CN110758663B - 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法 - Google Patents

一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法 Download PDF

Info

Publication number
CN110758663B
CN110758663B CN201911229980.1A CN201911229980A CN110758663B CN 110758663 B CN110758663 B CN 110758663B CN 201911229980 A CN201911229980 A CN 201911229980A CN 110758663 B CN110758663 B CN 110758663B
Authority
CN
China
Prior art keywords
wind turbine
tension leg
module
platform
leg platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911229980.1A
Other languages
English (en)
Other versions
CN110758663A (zh
Inventor
任年鑫
吴鸿博
王安安
欧进萍
周智
马哲
周道成
李想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201911229980.1A priority Critical patent/CN110758663B/zh
Publication of CN110758663A publication Critical patent/CN110758663A/zh
Application granted granted Critical
Publication of CN110758663B publication Critical patent/CN110758663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种张力腿平台‑风力机双体模块化浮式集成系统及其使用方法,属于海洋能源利用领域,包括风力机模块、张力腿平台模块、张力腿系统、平台‑风机塔架夹紧装置。张力腿式平台模块中心设置内径大于风力机模块塔架外径的套筒,套筒内对称分布的垂向多层风机塔架夹紧装置,利用齿轮驱动方式将橡胶塞伸向风力机塔架,并将风力机塔架与张力腿平台进行夹紧对接,限制风力机模块与张力腿平台模块的相对运动。本发明风力机模块具有自平衡性,其与张力腿平台模块的安装不改变张力腿系统的预张力水平;利于提升浮式海上风机垂向对接安装/拆分撤除过程中的容错性能,兼容性也显著增强;张力腿平台采用耐疲劳耐腐蚀性FRP材料,能够为两台大型海上风力机提供全寿命服役支撑。

Description

一种张力腿平台-风力机双体模块化浮式集成系统及其使用 方法
技术领域
本发明属于海洋能利用领域,涉及张力腿式风力机结构全寿命周期的设计、安装、运维和撤除等技术,提供一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法。
背景技术
近年来,由于全球环境恶化和能源危机等问题,世界各国纷纷将目光投向海上风能开发,拟通过建设海上风电场电来改善能源结构。海上风能资源丰富,且相比陆上风力更稳定,因此近年来各国不断加强海上风力机的研究和建设。然而对于挪威、美国、中国等国家来说,海上风力资源的巨大潜力主要在水深大于50m的深水域,而相比浮式海上风力机,固定式海上风力机建造成本随着水深的增加将变得十分巨大,因此浮式风力机在深水区域更具有发展前景。浮式风力机按其基础形式能够分为半潜式、Spar式、张力腿式等,其中张力腿式浮式风力机具有平面外运动较小、性价比高、适用水深范围广和稳定性好等优点。而浮式海上风力机安装的安全性和便捷性一直是制约其发展的关键因素。
现有技术中,海上风力机的安装方法主要包括分体安装和整体安装:分体安装即使用配备液压支腿的移动自升平台,完成风力机的分段式吊装;整体安装即先在陆上完成风力机的整体组装,使用大型浮吊完成风力机的整体吊装。
现有技术的不足是:海上风力机的安装需要实现风力机塔架与海上基座上塔筒的对接,在保证对接准确性的同时,需要极力避免安装过程中的碰撞损伤。尤其是采用分体安装方法时,由于海上风浪的影响,浮式平台基座位置极其容易发生较大运动,从而进一步加大对接的难度。而当采用整体安装方法时,其海上运输要求较高,不仅需要更大承载能力的运输船,还需要在运输过程中保持较好的稳定性,从而避免整体结构的损伤。目前还非常缺少能够便捷装卸和兼容性好的浮式平台海上风力机模块化组合系统。
发明内容
针对现有技术存在的问题,本发明提一种张力腿平台-风力机双体模块化浮式集成系统,采用易于建造、安装、拆卸、兼容性好的模块化概念,通过在张力腿平台内设置平台-风力机塔架夹紧装置,将张力腿平台和风力机划分为两个易于组合和拆分的自平衡主要模块,从而降低张力腿式风力机平台海上装卸和更换的困难,并改善其受力性能,降低整体结构安装和撤除成本。
为了达到上述目的,本发明采用的技术方案为:
一种张力腿平台-风力机双体模块化浮式集成系统,包括风力机模块1、张力腿平台模块2、张力腿系统3、多个平台-风力机塔架夹紧装置。
所述的风力机模块1具有浮力自平衡特性,放入水中后风力机模块1自浮力等于其自身结构重力,能够实现自身重力与浮力自平衡。所述张力腿平台模块2具有浮力自平衡特性,放入水中后,半潜式平台模块2自浮力等于其自身结构重力,能够实现自身重力与浮力自平衡,其中心设置风力机套筒,风力机套筒的内直径大于风力机模块1外直径,风力机模块1底部可以穿过风力机套筒进入海中。所述的多个平台-风力机塔架夹紧装置垂向多层对称分布于张力腿平台模块2中心套筒内,各平台-风力机塔架夹紧装置结构尺寸相同,可协同工作,便于维护。所述张力腿系统3包括多个呈对称分布的张力腿,其上端与张力腿平台模块2的四个端角铰接,下端固定在海底,用于限制张力腿平台模块的运动响应。
所述平台-风力机塔架夹紧装置包括橡胶塞4、耐腐蚀高摩擦系数的纤维复合材料垫5、齿轮传动结构。所述的纤维复合材料垫5固定在橡胶塞4一端的外侧表面,有利于张力腿平台与风机结构的夹紧效果;橡胶塞4嵌入张力腿平台模块2中心风力机套筒中,能够沿风力机套筒直径方向滑动。所述齿轮传动结构包括齿轮结构6、凸轮7、驱动轴8、齿条9、水平杆10、挡块11。所述的水平杆10一端与橡胶塞4的另一端固接,另一端设有齿条9,齿条9与齿轮结构6啮合连接齿条9长度满足:齿轮结构6能够在齿条9上旋转一圈;所述齿轮结构6与凸轮7均固定在驱动轴8上,并能随其一起转动,齿轮结构6刚好能够在挡块11底部与齿条9之间转动,凸轮7位于齿轮结构6一侧,转动过程中能够与挡块11接触;所述驱动轴8轴心位置固定,通过发动机驱动其绕轴心旋转;所述挡块11顶端固定于半潜式平台模块2内部,设于齿条9的上方,凸轮7转动到一定位置后能够与挡块11接触,锁紧齿轮结构6的位置。
进一步的,所述的张力腿平台模块2和张力腿的材料均采用纤维增强复合材料(FRP)或普通钢材,增强复合材料(FRP)具有耐腐蚀耐疲劳的优势,有利于张力腿平台的长寿命设计。
进一步的,所述的风力机模块1底部位于风力机套筒内所对应的加紧区域进行结构加固处理。
一种张力腿平台-风力机双体模块化浮式集成系统的使用方法,具体为:
当安装风力机模块1时,通过专业海上吊装设备将风力机模块1吊至张力腿平台模块2中心套筒内,待风力机模块1在水中自平衡后,各平台-风力机塔架夹紧装置的驱动轴8协同向筒外方向转动,带动齿轮结构6和凸轮7绕其同方向旋转,再通过与齿轮结构6啮合的齿条9驱动水平杆10,将橡胶塞4推向筒心,不断接近风力机模块1,直到纤维复合材料垫5与风力机模块1的塔架外壁充分夹紧接触,从而限制了风力机模块1与张力腿平台2的相对运动,此时,齿轮结构6旋转至齿条9远离橡胶塞4一侧,凸轮7旋转至与挡块11靠近橡胶塞4的侧面接触,通过挡块11防止齿轮结构6继续向筒外方向旋转,使橡胶塞4不再向筒内延伸,并锁定此夹紧状态。
当拆卸风力机模块1时,各平台-风力机塔架夹紧装置的驱动轴8协同向筒内方向转动,带动齿轮结构6和凸轮7绕其同方向旋转,再通过与齿轮结构6啮合的齿条9驱动水平杆10,将橡胶塞4拉向筒外,从而解除对风力机模块1的夹紧约束。当橡胶塞4向筒外收回适当距离后,既齿轮结构6旋转至齿条9靠近橡胶塞4一侧,凸轮7旋转至与挡块11远离橡胶塞4的侧面接触,通过挡板11防止齿轮结构6继续向筒内方向旋转,防止橡胶塞4继续向筒外滑动,此时能够方便地通过相关吊装设备将风力机模块1吊出平台中心套筒。
本发明张力腿平台-风力机双体模块化浮式集成系统,采用易于建造、安装、拆卸和兼容性好的模块化概念,通过在张力腿平台中心设置套筒和平台-风力机塔架夹紧装置,将张力腿平台和风力机划分为两个易于组合和拆分的自平衡模块,降低张力腿式海上风力机平台的安装/撤除风险及相关施工成本,为海上风力机的设计、安装、运维和撤除提供便捷的技术方案;其有益效果是:
(1)风力机模块的浮力等于其自身结构重力,具有自平衡性,且风力机模块与张力腿平台模块的安装将不改变原张力腿平台模块浮力与其自身结构重力的关系,即不改变张力腿系统的预张力水平;改善了风力机模块与张力腿平台安装/撤除过程中的受力特征,减少了平台模块与风力机模块之间的垂向耦合受力,从而提高了整个张力腿式风力机平台系统的安装/撤除过程的安全性。
(2)张力腿平台中心套筒内径略大于风力机模块塔架外径的设计并配合夹紧装置,有利于提升浮式海上风力机对接安装/拆分撤除过程中的容错性能,不但降低了平台与风力机塔架对接结构部位的建造精度要求,而且也降低对吊装设备及安装/撤除海况的限制条件,进而节约安装及撤除成本。
(3)由于平台模块与风力机模块可通过控制夹紧装置的夹紧状态实现安装和撤除过程的便捷操作,便于风力机因重大故障而进行撤除维修及更换新风力机等运维操作。
(4)由于平台模块与风力机模块的结构匹配度要求不高(只要满足平台套筒内径适当大于风力机塔架外径),该组合模式能够广泛地适用于不同类型和不同额定功率的海上风力机浮式平台系统的模块化集成,即同一张力腿平台系统与不同风力机模块系统的兼容性也显著增强。
(5)张力腿平台可采用耐疲劳耐腐蚀的FRP材料结构设计方案,其平台设计寿命可达50年以上,即能够为两台大型海上风力机提供全寿命服役支撑(单体设计寿命一般为20~25年),从而节约了系统结构成本,提高了平台结构使用效率。
附图说明
图1是本发明张力腿平台-风力机双体模块化浮式集成系统的正视示意图,其中细虚线表示海平面。
图2是本发明张力腿平台-风力机双体模块化浮式集成系统的俯视示意图(不含风力机)。
图3(a)是本发明风力机夹紧装置的正视示意图。
图3(b)是本发明风力机夹紧装置的俯视示意图,其中挡块11顶端固定于张力腿平台模块内部。
图中:1风力机模块;2张力腿平台模块;3张力腿系统;3a张力腿系统上部平台连接处;3b张力腿系统下部海底连接处;4橡胶塞;5纤维复合材料垫;6齿轮结构;7凸轮;8驱动轴;9齿条;10水平杆;11挡块。
具体实施方式
以下结合附图和具体实施例,对本发明作进一步说明。
张力腿平台-风力机双体模块化浮式集成系统包括风力机模块1、张力腿平台模块2、张力腿系统3、平台-风力机塔架夹紧装置。
所述风力机模块1的自身重力与浮力自平衡;所述张力腿平台模块2能够通过自身结构重力加上张力腿预张力与浮力达到自平衡,其中心设置风力机套筒,其内直径比风力机模块1外直径大1m,风力机模块1底部可以穿过套筒进入海中;所述张力腿系统3包含四个呈对称分布的张力腿,其上端与张力腿平台模块2四个端角在张力腿系统上部平台连接处3a铰接,下端在张力腿系统下部海底连接处3b处固定在海底,用于限制张力腿平台模块的运动响应;张力腿平台模块和张力腿的材料均可采用纤维增强复合材料FRP,增强复合材料FRP具有耐腐蚀耐疲劳的优势,有利于张力腿平台的长寿命设计。
所述平台-风力机塔架夹紧装置垂向多层对称分布于张力腿平台模块2中心套筒内,包括橡胶塞4、纤维复合材料垫5、齿轮传动结构,其中耐腐蚀高摩擦系数纤维复合材料垫5固定在橡胶塞4外侧表面,有利于张力腿平台与风机结构的夹紧效果,橡胶塞4嵌入张力腿平台模块2中心套筒中,可以沿平台中心套筒直径方向滑动,各平台-风力机塔架夹紧装置结构尺寸相同,可协同工作,便于维护;此外,风力机模块(1)所对应加紧区域的位置建议进行结构局部加固处理,具体为增加此处风力机局部塔架结构的壁厚及在此处塔架外侧增设一层耐腐蚀耐疲劳高性能复合纤维材料。
所述齿轮传动结构包括齿轮结构6、凸轮7、驱动轴8、齿条9、水平杆10、挡块11。其中驱动轴8轴心位置固定,可通过发动机驱动其绕轴心旋转,齿轮结构6和凸轮7均固定在驱动轴8上,并能随其一起转动,齿轮结构6与齿条9啮合连接,齿条9固定在水平杆10的一端,水平杆10另一端与橡胶塞4固接。所述挡块11顶端固定于半潜式平台模块2内部, 设于水平杆10的上方。
使用时:
当进行风力机模块1安装时,通过专业海上吊装设备将风力机模块1吊至张力腿平台模块2中心套筒内,待风力机模块1在水中自平衡后,各平台-风力机塔架夹紧装置的驱动轴8协同向筒外方向转动,带动齿轮结构6和凸轮7绕其同方向旋转,再通过与齿轮结构6啮合的齿条9驱动水平杆10,将橡胶塞4推向筒心,不断接近风力机模块1,直到其耐腐蚀高摩擦系数纤维复合材料垫5与风力机模块1的塔架外壁充分夹紧接触,从而限制了风力机模块1与张力腿平台2的相对运动,此时凸轮7旋转至与挡块11侧面相接触的位置,通过挡块11防止齿轮结构6继续向筒外方向旋转,使橡胶塞4不再向筒内延伸,并锁定此夹紧状态。
当进行风力机模块1拆卸时,各平台-风力机塔架夹紧装置的驱动轴8协同向筒内方向转动,带动齿轮结构6和凸轮7绕其同方向旋转,再通过与齿轮结构6啮合的齿条9驱动水平杆10,将橡胶塞4拉向筒外,从而解除对风力机模块1的夹紧约束,当橡胶塞4向筒外收回适当距离后,凸轮7旋转至与挡板11底面相接触的位置,通过挡板11防止齿轮结构6继续向筒内方向旋转,防止橡胶塞4继续向筒外滑动,此时能够方便地通过专业海上吊装设备将风力机模块1吊出平台中心套筒。
本发明设计要结合以下因素:
(1)根据选址地点的水深、风浪统计特征和施工安装要求,优化选取张力腿平台模块的尺寸、形状以及张力腿主要结构设计参数,有效地改善张力腿平台模块的海上安装条件,并使其动力响应特征满足设计要求。
(2)结合张力腿平台模块的主要设计参数,根据选址地点的风资源特征,优化选取风力机模块的类型、尺寸、额定功率等主要设计参数,使风力机模块与张力腿平台模块的组合结构受力特征更优,安装更安全便利,并能捕获更多的风能。
(3)结合张力腿平台模块和风力机平台模块的主要设计参数,根据风力机模块结构受力和运动性能要求,优化选取平台-风力机塔架夹紧装置的数量、分布方式及各部件的尺寸和形状,优化平台-风力机塔架夹紧装置对风力机模块的相对运动的控制,并使风力机模块的动力响应特征满足设计要求。
张力腿平台-风力机双体模块化浮式集成系统的施工安装流程如下:首先依据现有张力腿平台施工工艺,按照张力腿系统布设方案,将张力腿系统3安装于拟选址区域的海底;其次,用专业施工船将在船坞安装好的上部张力腿平台模块2托运到张力腿系统3对应指定海域,并通过国际海洋工程领域所采用的张力腿平台注水/排水安装策略,完成张力腿平台模块2与张力腿系统3的对接安装;再次,利用专业海上吊装船将风力机模块1吊至张力腿平台模块2套筒内,并使风力机模块1下部结构缓缓进入海水中,最终使风力机模块1能够利用自身自重和浮力保持基本的垂向受力平衡;最后,协同启动张力腿平台模块2内的所有平台-风力机塔架夹紧装置,成功夹紧风力机模块1,即限制其相对运动,进而完成张力腿平台-风力机双体模块化浮式集成系统的安装。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (3)

1.一种张力腿平台-风力机双体模块化浮式集成系统,其特征在于,所述的双体模块化浮式集成系统包括风力机模块(1)、张力腿平台模块(2)、张力腿系统(3)、多个平台-风力机塔架夹紧装置;
所述的风力机模块(1)具有浮力自平衡特性;所述张力腿平台模块(2)具有浮力自平衡特性,其中心设置风力机套筒,风力机套筒的内直径大于风力机模块(1)外直径,风力机模块(1)底部能够穿过风力机套筒进入海中;所述的多个平台-风力机塔架夹紧装置垂向多层对称分布于张力腿平台模块(2)中心套筒内,各平台-风力机塔架夹紧装置结构尺寸相同,协同工作;所述张力腿系统(3)包括多个呈对称分布的张力腿,其上端与张力腿平台模块(2)的四个端角铰接,下端固定在海底,用于限制张力腿平台模块的运动响应;
所述平台-风力机塔架夹紧装置包括橡胶塞(4)、耐腐蚀高摩擦系数的纤维复合材料垫(5)、齿轮传动结构;所述的纤维复合材料垫(5)固定在橡胶塞(4)一端的外侧表面,利于张力腿平台与风机结构的夹紧效果;橡胶塞(4)嵌入张力腿平台模块(2)中心风力机套筒中,能够沿风力机套筒直径方向滑动;所述齿轮传动结构包括齿轮结构(6)、凸轮(7)、驱动轴(8)、齿条(9)、水平杆(10)、挡块(11);所述的水平杆(10)一端与橡胶塞(4)的另一端固接,另一端设有齿条(9);所述齿轮结构(6)与凸轮(7)均固定在驱动轴(8)上,并能随其一起转动,齿轮结构(6)恰好能够在挡块(11)底部与齿条(9)之间转动,凸轮(7)位于齿轮结构(6)一侧,转动过程中能够与挡块(11)接触;所述驱动轴(8)轴心位置固定,通过发动机驱动其绕轴心旋转;所述挡块(11)顶端固定于张力腿平台模块(2)内部,设于齿条(9)的上方,凸轮(7)转动到一定位置后与挡块(11)接触,锁紧齿轮结构(6)的位置;
所述的张力腿平台-风力机双体模块化浮式集成系统的使用方法,具体为,当安装风力机模块(1)时,通过专业海上吊装设备将风力机模块(1)吊至张力腿平台模块(2)中心套筒内,待风力机模块(1)在水中自平衡后,各平台-风力机塔架夹紧装置的驱动轴(8)协同向筒外方向转动,带动齿轮结构(6)和凸轮(7)绕其同方向旋转,再通过与齿轮结构(6)啮合的齿条(9)驱动水平杆(10),将橡胶塞(4)推向筒心,不断接近风力机模块(1),直到纤维复合材料垫(5)与风力机模块(1)的塔架外壁充分夹紧接触,从而限制了风力机模块(1)与张力腿平台模块(2)的相对运动,此时,齿轮结构(6)旋转至齿条(9)远离橡胶塞(4)一侧,凸轮(7)旋转至与挡块(11)靠近橡胶塞(4)的侧面接触,通过挡块(11)防止齿轮结构(6)继续向筒外方向旋转,使橡胶塞(4)不再向筒内延伸,并锁定此夹紧状态;
当拆卸风力机模块(1)时,各平台-风力机塔架夹紧装置的驱动轴(8)协同向筒内方向转动,带动齿轮结构(6)和凸轮(7)绕其同方向旋转,再通过与齿轮结构(6)啮合的齿条(9)驱动水平杆(10),将橡胶塞(4)拉向筒外,从而解除对风力机模块(1)的夹紧约束;当橡胶塞(4)向筒外收回适当距离后,既齿轮结构(6)旋转至齿条(9)靠近橡胶塞(4)一侧,凸轮(7)旋转至与挡块(11)远离橡胶塞(4)的侧面接触,通过挡块(11)防止齿轮结构(6)继续向筒内方向旋转,防止橡胶塞(4)继续向筒外滑动,此时能够方便地通过相关吊装设备将风力机模块(1)吊出平台中心套筒。
2.根据权利要求1所述的一种张力腿平台-风力机双体模块化浮式集成系统,其特征在于,所述的张力腿平台模块(2)和张力腿的材料均采用纤维增强复合材料FRP或普通钢材。
3.根据权利要求1所述的一种张力腿平台-风力机双体模块化浮式集成系统,其特征在于,所述的风力机模块(1)底部位于风力机套筒内所对应的加紧区域进行结构加固处理。
CN201911229980.1A 2019-12-04 2019-12-04 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法 Active CN110758663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911229980.1A CN110758663B (zh) 2019-12-04 2019-12-04 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911229980.1A CN110758663B (zh) 2019-12-04 2019-12-04 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法

Publications (2)

Publication Number Publication Date
CN110758663A CN110758663A (zh) 2020-02-07
CN110758663B true CN110758663B (zh) 2023-06-16

Family

ID=69340853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911229980.1A Active CN110758663B (zh) 2019-12-04 2019-12-04 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法

Country Status (1)

Country Link
CN (1) CN110758663B (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037043B4 (de) * 2008-08-08 2011-05-12 Grinbaum, Jan, Dipl.-Ing. Vorrichtung für eine Kraftfahrzeugbremsanlage
CN102079477A (zh) * 2009-11-27 2011-06-01 三一电气有限责任公司 一种风机抱举装置及移动式水上作业平台
EP2604501B1 (en) * 2011-12-15 2015-02-18 Andreas Graf System of anchoring and mooring of floating wind turbine towers and corresponding methods for towing and erecting thereof
EP2821335B1 (en) * 2013-07-02 2018-11-14 Alstom Renovables España, S.L. Floating wind turbine
CN103925172B (zh) * 2014-04-08 2017-05-17 上海交通大学 张力腿式海上浮动式风力机的整体安装方法
CN103967713B (zh) * 2014-05-14 2016-06-01 大连理工大学 基于浮式张力腿平台的风能-波浪能集成发电结构
CN107575337A (zh) * 2017-10-18 2018-01-12 大连理工大学 基于张力腿平台垂直轴风力机与垂向‑水平两向波浪能发电集成结构
ES2711154A1 (es) * 2017-10-31 2019-04-30 De La Pena Razquin Emmanuel Garcia Collar cerrado de cincha para la sujección de cargas por fricción
CN107939614B (zh) * 2017-11-23 2019-08-27 武汉理工大学 液压斜推式海上风机安装系统
CN210882541U (zh) * 2019-12-04 2020-06-30 海南大学 一种张力腿平台-风力机双体模块化浮式集成系统

Also Published As

Publication number Publication date
CN110758663A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
Guo et al. Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends
JP5274329B2 (ja) 洋上風力発電設備及びその施工方法
CN102155352B (zh) 漂浮式水上风力发电设备
CN202295230U (zh) 浮式海上风电基础
JP2010223114A5 (zh)
CN103925172B (zh) 张力腿式海上浮动式风力机的整体安装方法
CN104136358A (zh) 用于在运输与装配过程中搬运风轮机部件的方法及设备
CN108951593B (zh) 基于四桶导管架复合基础的海上风机安装系统及安装方法
CN104376886B (zh) 筒型基础的海上核电平台
CN110775215B (zh) 一种半潜平台-风力机双体模块化浮式集成系统及其使用方法
CN111942533A (zh) 一种三立柱型式海上风力发电平台系统
CN102639868A (zh) 海上风机整机
CN210882541U (zh) 一种张力腿平台-风力机双体模块化浮式集成系统
CN210942168U (zh) 一种半潜平台-风力机双体模块化浮式集成系统
KR101352095B1 (ko) 석션파일 하부구조물
CN110758663B (zh) 一种张力腿平台-风力机双体模块化浮式集成系统及其使用方法
CN113734369A (zh) 半潜式钢混浮式风机基础
CN104554639A (zh) 大型近海风电设备安装装备
CN112373640A (zh) 一种海上浮式风电平台
CN204189463U (zh) 一种筒型基础的海上核电平台
CN204642060U (zh) 一种大型近海风电设备安装装备
CN111252660A (zh) 海上风机整体运输的浮力装置及方法
CN111170155A (zh) 一种海流能发电机组叶片垂直吊具及其安装方法
CN216332633U (zh) 半潜式钢混浮式风机基础
CN103925171A (zh) 深吃水多立柱海上浮动式风力机基础

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant