CN110745839B - 一种无缺陷dd3r分子筛膜的活化工艺 - Google Patents

一种无缺陷dd3r分子筛膜的活化工艺 Download PDF

Info

Publication number
CN110745839B
CN110745839B CN201910961325.9A CN201910961325A CN110745839B CN 110745839 B CN110745839 B CN 110745839B CN 201910961325 A CN201910961325 A CN 201910961325A CN 110745839 B CN110745839 B CN 110745839B
Authority
CN
China
Prior art keywords
molecular sieve
membrane
sieve membrane
dd3r
dd3r molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910961325.9A
Other languages
English (en)
Other versions
CN110745839A (zh
Inventor
顾学红
杜鹏
张玉亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910961325.9A priority Critical patent/CN110745839B/zh
Publication of CN110745839A publication Critical patent/CN110745839A/zh
Application granted granted Critical
Publication of CN110745839B publication Critical patent/CN110745839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种无缺陷DD3R型分子筛膜的活化工艺,使用此工艺进行DD3R分子筛膜活化脱除模板剂可制备出无缺陷的DD3R分子筛膜,兼顾高选择性和高渗透性。该工艺能够有效避免膜晶间缺陷的形成,保证膜层的致密性。与低温臭氧活化脱模板剂方法相比,制备效率显著提高。

Description

一种无缺陷DD3R分子筛膜的活化工艺
技术领域
本发明提供了一种无缺陷DD3R型分子筛膜的活化工艺,具体涉及到在DD3R分子筛膜煅烧活化前进行预处理,经过预处理的膜在后续煅烧活化过程中无缺陷产生,从而获得高分离性能的分子筛膜,属于无机材料领域。
背景技术
分子筛拥有规整的孔道结构、独特的吸附性能以及离子交换性能,在化学工业中应用十分广泛,如催化剂,吸附剂以及离子交换1。根据分子筛的孔径分布与吸附特性,分子筛膜在小分子分离应用中表现出巨大的分离潜力2。近些年来,许多学者研究了不同分子筛膜在气体分离、溶剂分离以及传感等领域的应用。尽管分子筛膜应用潜力巨大,但合成高质量的分子筛膜仍然充满挑战。提高分子筛膜的分离选择性,关键在于如何减少甚至消灭晶体间缺陷。即使少量的缺陷也会对分离选择性造成巨大的负面影响,尤其是在气体分离领域。研究者们发现活化分子筛膜时,膜层与多孔载体间热膨胀系数的不匹配性会导致热应力的出现,使得膜层产生缺陷3-5
全硅型DDR(DD3R)分子筛是一种全硅的分子筛,由氧环将[435661],[512],[435126183]3种类型的多面体结构单元连接而成。DD3R分子筛孔径大小为0.36 nm×0.44nm,介于大部分小分子气体动力学直径之间,在小分子气体分离领域具有巨大的潜力。
尽管DD3R分子筛膜的气体分离性能出众,但是自2004年日本NGK首次制备出DD3R分子筛膜后,很长一段时间内都没有课题组能够重复性制备出DD3R分子筛膜。主要原因是DD3R分子筛膜一般在模板剂金刚烷胺(ADA)结构诱导作用下生长而成,当膜经过高温煅烧脱除模板剂后晶体出现缺陷,从而使得制备出的DD3R分子筛膜几乎无分离性能6-9。DD3R分子筛在高温区间(219~910℃)的热膨胀系数为-8.7×10-6 K-1,并且活化过程中晶胞体积会减少5%。而常见氧化铝载体的热膨胀系数为7.5×10-6 K-1。因此,传统高温煅烧是DD3R分子筛膜产生大量缺陷的主要原因。
1.J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastián, C. Casado and J.Coronas, Chemistry of Materials, 2012, 24, 2829-2844.
2.J. Caro and M. Noack, Microporous and Mesoporous Materials, 2008,115, 215-233.
3.M. L. Gualtieri, C. Anderson, F. Jareman, J. Hedlund, A. F.Gualtieri, M. Leoni and C. Meneghini, J. Membr. Sci., 2007, 290, 95-104.
4.Z. P. Lai, M. Tsapatsis and J. R. Nicolich, Advanced FunctionalMaterials, 2004, 14, 716-729.
5.J. Hedlund, F. Jareman, A. J. Bons and M. Anthonis, J. Membr. Sci.,2003, 222, 163-179.
6.A. Bose, J. K. Das and N. Das, Rsc Advances, 2015, 5, 67195-67205.
7.M. Muhammad, Y. F. Yeong, K. K. Lau and A. B. M. Shariff,Separation And Purification Reviews, 2015, 44, 331-340.
8.S. Yang, Z. Cao, A. Arvanitis, X. Sun, Z. Xu and J. Dong, J. Membr.Sci., 2016, 505, 194-204.
9.L. Wang, C. Zhang, X. Gao, L. Peng, J. Jiang and X. Gu, J. Membr.Sci., 2017, 539, 152-160.
发明内容
本发明内容提供一种无缺陷DD3R分子筛膜的活化工艺,其特征在于在传统煅烧活化分子筛膜之前,对DD3R分子筛膜进行预处理实现对膜层的强化作用,能够避免膜层开裂以及晶间缺陷的形成。
本发明的第一个方面,提供了:
一种无缺陷DD3R分子筛膜的活化工艺,包括如下步骤:
第一步,采用水热合成的方法制备得到DD3R分子筛膜,再升温脱除孔道内吸附的水分;
第二步,将DD3R分子筛膜快速加热至第一温度,进行高温处理;
第三步,对进行高温处理后的分子筛膜进行快速降温至第二温度;
第四步,分子筛膜在第三温度下进行煅烧活化。
在一个实施方式中,第一步中,经过水热合成的分子筛膜厚度为0.3~30 μm,分子筛膜负载于载体上。
在一个实施方式中,水热合成过程中采用金刚烷胺作为模板剂。
在一个实施方式中,所述的载体材料为多孔氧化铝、莫来石、堇青石等陶瓷或者不锈钢等,载体形式为片式、管式或者中空纤维等。
在一个实施方式中,第二步中,快速加热至第一温度是指1秒~20分钟加热到温度为600-900℃。
在一个实施方式中,第二步中,高能处理的时间是0.5~30分钟。
在一个实施方式中,第二步中,分子筛膜所处气氛为空气、氮气、氩气或者氧气气氛;膜所处环境的相对湿度<20%。
在一个实施方式中,第三步中,快速降温至第二温度是指1秒~2分钟内快速降至温度为0~50℃;快速降温的方式为空冷、风冷或者水冷。
在一个实施方式中,第四步中,活化煅烧的温度为450~600℃,处理时间为10~50小时。
本发明的第二个方面,提供了:
由上述的制备方法所直接得到的DD3R分子筛膜。
本发明的第三个方面,提供了:
上述的DD3R分子筛膜在用于CO2/CH4分离中的应用。
在一个实施方式中,CO2/CH4分离过程中温度10~80℃,膜的两侧压差0.05~2.0MPa,CO2/CH4的体积比是1:9~9:1。
本发明的第四个方面,提供了:
快速升温设备在用于制备DD3R分子筛膜中的应用。
在一个实施方式中,快速升温设备用于使分子筛粒径发生收缩、去除金刚烷胺模板剂、避免分子筛膜缺陷或者提高分子筛膜的分离系数。
有益效果
本发明的活化工艺,其中预处理步骤能够避免DD3R分子筛膜在高温活化过程中形成缺陷;无此预处理的分子筛膜经过高温活化后则存在很多缺陷,因此该预处理步骤保证膜具有很高的分离选择性。
与低温臭氧活化脱模板剂方法相比,方法更加简便,提高膜的制备效率。
采用该活化工艺制备出的DD3R分子筛膜用于CO2/CH4分离,表现出很好的分离性能,渗透性>2×10-7 mol·m-2·s-1·Pa-1,分离选择性大于300 (测试温度为25℃,膜两侧压差为0.1 MPa)。
附图说明
图1 未活化的DD3R分子筛膜表面及断面
图2 采用新工艺活化的DD3R分子筛膜表面和断面
图3 采用传统工艺(550℃,空气气氛)活化的DD3R分子筛膜表面
图4是HT-XRD表征
图5是分子筛膜的13C-NMR表征
图6是CO2/CH4等摩尔体系高压分离结果
具体实施方式
以下结合技术方案详细叙述本发明的具体实施例。
针对分子筛膜在普通热处理脱模板剂过程中易形成缺陷的问题,本发明采用一种新的热处理活化工艺获得无缺陷的DD3R分子筛膜。
本发明所要处理的DD3R分子筛可以通过水热合成法制备得到,采用DD3R分子筛晶种,将其涂覆于支撑体的表面,再配制合适的合成液,在相应的条件下将支撑体于合成液中进行水热合成,即可得到DD3R分子筛膜,具体的原料的配制及合成条件可以参阅相关的文献。以下的实施例中,所使用的是采用水热合成得到的DD3R分子筛膜(是指未经过处理后的分子筛膜),其制备过程主要原料和步骤是:第1步,负载有晶种的支撑体的制备:将DD3R晶种加入水中配制成的晶种悬浮液,在多孔支撑体的表面施加晶种悬浮液,可得到负载有晶种的支撑体;第2步,DD3R分子筛膜合成:将金刚烷胺、硅源、乙二胺和水混合后进行老化,作为合成液;将负载有晶种的支撑体放入合成液中进行水热合成,生成DD3R分子筛膜;DD3R晶种在水中质量浓度是0.2~2%;施加晶种悬浮液时间5~50 s;第2步中,老化步骤参数是:20~120 ℃下老化1~10 h;水热合成步骤参数是:在130~170 ℃下合成12 h~4 d。
本发明的主要方法是:未处理的分子筛膜首先在200℃的烘箱内干燥脱除孔道内的水分,紧接着特定的加热设备将DD3R分子筛膜在指定时间内(1秒~20分钟)加热至指定温度(600~900℃)进行高温处理(处理时间0.5~30分钟)。高能处理后,快速降至指定温度(0~50℃),或直接降至传统的活化煅烧的温度进行活化煅烧。
实施例1
预先烘干处理后的DD3R分子筛膜在1分钟内加热至600℃在空气气氛下进行3分钟的预处理,处理完成后快速放入冰水浴中降至0℃。之后在550℃的马弗炉内煅烧30小时,脱除模板剂。
实施例2
预先200℃烘干处理后的DD3R分子筛膜在2分钟内加热至750℃在空气气氛下进行4分钟的预处理,处理完成后在空气中降至室温,之后转移至550℃的马弗炉内煅烧30小时,脱除模板剂。
实施例3
预先烘干处理后的DD3R分子筛膜在8分钟内加热至800℃在空气气氛下进行1分钟的预处理,处理完成后快速放入水浴中降至25℃。之后在450℃的马弗炉内煅烧40小时,脱除模板剂。
实施例4
预先烘干处理后的DD3R分子筛膜在6分钟内加热至700℃在空气气氛下进行0.5分钟的预处理,处理完成后快速取出在空气中降至25℃。之后在550℃的马弗炉内煅烧40小时,脱除模板剂。
实施例5
预先烘干处理后的DD3R分子筛膜在6分钟内加热至650℃在空气气氛下进行10分钟的预处理,处理完成后快速取出在空气中降至25℃。之后在550℃的马弗炉内煅烧20小时,脱除模板剂。
实施例6
预先烘干处理后的DD3R分子筛膜在6分钟内加热至700℃在氮气气氛下进行10分钟的预处理,处理完成后快速取出在空气中降至35℃。之后在500℃的马弗炉内煅烧35小时,脱除模板剂。
对比例1
与实施例1的区别是:DD3R分子筛膜无预处理直接在550 ℃进行热处理,热处理时间为30小时。
对比例2
由水热合成得到的DD3R分子筛膜在2min内加热至700℃在空气气氛下进行4min预处理,处理完成后快速取出在空气中降至35℃。
SEM表征
实施例1中制备得到的分子筛膜的显微照片分别如图1和图2所示。
图1显示了直接由水热合成方法(未经过快速升温、活化处理)得到的DD3R分子筛膜的表面及断面微观结构,支撑体被一层连续且致密的膜层所覆盖。图2显示了无缺陷DD3R分子筛膜的活化工艺活化后膜层表面及断面的微观结构,从图中我们可以看出膜层有部分小的裂缝但是裂缝并未贯穿膜层。
图3为采用对比例1处理后的DD3R分子筛膜表面,可以看到明显的裂缝,并且贯穿整个膜层。
XRD表征
图4的a区域为无任何处理的分子筛(水热合成得到的DD3R分子筛膜)的HT-XRD表征;图4的b区域是对比例2中经过了高温处理的DD3R分子筛的HT-XRD表征。从图4中可以看到,无任何预处理的DD3R分子筛膜在升温过程中,峰发生了左偏,说明分子筛膜的粒径发生了膨胀。而经过对比列2处理后的分子筛峰发生了右偏,说明分子筛粒径发生了收缩,而文献中报道的完全活化完全的DD3R分子筛也表现为负热膨胀。材料的热膨胀系数除了受本身的性质影响外,也受材料内部的客体分子影响,如本例中分子筛膜孔道内的有机模板剂。DD3R分子筛的模板剂为金刚烷胺,是一种三维的环状有机物,结构稳定。
核磁表征
图5的a曲线和b曲线,分别是为无任何处理的分子筛(水热合成得到的DD3R分子筛膜)与对比例2经过高温预处理的DD3R分子筛的13C-NMR表征。而从图5中的C-NMR中可以看到,经过对比例2处理后的分子筛孔道内的有机物与未处理的分子筛完全不一致,说明金刚烷胺完全分解了。由于孔道内的客体分子发生改变,所以晶体热膨胀系数发生改变。因此,对比例1的分子筛膜在进行热处理时由于分子筛晶体自身膨胀引起膜层的开裂,而采用本专利可避免这一情况的发生。
分离性能表征
气体分离性能由气体渗透性P和分离选择性α两个参数进行评价。气体渗透性P表示单位时间(s),单位压力(Pa)下通过单位膜面积(m2)的气体摩尔量(mol),P=N/(A×t×△ P),分离选择性用于评价膜分离效率的高低,α=P CO2 /P CH4
对上述实例中所制备的膜进行气体分离测试:条件在25 ℃,压差为0.1 MPa下,进料为等摩尔的CO2/CH4,渗透侧流量用皂泡流量计测得,渗透侧气体组成由岛津气相色谱(GC-2014)测得。
实施例及对比例所合成的DD3R分子筛膜同用于25℃,压差为0.1 MPa,CO2/CH4 (50/50vol%)体系进行气体分离性能测试,气体分离结果如表1所示。
表1 不同实施例下DD3R分子筛膜的分离结果
Figure DEST_PATH_IMAGE002
对比例1为传统活化工艺制得的DD3R分子筛膜,可以看到膜几乎无分离选择性。
图6为采用此工艺活化的分子筛膜的CO2/CH4等摩尔体系高压分离结果。从图中可以看出,当分离压力达到1.5MPa时,采用本发明的分离膜仍然可以实现与理想状态接近的CO2/CH4的分离因子,约在50左右,说明本发明制备得到的分子筛膜表面无缺陷,能够耐受在高压条件下的分离条件。

Claims (2)

1.无缺陷的DD3R分子筛膜在CO2/CH4分离中的应用,其特征在于,所述的CO2/CH4分离过程中温度25℃,膜的两侧压差0.1MPa,CO2/CH4之间为等摩尔比;
DD3R分子筛膜负载于载体上,载体的材料为多孔氧化铝、莫来石或者堇青石;
所述的DD3R分子筛膜的制备方法包括如下步骤:
第一步,采用水热合成的方法制备得到DD3R分子筛膜,再升温脱除孔道内吸附的水分;水热合成过程中采用金刚烷胺作为模板剂;
第二步,预先烘干处理后的DD3R分子筛膜在6分钟内加热至700℃在空气气氛下进行0.5分钟的预处理,处理完成后快速取出在空气中降至25℃,之后在550℃的马弗炉内煅烧40小时,脱除模板剂。
2.根据权利要求1所述的应用,其特征在于,第一步中,经过水热合成的分子筛膜厚度为0.3~30 μm;载体形式为片式、管式或者中空纤维。
CN201910961325.9A 2019-10-11 2019-10-11 一种无缺陷dd3r分子筛膜的活化工艺 Active CN110745839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910961325.9A CN110745839B (zh) 2019-10-11 2019-10-11 一种无缺陷dd3r分子筛膜的活化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910961325.9A CN110745839B (zh) 2019-10-11 2019-10-11 一种无缺陷dd3r分子筛膜的活化工艺

Publications (2)

Publication Number Publication Date
CN110745839A CN110745839A (zh) 2020-02-04
CN110745839B true CN110745839B (zh) 2022-08-26

Family

ID=69277937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910961325.9A Active CN110745839B (zh) 2019-10-11 2019-10-11 一种无缺陷dd3r分子筛膜的活化工艺

Country Status (1)

Country Link
CN (1) CN110745839B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874881B (zh) * 2019-06-27 2022-10-25 南京工业大学 一种采用dd3r分子筛膜提纯氙气的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460943A (zh) * 2015-11-25 2016-04-06 中国科学院上海高等研究院 一种全硅dd3r分子筛的合成方法
CN106745026A (zh) * 2016-12-16 2017-05-31 南京工业大学 一种无缺陷ddr分子筛膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2573685A1 (en) * 2004-08-03 2006-02-16 The Regents Of The University Of Colorado, A Body Corporate Membranes for highly selective separations
WO2010129411A2 (en) * 2009-05-08 2010-11-11 Michael Tsapatsis Molecular sieve membranes and thermal treatment methods of making the same
WO2012138418A1 (en) * 2011-04-04 2012-10-11 Georgia Tech Research Corporation Zeolite ddr nanocrystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460943A (zh) * 2015-11-25 2016-04-06 中国科学院上海高等研究院 一种全硅dd3r分子筛的合成方法
CN106745026A (zh) * 2016-12-16 2017-05-31 南京工业大学 一种无缺陷ddr分子筛膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating;Mingquan Wang et al.;《Journal of Membrane Science》;20181123;第572卷;第568页右栏2.2全硅DDR的合成、2.3 DDR分子筛膜的合成、第569页左栏2.4模板的去除、第572页左栏第2段第10行、第575页表1 *

Also Published As

Publication number Publication date
CN110745839A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature
Kida et al. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation
Wang et al. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating
Wu et al. Alumina-supported AlPO-18 membranes for CO2/CH4 separation
US11278846B2 (en) Method for preparing defect-free DDR molecular sieve membrane
ES2364912T3 (es) Membranas de carbono.
Karakiliç et al. Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation
Wei et al. Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin
JP5852963B2 (ja) 複合ゼオライト膜、およびその製造方法
Liu et al. SSZ-13 zeolite membranes on four-channel α-Al2O3 hollow fibers for CO2 separation
Xu et al. Fast synthesis of thin all-silica DDR zeolite membranes with inorganic base as mineralizing agent for CO2-CH4 separation
Li et al. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations
Zhou et al. Advanced microporous membranes for H2/CH4 separation: challenges and perspectives
Chen et al. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation
Li et al. High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations
Zhang et al. Synthesis of thin SAPO-34 zeolite membranes in concentrated gel
Zhang et al. All-silica DD3R zeolite membrane with hydrophilic-functionalized surface for efficient and highly-stable pervaporation dehydration of acetic acid
Zeynali et al. Experimental study on graphene-based nanocomposite membrane for hydrogen purification: Effect of temperature and pressure
Zhou et al. Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture
Zhou et al. Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation
O’Brien-Abraham et al. A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes
CN110745839B (zh) 一种无缺陷dd3r分子筛膜的活化工艺
Simon et al. Evaluation of a method for micro-defect sealing in ZSM-5 zeolite membranes by chemical vapor deposition of carbon
Li et al. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture
Vaezi et al. Separation of CO2 and N2 from CH4 using modified DD3R zeolite membrane: A comparative study of synthesis procedures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant