CN110749865A - Method for reducing zero second delay fluctuation of coherent measurement equipment - Google Patents

Method for reducing zero second delay fluctuation of coherent measurement equipment Download PDF

Info

Publication number
CN110749865A
CN110749865A CN201910929130.6A CN201910929130A CN110749865A CN 110749865 A CN110749865 A CN 110749865A CN 201910929130 A CN201910929130 A CN 201910929130A CN 110749865 A CN110749865 A CN 110749865A
Authority
CN
China
Prior art keywords
clock
dac
frequency
adc
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910929130.6A
Other languages
Chinese (zh)
Other versions
CN110749865B (en
Inventor
蒋文丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Electronic Technology Institute No 10 Institute of Cetc
Original Assignee
Southwest Electronic Technology Institute No 10 Institute of Cetc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Electronic Technology Institute No 10 Institute of Cetc filed Critical Southwest Electronic Technology Institute No 10 Institute of Cetc
Priority to CN201910929130.6A priority Critical patent/CN110749865B/en
Publication of CN110749865A publication Critical patent/CN110749865A/en
Application granted granted Critical
Publication of CN110749865B publication Critical patent/CN110749865B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21137Analog to digital conversion, ADC, DAC

Abstract

The invention provides a method for reducing zero-second delay fluctuation of coherent measurement equipment, and aims to provide a circuit design method for reducing the zero-second delay fluctuation of the coherent measurement equipment. The invention is realized by the following technical scheme: in the circuit design of the coherent measurement equipment, a low-frequency reference clock of a signal processing circuit is promoted to a high-frequency clock through a phase-locked loop circuit, then the high-frequency clock signal is sent to a DAC (digital-to-analog converter), the DAC sends the high-frequency reference clock to a Field Programmable Gate Array (FPGA), the high-frequency clock signal is internally provided with a digital clock management module (DCM) through the FPGA, working clocks of the ADC and the DAC are generated in the DCM, and the working clock phases of the ADC and the DAC are aligned; the FPGA internal logic processing circuit takes an ADC working clock as a system clock, controls zero-second delay fluctuation generated by ADC sampling time blurring within a high-frequency clock wavelength, and outputs forwarding data generated after processing through a digital-to-analog converter (DAC).

Description

Method for reducing zero second delay fluctuation of coherent measurement equipment
Technical Field
The invention relates to a technology used in aerospace measurement and control, in particular to a method for reducing zero-second delay fluctuation of coherent measurement equipment through hardware circuit design.
Background
In space measurement and control, a coherent measurement method is usually adopted to complete distance measurement of a flying target, and a coherent forwarding device is installed on an aircraft platform and cooperates with a ground measurement and control station to complete a distance measurement task. Taking the case of satellite-ground radio measurement and control, the ground station modulates the ranging signal to an uplink carrier and transmits the uplink carrier, and the satellite-based coherent measurement device (generally called a measurement and control transponder) processes the received signal, wherein the processing of the ranging signal can adopt a relatively simple transparent transmission mode or a regeneration mode. And the processed ranging signals are modulated to downlink carriers again, the ranging signals received by the ground station and the local ranging signals are subjected to correlation operation to obtain signal transmission delay, and the distance is obtained through conversion. The signal transmission delay measured by the method comprises the real transmission time of the ranging signal in the space and the processing delay of the ranging signal in the coherent measurement equipment. The processing delay of the ranging signal in the coherent measurement equipment is called zero second delay, and the zero second delay needs to be deducted from the finally measured distance parameter. Due to the difference of parameter variation and design mode of circuit components, the zero-second delay parameter of each startup of the coherent measurement equipment has difference, and the difference is called zero-second delay fluctuation.
For the transparent transmission mode, the operations of frequency conversion, filtering, amplification and the like are only needed to be carried out on signals in an analog domain, the operations of signal regeneration and the like are not needed, and zero-second delay fluctuation is only related to the characteristics of components. For the regeneration mode, digital signal processing needs to be performed on the ranging signals to realize the processing and regeneration of the ranging signals, ADC and DAC conversion and digital signal processing need to be performed on the ranging signals to complete the processing and regeneration of the ranging signals, and the digital signal processing is completed through a field programmable gate array FPGA. The traditional distance measurement signal digital processing circuit sends a reference clock to an FPGA (field programmable gate array), and the FPGA respectively sends the reference clock to an ADC (analog to digital converter) and a DAC (digital to analog converter) to be used as sampling clocks. The reference clock of the traditional digital signal processing method is generally about 100MHz under the limitation of the frequency of an internal working clock of an FPGA device, and because the rising edge position of the reference clock has uncertainty when the computer is started every time, the sampling time of the ADC is fuzzy. Due to the initial phase difference of the reference clock after each startup, the sampling clock edge of the ADC sampling time has sampling time ambiguity of one wavelength, and when 100MHz sampling is used, the zero-second delay fluctuation of the measurement and control transponder caused by the sampling time ambiguity of the ranging signal ADC during each startup is 3 meters. In order to improve the measurement accuracy of the space measurement and control system, zero-second delay fluctuation of coherent measurement equipment needs to be reduced so as to accurately measure the distance of the aircraft.
Disclosure of Invention
In order to overcome the problem of overlarge zero-second delay fluctuation caused by fuzzy sampling time of an ADC (analog to digital converter) of the conventional digital signal processing circuit, the invention aims to provide a method for reducing the zero-second delay fluctuation of coherent measurement equipment.
The technical scheme adopted by the invention for solving the technical problems is as follows: a method for reducing zero second delay fluctuation of coherent measurement equipment is characterized by comprising the following steps: in the circuit design of the coherent measurement equipment, a low-frequency reference clock of a signal processing circuit is promoted to a high-frequency clock through a phase-locked loop circuit, then a high-frequency clock signal is sent to a digital-to-analog converter (DAC), the DAC sends the high-frequency reference clock to a Field Programmable Gate Array (FPGA), the high-frequency clock signal passes through a digital clock management module (DCM) built in the FPGA, working clocks of the ADC and the DAC are generated in the DCM, and the working clock phases of the ADC and the DAC are aligned; the FPGA internal logic processing circuit takes an ADC working clock as a system clock, controls zero-second delay fluctuation generated by ADC sampling time blurring within a high-frequency clock wavelength, and outputs forwarding data generated after processing through a digital-to-analog converter (DAC).
Compared with the prior art, the invention has the following beneficial effects:
the zero-second delay fluctuation of the coherent measurement equipment can be obviously reduced. According to the invention, the low-frequency reference clock is converted into the high-frequency clock through the phase-locked loop, the high-frequency clock is used as the DAC working clock and is sent to the FPGA, and the digital clock management module DCM in the FPGA generates the ADC sampling clock with the same phase as the DAC, so that the phase alignment of the ADC sampling clock and the DAC working clock is ensured. The phase alignment of the ADC sampling clock and the clock of the DAC modulator can ensure that the processing time of the measurement signal in the FPGA is fixed, and zero-second delay fluctuation caused by uncertainty of the clock phase is eliminated. The FPGA controls zero-second delay fluctuation generated by ADC sampling time blurring within a high-frequency clock wavelength by taking an ADC sampling clock as a digital processing circuit system clock, so that the zero-second delay fluctuation of coherent measurement equipment can be greatly reduced.
According to the invention, a low-frequency reference clock is converted into a high-frequency clock to be used as an ADC reference clock, and the FPGA can control zero-second delay fluctuation of coherent measurement equipment caused by ADC sampling time blurring within a high-frequency clock wavelength.
The invention combines the FPGA and ADC sampling clock phases of the signal processing circuit with the DAC, simultaneously considers the flexibility of the signal processing circuit and the reliability of the analog circuit, and reduces the cost.
Drawings
The patent is further described below with reference to the drawings and examples.
FIG. 1 is a schematic diagram of a circuit for reducing zero-second delay ripple of a coherent measurement device according to the present invention.
Detailed Description
See fig. 1. According to the invention, in the circuit design of the coherent measurement equipment, a low-frequency reference clock of a signal processing circuit is promoted to a high-frequency clock through a phase-locked loop circuit, then the high-frequency clock signal is sent to a digital-to-analog converter (DAC), the DAC sends the high-frequency reference clock to a Field Programmable Gate Array (FPGA), the high-frequency clock signal passes through a digital clock management module (DCM) built in the FPGA, working clocks of an analog-to-digital converter (ADC) and the digital-to-analog converter (DAC) are generated in the DCM, and the working clock phases of the ADC; the FPGA internal logic processing circuit takes an ADC working clock as a system clock, controls zero-second delay fluctuation generated by ADC sampling time blurring within a high-frequency clock wavelength, and outputs forwarding data generated after processing through a digital-to-analog converter (DAC).
The FPGA digital processing circuit system clock and the ADC sampling reference clock are high-frequency clocks. The ADC sampling instant ambiguity is set to 1 high frequency clock wavelength.
The digital clock management module DCM can be composed of four parts, namely a bottom layer DLL module, a digital frequency synthesizer DFS, a digital phase shifter DPS and a digital spectrum expander DSS, wherein the DLL module is composed of a delay line and control logic, the delay line generates a delay to a clock input end CLKIN, and a clock distribution network line distributes the clock to each register and a clock feedback end CLKB in the device; the control logic samples the input clock when the feedback clock arrives to adjust the deviation between the input clock and the feedback clock so as to realize zero delay of input and output, the control logic adjusts the delay line parameters after comparing the deviation of the input clock and the feedback clock, the delay is inserted continuously after the input clock until the rising edges of the input clock and the feedback clock are synchronous, the locking loop enters a locking state, and the input clock and the feedback clock keep synchronous as long as the input clock does not change. The DLL provides zero propagation delay, low clock skew, and advanced clock domain control, among other things.
While the foregoing has described preferred embodiments of the present invention, additional variations and modifications in those embodiments may occur to those skilled in the art once they learn of the basic inventive concepts. Therefore, it is intended that the appended claims be interpreted as including preferred embodiments and all such alterations and modifications as fall within the scope of the invention. It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (3)

1. A method for reducing zero second delay fluctuation of coherent measurement equipment is characterized by comprising the following steps: in the circuit design of the coherent measurement equipment, a low-frequency reference clock of a signal processing circuit is promoted to a high-frequency clock through a phase-locked loop circuit, then a high-frequency clock signal is sent to a digital-to-analog converter (DAC), the DAC sends the high-frequency reference clock to a Field Programmable Gate Array (FPGA), the high-frequency clock signal passes through a digital clock management module (DCM) built in the FPGA, working clocks of the ADC and the DAC are generated in the DCM, and the working clock phases of the ADC and the DAC are aligned; the FPGA internal logic processing circuit takes an ADC working clock as a system clock, controls zero-second delay fluctuation generated by ADC sampling time blurring within a high-frequency clock wavelength, and outputs forwarding data generated after processing through a digital-to-analog converter (DAC).
2. The method of reducing zero second delay ripple in a coherent measurement device of claim 1, wherein: the FPGA digital processing circuit system clock and the ADC sampling reference clock are high-frequency clocks.
3. The method of reducing zero second delay ripple in a coherent measurement device of claim 1, wherein: the ADC sampling instant ambiguity is set to 1 high frequency clock wavelength.
CN201910929130.6A 2019-09-28 2019-09-28 Method for reducing zero second delay fluctuation of coherent measurement equipment Active CN110749865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910929130.6A CN110749865B (en) 2019-09-28 2019-09-28 Method for reducing zero second delay fluctuation of coherent measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910929130.6A CN110749865B (en) 2019-09-28 2019-09-28 Method for reducing zero second delay fluctuation of coherent measurement equipment

Publications (2)

Publication Number Publication Date
CN110749865A true CN110749865A (en) 2020-02-04
CN110749865B CN110749865B (en) 2022-07-05

Family

ID=69277368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910929130.6A Active CN110749865B (en) 2019-09-28 2019-09-28 Method for reducing zero second delay fluctuation of coherent measurement equipment

Country Status (1)

Country Link
CN (1) CN110749865B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186920A1 (en) * 2004-02-19 2005-08-25 Texas Instruments Incorporated Apparatus for and method of noise suppression and dithering to improve resolution quality in a digital RF processor
US20080048726A1 (en) * 2006-07-14 2008-02-28 Hafed Mohamed M Signal Integrity Measurement Systems and Methods Using a Predominantly Digital Time-Base Generator
CN101316104A (en) * 2007-05-31 2008-12-03 阿尔特拉公司 Apparatus for all-digital serializer-de-serializer and associated methods
US7782990B1 (en) * 2006-09-27 2010-08-24 Xilinx, Inc. Method of and circuit for oversampling a signal in an integrated circuit
CN102035555A (en) * 2010-12-29 2011-04-27 杭州矽力杰半导体技术有限公司 Analog digital converter, conversion method and digital power supply controller adopting analog digital converter
CN102386922A (en) * 2011-09-21 2012-03-21 中国航天科技集团公司第九研究院第七七一研究所 Programmable zero period time delay and high-speed pipeline analog-to-digital converter
CN102723921A (en) * 2012-04-28 2012-10-10 深圳职业技术学院 Digital lock phase amplification implementation method and system based on field programmable gate array
CN105282399A (en) * 2015-10-21 2016-01-27 中国科学院自动化研究所 Zero-delay electronic image stabilization method based on digital circuit and sparse point registration
CN106230403A (en) * 2016-07-26 2016-12-14 中国电子科技集团公司第十研究所 Baseband signal molding filtration method
CN106444343A (en) * 2016-11-28 2017-02-22 中国科学院武汉物理与数学研究所 Digital control circuit device for micro atomic clock and control method for micro atomic clock
CN108111245A (en) * 2017-09-15 2018-06-01 浙江大学 Optical fiber transport channel clock system and its method
CN109889211A (en) * 2018-12-24 2019-06-14 中国电子科技集团公司第二十研究所 A kind of multi-channel radio frequency applied to phased-array radar is directly adopted and generation circuit
CN110068801A (en) * 2019-04-16 2019-07-30 武汉大学 A kind of HF digital receiver based on FPGA

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186920A1 (en) * 2004-02-19 2005-08-25 Texas Instruments Incorporated Apparatus for and method of noise suppression and dithering to improve resolution quality in a digital RF processor
US20080048726A1 (en) * 2006-07-14 2008-02-28 Hafed Mohamed M Signal Integrity Measurement Systems and Methods Using a Predominantly Digital Time-Base Generator
US7782990B1 (en) * 2006-09-27 2010-08-24 Xilinx, Inc. Method of and circuit for oversampling a signal in an integrated circuit
CN101316104A (en) * 2007-05-31 2008-12-03 阿尔特拉公司 Apparatus for all-digital serializer-de-serializer and associated methods
CN102035555A (en) * 2010-12-29 2011-04-27 杭州矽力杰半导体技术有限公司 Analog digital converter, conversion method and digital power supply controller adopting analog digital converter
CN102386922A (en) * 2011-09-21 2012-03-21 中国航天科技集团公司第九研究院第七七一研究所 Programmable zero period time delay and high-speed pipeline analog-to-digital converter
CN102723921A (en) * 2012-04-28 2012-10-10 深圳职业技术学院 Digital lock phase amplification implementation method and system based on field programmable gate array
CN105282399A (en) * 2015-10-21 2016-01-27 中国科学院自动化研究所 Zero-delay electronic image stabilization method based on digital circuit and sparse point registration
CN106230403A (en) * 2016-07-26 2016-12-14 中国电子科技集团公司第十研究所 Baseband signal molding filtration method
CN106444343A (en) * 2016-11-28 2017-02-22 中国科学院武汉物理与数学研究所 Digital control circuit device for micro atomic clock and control method for micro atomic clock
CN108111245A (en) * 2017-09-15 2018-06-01 浙江大学 Optical fiber transport channel clock system and its method
CN109889211A (en) * 2018-12-24 2019-06-14 中国电子科技集团公司第二十研究所 A kind of multi-channel radio frequency applied to phased-array radar is directly adopted and generation circuit
CN110068801A (en) * 2019-04-16 2019-07-30 武汉大学 A kind of HF digital receiver based on FPGA

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
THILO OHLEMUELLER等: "Sample synchronization of multiple multiplexed DA and AD converters in FPGAs", 《 14TH IEEE INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS AND SYSTEMS》, 31 May 2011 (2011-05-31) *
WENFENG LIU等: "On Delay Diversity in OQAM/FBMC Based Transmission Schemes", 《 WSA 2019; 23RD INTERNATIONAL ITG WORKSHOP ON SMART ANTENNAS》, 3 June 2019 (2019-06-03) *
侯伶俐: "FPGA中DCM的设计研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》, 15 May 2013 (2013-05-15), pages 135 - 156 *
张惠国等: "FPGA时钟分配网络设计技术", 《微计算机信息》, vol. 24, no. 1, 31 December 2008 (2008-12-31), pages 188 - 190 *
王茹等: "采用同步分析的零延迟GRLS通信机制", 《计算机辅助设计与图形学学报》, vol. 23, no. 8, 31 August 2011 (2011-08-31), pages 1454 - 1462 *

Also Published As

Publication number Publication date
CN110749865B (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN102882673B (en) Multi-channel high-speed digital-to-analogue converter (DAC) synchronization method
US8390348B2 (en) Time base generator and method for providing a first clock signal and a second clock signal
CN103281052B (en) Polar transmitter and polar coordinates transfer approach
US9973196B2 (en) Clock synchronizer
US8826062B2 (en) Apparatus for synchronizing a data handover between a first clock domain and a second clock domain through phase synchronization
US11133806B1 (en) Phase lock loop (PLL) synchronization
US20130043920A1 (en) Digital phase-locked loop apparatus using frequency shift keying and method of controlling the same
CN107678021B (en) Synchronous wireless difference frequency phase ranging device and method
EP2207263B1 (en) A digital time base generator and method for providing a first clock signal and a second clock signal
KR20160056621A (en) Apparatus and method for controlling power of vehicle radar
CN104917556A (en) Synchronous multi-beam signal generation method based on ultrahigh-speed DAC
US11841738B2 (en) Multi-phase clock signal phase difference detection and calculation circuit and method and digital phase modulation system
CN110749865B (en) Method for reducing zero second delay fluctuation of coherent measurement equipment
US11706723B2 (en) Radio frequency generator with automatic level control
CN112290934A (en) Controllable jitter clock generating device based on Bias-Tee signal synthesis
US10680626B2 (en) Method and associated signal system improving mitigation of injection-pulling effect
CN110708065A (en) Time-frequency signal digital phase locking and transmitting device
EP3489711A1 (en) Fll for a frequency modulated continuous wave radar
KR102011961B1 (en) Variable local oscillation apparatus, method thereof and apparatus for jamming signal using the same
US20230318658A1 (en) Device comprising a synchronization circuit for performing near field communication
RU2290662C1 (en) Analog-digital converter module
US20210223361A1 (en) Radar system
RU2157052C1 (en) Tracing wide-band signal receiver
CN206650656U (en) A kind of aerial signal generator
KR20240023040A (en) Temporal alignment of sampled radio frequencies in a multichannel receiver system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant