtaa aatatcatct gccatcgaca ccataaaaat taatttactt actcaacaaa 600
tacttttgta tgaagtttgt gctaggtagg cccagtaatt ggtacttggt atagagcaat 660
gaaaagccct accctcataa agcttatatt cttggaagca gaagttggaa gacagacatt 720
gacaaataaa aattaaatac atgatgtgtc agatggtcat acacacagtg tggaagaaca 780
aagaggaaaa caagtggaga gagagaggga ggtggaagag gagtgctgcc atgaaaatgt 840
ggtaatcaaa aaaggtctta ctgaaaaggt ggcatttaag caaattctaa agacctgagg 900
atgtgggcca tatgtataat tgggggggaa aagtagtcca ggagagtcct aataagttaa 960
aatgccccaa agcaggaata ttcttggca 989
<210> 129
<211> 720
<212> DNA
<213> Artificial sequence
<400> 129
gccgtttgcc gggtgagata cagcaggatg gccctcacca gacaccgaat gccagagcct 60
ttatcttgga cttcccagcc tccagaactg tgagtgaata cattggtatt atttgtaaat 120
tacccagtct caggcatttt gttataacag cacaaacaga ctaagacaat catacagtga 180
gaaattaatc aacaactaat aagcaaagag gtagattaat cttgaaacta tgatatagag 240
tgttccattt ggctgctgga agttttattt cttggtctgg gtgatggtcg ccaagagttt 300
gagaccagcc tgggcaacat aatgagatac catttctaca aaacataaaa aaaaaaaaaa 360
aaacgccgtt tttttttccc ccccttttgg gaaaccttga ggaaagattt ttttggaccc 420
aaaaagttct gttacgggtc cgggggattt ttttaatttc ccttttcctc ccagtggggg 480
gagaatggga aaacccctct cataaaaaaa aataaattta aaaccaaaaa aggcccccca 540
agccccccga taaccctctt aaatttgaaa acccctttat taattcccct ttaggcaaaa 600
gttgtggggg ggccctattt agggagggaa gatatttgga agttaaaaaa tcccttccct 660
ttgacacccc ctttagggac ccaacaagga gataaaaatg gtttttttgg gtttcgggaa 720
<210> 130
<211> 661
<212> DNA
<213> Artificial sequence
<400> 130
gggagttaat attgttatgc tgcagggtta ttgtaggtgt caatgaaatg atgtgtctgg 60
cactataaaa gcacagagcc cggtgcctgg ctattagtaa ctgtttaata aatgttaatt 120
cctttctctg cccaggacat cagtaggcag atgtagcaat ttaaaacttc tagtgttact 180
ttaaattcct gaatgaaggt agaggactga aaagatatca tggtattcaa aagtatgatc 240
cattgcttct taagaataga gttcagaaaa gcttgacaga ttcctgtact ctgaggcagc 300
accatagccg gtaatctgta ggatggctat tggttttgtg ctcacaaatg cttgcttggg 360
caggccccag gaaatctggt agactgtaag cccagtaaga tttcaaatct tactttacgg 420
cagtgttttt caccttgact gtacattgaa atcacctgga tgctttgaaa aataacagcg 480
tcagtgtcca acctccagaa atactgatta agttggtctg gaatggagtc tcactccaca 540
cacccaatgg gaaaatttgt ggagggcaat atgactcgtc acttcatttc ccattatata 600
tgaatggaaa ttaacagcgc ttatagacag tatctcctca aactaagcct ttgtgaaaga 660
a 661

Claims (9)

1. A gRNA for treating Duchenne muscular dystrophy, the gRNA consisting of a gRNA whose target sequence is shown in SEQ ID NO. 22 and a gRNA whose target sequence is shown in SEQ ID NO. 59.
2. An expression vector for treating duchenne muscular dystrophy, said expression vector expressing a gRNA of claim 1.
3. The expression vector of claim 2, wherein the base vector of the expression vector is an AAV vector.
4. A CRISPR-Cas9 system for treating duchenne muscular dystrophy, comprising a gRNA of claim 1 and a Cas9 protein.
5. The CRISPR-Cas9 system according to claim 4, wherein the Cas9 protein is a SaCas9 protein.
6. An expression vector for treating duchenne muscular dystrophy, said expression vector expressing a Cas9 protein and a gRNA of claim 1.
7. The expression vector of claim 6, wherein the C as9 protein is SaCas9 protein, and the basic vector of the expression vector is an AAV vector.
8. Use of a gRNA of claim 1 or an expression vector of claim 2 or 3 in the manufacture of a medicament for preventing or treating duchenne muscular dystrophy.
9. Use of the CRISPR-Cas9 system of claim 4 or 5, or the expression vector of claim 6 or 7, in the manufacture of a medicament for the prevention or treatment of duchenne muscular dystrophy.
CN201810851087.1A 2018-07-27 2018-07-27 gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy Active CN110760511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810851087.1A CN110760511B (en) 2018-07-27 2018-07-27 gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810851087.1A CN110760511B (en) 2018-07-27 2018-07-27 gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy

Publications (2)

Publication Number Publication Date
CN110760511A CN110760511A (en) 2020-02-07
CN110760511B true CN110760511B (en) 2021-09-07

Family

ID=69328867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810851087.1A Active CN110760511B (en) 2018-07-27 2018-07-27 gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy

Country Status (1)

Country Link
CN (1) CN110760511B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499333A (en) * 2019-08-01 2019-11-26 广州德赫生物科技有限公司 For repairing the nucleic acid sequence and system of DMD gene mutation
CN115011598A (en) * 2020-09-02 2022-09-06 西湖大学 Duchenne muscular dystrophy related exon splicing enhancer, sgRNA, gene editing tool and application
CN117959464A (en) * 2022-10-27 2024-05-03 苏州新芽基因生物技术有限公司 Gene editor and anti-fibrosis inhibitor nucleic acid pharmaceutical compositions for the treatment of disease
CN115820642B (en) * 2022-11-11 2023-10-10 昆明理工大学 CRISPR-Cas9 system for treating Dunaliella muscular dystrophy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119783A1 (en) * 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
EP3539573B1 (en) * 2013-06-05 2024-02-14 Duke University Rna-guided gene editing and gene regulation
JP6837429B2 (en) * 2014-08-11 2021-03-03 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Prevention of muscular dystrophy by editing CRISPR / CAS9-mediated genes
CA3048963A1 (en) * 2016-02-11 2017-08-17 The Regents Of The University Of California Methods and compositions for modifying a mutant dystrophin gene in a cell's genome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy;Niclas等;《NATURE COMMUNICATIONS》;20170228;14454 *

Also Published As

Publication number Publication date
CN110760511A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110760511B (en) gRNA, expression vector and CRISPR-Cas9 system for treating duchenne muscular dystrophy
KR20230057487A (en) Methods and compositions for genomic manipulation
KR101999410B1 (en) Chromosomal landing pads and related uses
JP2023145691A (en) Nuclease systems for genetic engineering
EP3071592B1 (en) Artificial dna-binding proteins and uses thereof
KR20210091740A (en) Improved system for cell-mediated oncolytic virus therapy
AU2016380351A1 (en) Novel CRISPR-associated transposases and uses thereof
KR20210149060A (en) RNA-induced DNA integration using TN7-like transposons
KR20230053735A (en) Improved methods and compositions for manipulation of genomes
CN107406854A (en) RNA-guided eradication of human JC virus and other polyomaviruses
CN106381334B (en) Quality control method and kit for detecting human BRCA1/2 gene variation based on high-throughput sequencing
KR20170099939A (en) Sequencing control
KR20140113997A (en) Genetic switches for butanol production
CN101939445A (en) Be used to prepare polynucleotide and the method for the plant of resistant to fungal pathogens
KR20210068068A (en) Prataxin expression constructs with engineered promoters and methods of use thereof
KR20210125560A (en) Disruption of splice receptor sites of disease-associated genes using an adenosine deaminase base editor, including for treatment of hereditary diseases
KR20160102024A (en) A method of making adenovirus and corresponding plasmids
KR20230111189A (en) Reprogrammable ISCB nuclease and uses thereof
CN115335527A (en) Microbial system for producing eukaryotic translatable mRNA and delivering same to eukaryotic organisms
WO2019134561A1 (en) High efficiency in vivo knock-in using crispr
KR20220066289A (en) Compositions and methods for editing mutations that enable transcription or expression
KR20220019685A (en) Compositions and methods for the treatment of hepatitis B
KR20230093241A (en) Compositions and methods for the treatment of neurological disorders associated with glucosylceramides beta deficiency
CN113559134B (en) Medicine for treating tumor
CN110204605B (en) Application of transcription factor C/EBP alpha as transcription factor of ACOX1 promoter region

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant