CN110728089A - 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法 - Google Patents

基于botda技术的大跨桥梁斜拉索结构损伤诊断方法 Download PDF

Info

Publication number
CN110728089A
CN110728089A CN201910930266.9A CN201910930266A CN110728089A CN 110728089 A CN110728089 A CN 110728089A CN 201910930266 A CN201910930266 A CN 201910930266A CN 110728089 A CN110728089 A CN 110728089A
Authority
CN
China
Prior art keywords
main beam
strain
data
monitoring
vertical deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910930266.9A
Other languages
English (en)
Other versions
CN110728089B (zh
Inventor
刘洋
姜玉印
孙杰
许庚
张绍逸
陈允泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Jinan Urban Construction Group Co Ltd
Original Assignee
Harbin Institute of Technology
Jinan Urban Construction Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Jinan Urban Construction Group Co Ltd filed Critical Harbin Institute of Technology
Priority to CN201910930266.9A priority Critical patent/CN110728089B/zh
Publication of CN110728089A publication Critical patent/CN110728089A/zh
Application granted granted Critical
Publication of CN110728089B publication Critical patent/CN110728089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于实际大跨桥梁结构斜拉索结构损伤诊断领域,特别涉及一种基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法。本发明将BOTDA技术引入斜拉索结构损伤诊断中,利用分布式传感光纤实时获取主梁多断面处的应变监测数据;利用斜拉桥的有限元模型进行数值模拟,构建主梁应变‑主梁竖向挠度和主梁竖向挠度‑斜拉索索力关系模型;采用健康状态下的桥梁主梁结构多断面应变监测数据构建斜拉索损伤诊断因子与阈值,通过比较待损伤诊断状态下结构损伤诊断因子数值是否超出阈值判断斜拉索是否产生损伤。本发明可同时诊断桥梁全部斜拉索结构损伤,适用于解决实际大跨桥梁斜拉索结构损伤诊断问题。

Description

基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法
技术领域
本发明属于实际大跨桥梁结构斜拉索结构损伤诊断领域。
背景技术
斜拉索作为大跨桥梁的主要承重构件,索力的微小变化都会对桥梁整体结构受力体系产生巨大的影响。为了保障桥梁在运营期间的安全性、完整性和适用性,急需一种能够有效诊断大跨桥梁斜拉索结构损伤的方法。大跨桥梁的斜拉索数量众多,采用现有人工检测手段无法满足实时在线准确诊断全部斜拉索结构损伤的需求。针对这一问题,依托现有桥梁结构健康监测系统,将分布式布里渊光纤传感技术引入到斜拉索结构损伤诊断中,提出一种基于BOTDA(Brillouin optical time domain analysis)技术的大跨桥梁斜拉索结构损伤诊断方法,利用BOTDA技术提供的高测点密度的桥梁主梁结构应变监测数据,实现对全桥所有斜拉索结构损伤的有效诊断。
发明内容
本发明是为了解决大跨桥梁斜拉索结构损伤诊断的问题,现提供一种基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法。
基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,该方法包括以下步骤:
步骤一:根据桥梁设计、施工图纸准确建立结构有限元基准模型,提取基准模型在随机车辆荷载作用下分布式主梁应变、分布式主梁竖向挠度和斜拉索索力解析数据,分别构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型;
步骤二:利用BOTDA技术,采集主梁不同断面处的结构应变监测数据,利用步骤一建立的关系模型,分别计算主梁竖向挠度和斜拉索索力监测结果;
步骤三:根据主梁不同断面处的结构应变监测数据、主梁竖向挠度和斜拉索索力监测结果,分别构建斜拉索索力-主梁结构应变数据集合、主梁结构应变-主梁竖向挠度数据集合;
步骤四:根据步骤三获得的数据集合,以桥梁开始运营的第一年为参考状态,利用马氏距离,计算桥梁参考状态下结构损伤诊断因子序列,将该损伤诊断因子序列的最大值的95%作为损伤诊断阈值;
步骤五:利用待诊断状态下数据点到参考状态数据集合的马氏距离,确定所有监测点处的结构损伤诊断因子;
步骤六:待损伤诊断状态下,将所有监测点的结构损伤诊断因子与损伤诊断阈值进行比较,当结构损伤诊断因子大于损伤诊断阈值时,则该监测点处发生了损伤,反之,则该监测点处未产生损伤;
步骤七:根据步骤六的结构损伤诊断结果,利用斜拉索索力-主梁应变和主梁应变-主梁竖向挠度损伤诊断结果的差异,判断损伤诊断因子超出阈值是主梁结构损伤还是斜拉索结构损伤。
本发明所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,采用健康状态下的桥梁主梁不同断面处结构应变监测数据,构建该断面处斜拉索结构损伤诊断因子及诊断阈值,通过对待损伤诊断状态下不同监测点的结构损伤诊断因子与阈值进行比较,从而判别该监测点处斜拉索结构是否产生损伤。本发明利用BOTDA技术,获得桥梁主梁不同断面处的结构应变监测数据,借助桥梁有限元基准模型确定的关系模型,获得主梁竖向挠度和斜拉索索力监测结果,间接地实现对全部斜拉索索力的监测,突破了直接在斜拉桥斜拉索上布设传感器的传统监测方式对全部斜拉索索力进行监测的局限性,所述方法能够诊断桥梁全部斜拉索结构损伤。
附图说明
图1为斜拉桥有限元模型图。
图2为斜拉索损伤模拟和主梁损伤模拟空间位置图。
图3为数值模拟时数据提取的空间位置图。
图4为斜拉索索力-主梁应变数据集合分布图。
图5为主梁应变-主梁竖向挠度数据集合分布图。
图6为参考状态斜拉索索力-主梁应变数据集合的马氏距离和阈值图。
图7为参考状态主梁应变-主梁竖向挠度数据集合的马氏距离和阈值图。
图8为待诊断状态斜拉索索力-主梁应变数据集合的马氏距离图。
图9为待诊断状态主梁应变-主梁竖向挠度数据集合的马氏距离图。
图10为具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法的流程图。
具体实施方式
具体实施方式一:参照图10具体说明本实施方式,本实施方式所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,该方法包括以下步骤:
步骤一:根据桥梁设计、施工图纸准确建立结构有限元基准模型,提取基准模型在随机车辆荷载作用下分布式主梁应变、分布式主梁竖向挠度和斜拉索索力解析数据,分别构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型;
步骤二:利用BOTDA技术,采集主梁不同断面处的结构应变监测数据,利用步骤一建立的关系模型,分别计算主梁竖向挠度和斜拉索索力监测结果;
步骤三:根据主梁不同断面处的结构应变监测数据、主梁竖向挠度和斜拉索索力监测结果,分别构建斜拉索索力-主梁结构应变数据集合、主梁结构应变-主梁竖向挠度数据集合;
步骤四:根据步骤三获得的数据集合,以桥梁开始运营的第一年为参考状态,利用马氏距离,计算桥梁参考状态下结构损伤诊断因子序列,将该损伤诊断因子序列的最大值的95%作为损伤诊断阈值;
步骤五:利用待诊断状态下数据点到参考状态数据集合的马氏距离,确定所有监测点处的结构损伤诊断因子;
步骤六:待损伤诊断状态下,将所有监测点的结构损伤诊断因子与损伤诊断阈值进行比较,当结构损伤诊断因子大于损伤诊断阈值时,则该监测点处发生了损伤,反之,则该监测点处未产生损伤;
步骤七:根据步骤六的结构损伤诊断结果,利用斜拉索索力-主梁应变和主梁应变-主梁竖向挠度损伤诊断结果的差异,判断损伤诊断因子超出阈值是主梁结构损伤还是斜拉索结构损伤。
本实施方式中,利用斜拉索索力-主梁应变和主梁应变-主梁竖向挠度的损伤诊断结果的差异来确定结构损伤类型。主梁结构损伤仅影响主梁应变和主梁竖向挠度,不影响斜拉索索力;斜拉索结构损伤会直接影响斜拉索索力,进而影响主梁应变和主梁竖向挠度。由此,当斜拉索索力-主梁应变数据集合的损伤诊断因子大于损伤诊断阈值而主梁应变-主梁竖向挠度数据集合的损伤诊断阈值小于损伤诊断阈值时,斜拉索结构发生损伤;当两个数据集合的损伤诊断因子均大于损伤诊断阈值时,主梁结构发生损伤。
具体实施方式二:本实施方式是对具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法作进一步说明,本实施方式中,步骤一所述构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型的方法为:
步骤一一:设分布式主梁应变解析数据为Y=[Y1,Y2,…,Ym]k×m,分布式主梁竖向挠度解析数据为N=[N1,N2,…,Np]k×p,斜拉索索力解析数据为S=[S1,S2,…,Sp]k×p
则第i个时刻的分布式主梁应变解析数据和分布式主梁竖向挠度解析数据为:
Yi=(yi1,yi2,…,yim) (1)
Ni=(ni1,ni1,…,nip) (2)
则第j个监测点的主梁竖向挠度解析数据和斜拉索索力解析数据分别为:
Nj=(n1j,n2j,…,nkj)T (3)
Sj=(s1j,s2j,…,skj)Τ (4)
式中,k为采样次数,随时间变化,并按一定时间间隔不断增加;m为分布式主梁应变监测点的个数;p为分布式主梁竖向挠度和斜拉索索力监测点的个数;1≤i≤k;1≤j≤p;
步骤一二:根据步骤一一获得的第i个时刻的分布式主梁应变解析数据和分布式主梁竖向挠度解析数据,构造系数矩阵Δ使其满足
Ni=YiΔ (5)
为求解系数矩阵Δ,取m个采样点数据按如下公式计算
Figure BDA0002220041880000051
将式(6)求解的系数矩阵Δ代入式(5),式(5)即为所需的结构应变-竖向挠度之间的关系模型;
步骤一三:根据步骤一一获得的第j个监测点的主梁竖向挠度解析数据和斜拉索索力解析数据,对其进行函数拟合,确定函数Fj使其满足
Sj=Fj(Nj) (7)
依次对p个监测点按式(7)进行函数拟合,获得函数集F
F={F1,F2,…,Fp} (8)
式(8)即为所需的竖向挠度-斜拉索索力之间的关系模型;
具体实施方式三:本实施方式是对具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法作进一步说明,本实施方式中,步骤二所述计算主梁竖向挠度和斜拉索索力监测结果的方法为:
步骤二一:步骤二采集的主梁不同断面处的结构应变监测数据为
Figure BDA0002220041880000052
利用结构应变-竖向挠度之间的关系模型,则主梁竖向挠度监测结果为
Figure BDA0002220041880000053
步骤二二:根据步骤二一获得的主梁竖向挠度监测结果,利用竖向挠度-斜拉索索力之间的关系模型,则斜拉索索力监测结果为
具体实施方式四:本实施方式是对具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法作进一步说明,本实施方式中,步骤三所述构建斜拉索索力-主梁结果应变数据集合、主梁结构应变-主梁竖向挠度数据集合的方法为:
步骤三一:根据步骤二获得的主梁不同断面处的结构应变监测数据
Figure BDA0002220041880000055
从中选取监测点位于斜拉索锚固处所在截面处的p个监测点的监测数据重新构造主梁结构应变监测数据
Figure BDA0002220041880000061
Figure BDA0002220041880000062
步骤三二:根据步骤三一获得的重构主梁结构应变监测数据
Figure BDA0002220041880000063
和步骤二获得的斜拉索索力监测结果
Figure BDA0002220041880000064
确定第j个监测点的斜拉索索力-主梁结构应变数据集合为
Figure BDA0002220041880000065
式中,aij是一个行向量,是由第j个监测点在第i时刻的斜拉索索力监测结果和重构主梁结构应变监测数据构成的数据点,即
Figure BDA0002220041880000067
步骤三三:根据步骤三一获得的重构主梁结构应变监测数据
Figure BDA0002220041880000068
和步骤二获得的主梁竖向挠度监测结果
Figure BDA0002220041880000069
确定第j个监测点的主梁结构应变-主梁竖向挠度数据集合为
Figure BDA00022200418800000610
式中,bij是一个行向量,是由第j个监测点在第i时刻的重构主梁结构应变监测数据和主梁竖向监测结果构成的数据点,即
Figure BDA00022200418800000611
具体实施方式五:本实施方式是对具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法作进一步说明,本实施方式中,步骤四计算桥梁参考状态下结构损伤诊断因子序列及确定结构损伤诊断阈值的方法为:
将桥梁开始运营后获得的监测数据分为参考状态和待诊断状态两部分,参考状态是指以桥梁开始运营的第一年内获得的监测数据,待损伤诊断状态是指桥梁开始运营第一年以后获得的监测数据。
根据步骤三获得的斜拉索索力-主梁结构应变数据集合和主梁结构应变-主梁竖向挠度数据集合,记参考状态下的第j个监测点的数据集合分别为
Figure BDA00022200418800000614
参考状态下的数据集合中数据点分别为
Figure BDA00022200418800000615
Figure BDA00022200418800000616
则桥梁参考状态下结构损伤诊断因子为
Figure BDA0002220041880000071
Figure BDA0002220041880000072
式中,
Figure BDA0002220041880000073
表示参考状态下数据点
Figure BDA0002220041880000074
到参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure BDA0002220041880000075
的马氏距离;表示参考状态下数据点
Figure BDA0002220041880000077
到参考状态下第j个监测点主梁结构应变-主梁竖向挠度数据集合
Figure BDA0002220041880000078
的马氏距离;
Figure BDA0002220041880000079
Figure BDA00022200418800000710
分别为参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure BDA00022200418800000711
的均值和协方差矩阵;
Figure BDA00022200418800000712
Figure BDA00022200418800000713
分别为参考状态下j个监测点的主梁结构应变-主梁竖向挠度数据集合
Figure BDA00022200418800000714
的均值和协方差矩阵;
依次对参考状态下第j个监测点的k次采样获得的数据点按式(14)和式(15)进行计算,则桥梁参考状态下第j个监测点的结构损伤诊断因子序列为
则桥梁第j个监测点的结构损伤诊断阈值为
Figure BDA00022200418800000717
具体实施方式六:本实施方式是对具体实施方式一所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法作进一步说明,本实施方式中,步骤五计算桥梁待诊断状态下结构损伤诊断因子的方法为:
根据步骤三获得的斜拉索索力-主梁结构应变数据集合和主梁结构应变-主梁竖向挠度数据集合,则桥梁待诊断状态下结构损伤诊断因子为
Figure BDA00022200418800000719
Figure BDA00022200418800000720
式中,
Figure BDA00022200418800000721
表示待诊断状态下数据点aij到参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合的马氏距离;表示待诊断状态下数据点bij到参考状态下第j个监测点主梁结构应变-主梁竖向挠度数据集合
Figure BDA00022200418800000724
的马氏距离;
Figure BDA0002220041880000081
分别为参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure BDA0002220041880000083
的均值和协方差矩阵;
Figure BDA0002220041880000084
Figure BDA0002220041880000085
分别为参考状态下j个监测点的主梁结构应变-主梁竖向挠度数据集合
Figure BDA0002220041880000086
的均值和协方差矩阵。
采用下述试验来验证本发明:
本试验是以图1所示的双塔三跨斜拉桥为例,图1中为斜拉桥的有限元模型图。为了便于模拟斜拉索结构损伤,通过折减斜拉索单元的弹性模量来模拟结构产生的损伤,损伤位置为07号斜拉索,损伤程度设定为5%;为了便于模拟主梁结构损伤,通过刚度(弹性模量)折减来模拟产生的损伤,损伤位置为07号斜拉索锚固处所在截面的主梁段,如图2所示。
本试验具体如下:
利用斜拉桥的有限元模型进行数值模拟,提取基准模型在随机车辆荷载作用下分布式主梁结构应变、分布式主梁竖向挠度和斜拉索索力解析计算结果,监测点的空间位置如图3所示,分别构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型。
利用BOTDA技术,采集1~310时间段内主梁不同断面处的结构应变监测数据,利用关系模型,分别计算主梁竖向挠度和斜拉索索力监测结果,并根据监测结果,分别构建斜拉索索力-主梁结构应变数据集合、主梁结构应变-主梁竖向挠度数据集合,如图4和图5所示;
数据集合的1~100时间段内为参考状态,利用马氏距离,计算桥梁参考状态下结构损伤诊断因子序列,将该损伤诊断因子序列的最大值的95%作为损伤诊断阈值,如图6和图7所示;
数据集合的101~310时间段内为待诊断状态,(在101~250时间段内无损伤,在251~300时间段内07号斜拉索损伤5%,在301~210时间段内07号斜拉索锚固处所在截面主梁段损伤10%),利用待诊断状态下数据点到参考状态数据集合的马氏距离,确定所有监测点处的结构损伤诊断因子;
利用损伤诊断因子与损伤诊断阈值进行比较,绘制损伤诊断因子时程曲线图,实现斜拉桥结构损伤和损伤类别诊断,如图8和图9所示。

Claims (6)

1.基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,该方法包括以下步骤:
步骤一:根据桥梁设计、施工图纸准确建立结构有限元基准模型,提取基准模型在随机车辆荷载作用下分布式主梁应变、分布式主梁竖向挠度和斜拉索索力解析数据,分别构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型;
步骤二:利用BOTDA技术,采集主梁不同断面处的结构应变监测数据,利用步骤一建立的关系模型,分别计算主梁竖向挠度和斜拉索索力监测结果;
步骤三:根据主梁不同断面处的结构应变监测数据、主梁竖向挠度和斜拉索索力监测结果,分别构建斜拉索索力-主梁结构应变数据集合、主梁结构应变-主梁竖向挠度数据集合;
步骤四:根据步骤三获得的数据集合,以桥梁开始运营的第一年为参考状态,利用马氏距离,计算桥梁参考状态下结构损伤诊断因子序列,将该损伤诊断因子序列的最大值的95%作为损伤诊断阈值;
步骤五:利用待诊断状态下数据点到参考状态数据集合的马氏距离,确定所有监测点处的结构损伤诊断因子;
步骤六:待损伤诊断状态下,将所有监测点的结构损伤诊断因子与损伤诊断阈值进行比较,当结构损伤诊断因子大于损伤诊断阈值时,则该监测点处发生了损伤,反之,则该监测点处未产生损伤;
步骤七:根据步骤六的结构损伤诊断结果,利用斜拉索索力-主梁应变和主梁应变-主梁竖向挠度损伤诊断结果的差异,判断损伤诊断因子超出阈值是主梁结构损伤还是斜拉索结构损伤。
2.根据权利要求1所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,步骤一所述构建主梁不同断面处的结构应变-竖向挠度、竖向挠度-斜拉索索力之间的关系模型的方法为:
步骤一一:设分布式主梁应变解析数据为Y=[Y1,Y2,…,Ym]k×m,分布式主梁竖向挠度解析数据为N=[N1,N2,…,Np]k×p,斜拉索索力解析数据为S=[S1,S2,…,Sp]k×p
则第i个时刻的分布式主梁应变解析数据和分布式主梁竖向挠度解析数据为:
Yi=(yi1,yi2,…,yim) (1)
Ni=(ni1,ni1,…,nip) (2)
则第j个监测点的主梁竖向挠度解析数据和斜拉索索力解析数据分别为:
Nj=(n1j,n2j,…,nkj)T (3)
Sj=(s1j,s2j,…,skj)Τ (4)
式中,k为采样次数,随时间变化,并按一定时间间隔不断增加;m为分布式主梁应变监测点的个数;p为分布式主梁竖向挠度和斜拉索索力监测点的个数;1≤i≤k;1≤j≤p;
步骤一二:根据步骤一一获得的第i个时刻的分布式主梁应变解析数据和分布式主梁竖向挠度解析数据,构造系数矩阵Δ使其满足
Ni=YiΔ (5)
为求解系数矩阵Δ,取m个采样点数据按如下公式计算
将式(6)求解的系数矩阵Δ代入式(5),式(5)即为所需的结构应变-竖向挠度之间的关系模型;
步骤一三:根据步骤一一获得的第j个监测点的主梁竖向挠度解析数据和斜拉索索力解析数据,对其进行函数拟合,确定函数Fj使其满足
Sj=Fj(Nj) (7)
依次对p个监测点按式(7)进行函数拟合,获得函数集F
F={F1,F2,…,Fp} (8)
式(8)即为所需的竖向挠度-斜拉索索力之间的关系模型。
3.根据权利要求1所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,步骤二所述计算主梁竖向挠度和斜拉索索力监测结果的方法为:
步骤二一:步骤二采集的主梁不同断面处的结构应变监测数据为
Figure FDA0002220041870000022
利用结构应变-竖向挠度之间的关系模型,则主梁竖向挠度监测结果为
Figure FDA0002220041870000023
步骤二二:根据步骤二一获得的主梁竖向挠度监测结果,利用竖向挠度-斜拉索索力之间的关系模型,则斜拉索索力监测结果为
Figure FDA0002220041870000024
4.根据权利要求1所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,步骤三所述构建斜拉索索力-主梁结构应变数据集合、主梁结构应变-主梁竖向挠度数据集合的方法为:
步骤三一:根据步骤二获得的主梁不同断面处的结构应变监测数据从中选取监测点位于斜拉索锚固处所在截面处的p个监测点的监测数据重新构造主梁结构应变监测数据
Figure FDA0002220041870000032
Figure FDA0002220041870000033
步骤三二:根据步骤三一获得的重构主梁结构应变监测数据
Figure FDA0002220041870000034
和步骤二获得的斜拉索索力监测结果
Figure FDA0002220041870000035
确定第j个监测点的斜拉索索力-主梁结构应变数据集合为
Figure FDA0002220041870000036
式中,aij是一个行向量,是由第j个监测点在第i时刻的斜拉索索力监测结果和重构主梁结构应变监测数据构成的数据点,即
Figure FDA0002220041870000037
步骤三三:根据步骤三一获得的重构主梁结构应变监测数据和步骤二获得的主梁竖向挠度监测结果确定第j个监测点的主梁结构应变-主梁竖向挠度数据集合为
Figure FDA00022200418700000310
式中,bij是一个行向量,是由第j个监测点在第i时刻的重构主梁结构应变监测数据和主梁竖向监测结果构成的数据点,即
Figure FDA00022200418700000311
5.根据权利要求1所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,步骤四计算桥梁参考状态下结构损伤诊断因子序列及确定结构损伤诊断阈值的方法为:
将桥梁开始运营后获得的监测数据分为参考状态和待诊断状态两部分,参考状态是指以桥梁开始运营的第一年内获得的监测数据,待损伤诊断状态是指桥梁开始运营第一年以后获得的监测数据;
根据步骤三获得的斜拉索索力-主梁结构应变数据集合和主梁结构应变-主梁竖向挠度数据集合,记参考状态下的第j个监测点的数据集合分别为
Figure FDA00022200418700000312
Figure FDA00022200418700000313
参考状态下的数据集合中数据点分别为
Figure FDA0002220041870000041
Figure FDA0002220041870000042
则桥梁参考状态下结构损伤诊断因子为
Figure FDA0002220041870000043
Figure FDA0002220041870000044
式中,
Figure FDA0002220041870000045
表示参考状态下数据点
Figure FDA0002220041870000046
到参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure FDA0002220041870000047
的马氏距离;
Figure FDA0002220041870000048
表示参考状态下数据点
Figure FDA0002220041870000049
到参考状态下第j个监测点主梁结构应变-主梁竖向挠度数据集合的马氏距离;
Figure FDA00022200418700000411
Figure FDA00022200418700000412
分别为参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure FDA00022200418700000413
的均值和协方差矩阵;
Figure FDA00022200418700000414
Figure FDA00022200418700000415
分别为参考状态下j个监测点的主梁结构应变-主梁竖向挠度数据集合
Figure FDA00022200418700000416
的均值和协方差矩阵;
依次对参考状态下第j个监测点的k次采样获得的数据点按式(14)和式(15)进行计算,则桥梁参考状态下第j个监测点的结构损伤诊断因子序列为
Figure FDA00022200418700000417
Figure FDA00022200418700000418
则桥梁第j个监测点的结构损伤诊断阈值为
Figure FDA00022200418700000419
Figure FDA00022200418700000420
6.根据权利要求1所述的基于BOTDA技术的大跨桥梁斜拉索结构损伤诊断方法,其特征在于,步骤五计算桥梁待诊断状态下结构损伤诊断因子的方法为:
根据步骤三获得的斜拉索索力-主梁结构应变数据集合和主梁结构应变-主梁竖向挠度数据集合,则桥梁待诊断状态下结构损伤诊断因子为
Figure FDA00022200418700000421
Figure FDA00022200418700000422
式中,
Figure FDA00022200418700000423
表示待诊断状态下数据点aij到参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure FDA00022200418700000424
的马氏距离;
Figure FDA00022200418700000425
表示待诊断状态下数据点bij到参考状态下第j个监测点主梁结构应变-主梁竖向挠度数据集合的马氏距离;
Figure FDA00022200418700000427
Figure FDA00022200418700000428
分别为参考状态下第j个监测点的斜拉索索力-主梁结构应变数据集合
Figure FDA0002220041870000051
的均值和协方差矩阵;
Figure FDA0002220041870000052
Figure FDA0002220041870000053
分别为参考状态下j个监测点的主梁结构应变-主梁竖向挠度数据集合
Figure FDA0002220041870000054
的均值和协方差矩阵。
CN201910930266.9A 2019-09-29 2019-09-29 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法 Active CN110728089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910930266.9A CN110728089B (zh) 2019-09-29 2019-09-29 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910930266.9A CN110728089B (zh) 2019-09-29 2019-09-29 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法

Publications (2)

Publication Number Publication Date
CN110728089A true CN110728089A (zh) 2020-01-24
CN110728089B CN110728089B (zh) 2020-05-29

Family

ID=69219591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910930266.9A Active CN110728089B (zh) 2019-09-29 2019-09-29 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法

Country Status (1)

Country Link
CN (1) CN110728089B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609805A (zh) * 2020-04-23 2020-09-01 哈尔滨工业大学 基于全分布应变测点断面曲率的隧道结构状态诊断方法
CN113591371A (zh) * 2021-07-12 2021-11-02 黑龙江先创科技开发有限公司 基于时空关联模型的桥梁集群结构损伤定位方法
CN114741923A (zh) * 2022-04-11 2022-07-12 哈尔滨工业大学 基于高密度测点应变的大跨径桥梁吊索索力识别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8176832B1 (en) * 2011-01-13 2012-05-15 The United States Of America As Represented By The Secretary Of The Army System and method for obstruction deflection
CN103984875B (zh) * 2014-06-10 2017-01-11 哈尔滨工业大学 复杂环境下基于累积损伤因子序列的桥梁结构损伤诊断方法
CN104677666B (zh) * 2015-03-18 2017-05-17 西安公路研究院 基于挠度监测的连续刚构桥预应力损伤识别方法
CN108090295A (zh) * 2017-12-27 2018-05-29 武汉光谷北斗控股集团有限公司 一种大跨斜拉桥拉索损伤识别方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609805A (zh) * 2020-04-23 2020-09-01 哈尔滨工业大学 基于全分布应变测点断面曲率的隧道结构状态诊断方法
CN111609805B (zh) * 2020-04-23 2021-06-01 哈尔滨工业大学 基于全分布应变测点断面曲率的隧道结构状态诊断方法
CN113591371A (zh) * 2021-07-12 2021-11-02 黑龙江先创科技开发有限公司 基于时空关联模型的桥梁集群结构损伤定位方法
CN114741923A (zh) * 2022-04-11 2022-07-12 哈尔滨工业大学 基于高密度测点应变的大跨径桥梁吊索索力识别方法

Also Published As

Publication number Publication date
CN110728089B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN109583570B (zh) 基于深度学习确定桥梁健康监测系统异常数据来源的方法
CN110728089B (zh) 基于botda技术的大跨桥梁斜拉索结构损伤诊断方法
CN110704801B (zh) 桥梁集群结构运营安全智能监测与快速检测成套方法
CN110704911B (zh) 一种基于集群结构相似性的桥梁损伤交叉定位方法
CN115048998B (zh) 一种基于监测数据的斜拉桥群索索力异常识别定位方法
Cheng et al. Structural nonlinear damage detection method using AR/ARCH model
Entezami et al. Improving feature extraction via time series modeling for structural health monitoring based on unsupervised learning methods
CN110147595B (zh) 一种多片式梁桥横向协同工作性能的评估方法
Monavari et al. Structural deterioration detection using enhanced autoregressive residuals
CN109781863B (zh) 基于快速振动测试的结构腐蚀二阶段探测方法及其系统
Amanollah et al. Damage detection of structures based on wavelet analysis using improved AlexNet
Barrish Jr et al. Instrumented monitoring of the Commodore Barry bridge
Zhou et al. Damage detection for SMC benchmark problem: A subspace-based approach
JP2022029433A (ja) 構造物資産の損傷評価のための方法及びシステム
KR20130000654A (ko) 환경 인자를 고려한 장대교량의 실시간 구조해석 모니터링
CN116910879A (zh) 一种随机车载作用下桥梁斜拉索的索力异常诊断方法及装置
Gul Investigation of damage detection methodologies for structural health monitoring
CN113705721B (zh) 梁桥支座群脱空病害的联合概率密度函数差诊断方法
EP3882585A1 (en) Methods and systems for determining a control load using statistical analysis
Gibson et al. Data-driven strain prediction models and fatigue damage accumulation
Miao et al. Modal analysis of a concrete highway bridge: Structural calculations and vibration-based results
CN111931407A (zh) 一种基于长期监测数据的结构可靠度评估预测方法及系统
Wickramasinghe Damage detection in suspension bridges using vibration characteristics
CN109840389B (zh) 一种基于贝叶斯和garch的预应力预测方法
Guo et al. Structural Nonlinear Damage Identification Using the Residual Deviation Distance Conversion Index of the Time-Domain Model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant