CN110724214A - 一种导热多孔混杂复合材料的制备方法 - Google Patents
一种导热多孔混杂复合材料的制备方法 Download PDFInfo
- Publication number
- CN110724214A CN110724214A CN201910874713.3A CN201910874713A CN110724214A CN 110724214 A CN110724214 A CN 110724214A CN 201910874713 A CN201910874713 A CN 201910874713A CN 110724214 A CN110724214 A CN 110724214A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- composite material
- heat
- carbon nanotube
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F112/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F112/02—Monomers containing only one unsaturated aliphatic radical
- C08F112/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F112/06—Hydrocarbons
- C08F112/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/12—Esters of monohydric alcohols or phenols
- C08F120/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明属于纳米材料领域,具体涉及一种导热多孔混杂复合材料的制备方法,本发明公开一种导热多孔混杂复合材料的制备方法,利用油包水型Pickering乳液界面张力,将氧化石墨烯‑碳纳米管混杂材料组装成为三维连续碳纳米材料网络,经油相单体聚合、脱水干燥后,获得导热多孔聚合物基复合材料。本发明公开的导热多孔混杂复合材料结构和性能可通过控制碳纳米混杂稳定剂组成和用量进行调控,适用于多种单体,可以制成片、板、膜、涂料和胶粘剂等不同形式,所需设备简单,成本低廉,工艺操作方便。
Description
技术领域
本发明属于纳米材料领域,具体涉及一种导热多孔混杂复合材料的制备方法。
背景技术
结构功能一体化是当前航空航天领域对复合材料提出的新课题。聚合物多孔材料,即泡沫聚合物,具有相对密度低、比强度高、比表面积大以及减震抗冲、隔音降噪、耐腐蚀等优异的物理性能,并且通过改变化学组成和制备工艺可以对其性能、孔隙率和孔结构进行调控,目前,聚合物多孔材料已经在交通运输、建筑结构、机械和化工领域得到广泛应用。与聚合物泡沫相比,多孔聚合物基复合材料除了具有常规多孔材料的共性特征以外,由于功能性增强体的引入,不但提高了力学性能,而且在结构和功能方面具有更高的可设计性。多孔聚合物基复合材料可制成片、板、膜、涂料和胶粘剂等不同形式,作为结构材料和功能材料,在航空、航天等领域展现出广阔的应用前景。
当前,诸如外加发泡剂法、自身反应产生发泡剂法、热分解不稳定链段法、模板法、相转化法等目前广泛应用的传统聚合物泡沫制备方法仍然适用制备多孔聚合物基复合材料,但制备工艺复杂和结构/功能单一等问题限制了多孔聚合物基复合材料的进一步应用。
发明内容
本发明提供一种导热多孔混杂复合材料的制备方法,利用油包水型Pickering乳液两相界面能作为驱动力,把氧化石墨烯-碳纳米管混杂材料组装成为三维连续宏观网络,经聚合、脱水干燥后获得导热多孔聚合物基复合材料。
一种导热多孔混杂复合材料的制备方法,包括如下步骤:
(1)将氧化石墨烯在二甲基亚砜溶剂中超声分散,得到氧化石墨烯分散液;
(2)将碳纳米管加入到步骤(1)所得的氧化石墨烯分散液中,超声分散后得到碳纳米管-氧化石墨烯分散体系;
(3)将2-甲基咪唑加入至步骤(2)所得的氧化石墨烯-碳纳米管分散体系中,超声分散后,加热至155℃并保持7.5小时,然后冷却至室温,经离心分离、洗涤、真空干燥,获得氧化石墨烯-碳纳米管混杂材料;
(4)将步骤(3)所得的氧化石墨烯-碳纳米管混杂材料加入至液态单体或预聚物中,室温下超声分散后作为油相;
(5)将pH值为3~4盐酸作为水相,并在磁力搅拌下,将其滴加至步骤(4)所得的油相中,制得由氧化石墨烯-碳纳米管混杂材料稳定的油包水型Pickering乳液;
(6)将油包水型Pickering乳液放置在鼓风干燥箱内,升温至65~75℃,并保温24小时,制得导热多孔混杂复合材料。
进一步地,步骤(1)中所述氧化石墨烯的直径为20μm~80μm,氧化石墨烯分散液的浓度为1~10mg/ml。
进一步地,步骤(2)中所述碳纳米管为表面羧基修饰碳纳米管或表面氨基修饰碳纳米管或表面羟基修饰碳纳米管,所述碳纳米管为单壁或双壁或多壁碳纳米管。
进一步地,步骤(2)中所述氧化石墨烯与碳纳米管的质量比为5:1~2:1。
进一步地,步骤(3)中所述2-甲基咪唑的加入量为氧化石墨烯质量的3倍。
进一步地,步骤(4)中所述氧化石墨烯-碳纳米管混杂材料的加入量为油相质量的1.5%。
进一步地,步骤(5)中所述液态单体为苯乙烯或甲基丙烯酸甲酯,并以偶氮二异丁腈作为引发剂,所述引发剂用量为单体质量3%。
进一步地,步骤(5)中所述预聚物为质量比为100:5放入E44环氧树脂和二亚乙基三胺的混合物。
进一步地,步骤(5)中所述油相和水相的体积比为1:2~3。
进一步地,所述步骤(1)中超声分散时间为20~40分钟,步骤(2)中的超声分散时间为1.5~2小时,步骤(3)中的超声分散时间为1~2小时,步骤(4)中的超声分散时间为0.5~2小时,其中,超声场工作频率为45kHz,功率为100W。
进一步地,步骤(5)中所制得的导热多孔混杂复合材料的热扩散系数为0.32~0.35mm2/s。
与现有技术相比,本发明的有益效果是:
(1)本发明利用碳纳米管和氧化石墨烯制成两亲性可控的碳纳米混杂材料,并以碳纳米混杂材料为稳定剂,制备油包水型Pickering乳液,利用油水界面张力将碳纳米混杂材料组装成三维宏观网络,经聚合、脱水后制备具有高比表面积和导电、导热性能的多孔混杂复合材料,最大限度地保持碳纳米管sp2杂化碳原子结构完整性;
(2)本发明所述的多孔混杂复合材料以油包水型Pickering乳液为模板,其结构和性能可通过控制碳纳米混杂稳定剂组成和用量进行调控;
(3)本发明适用于多种单体,可以制成片、板、膜、涂料和胶粘剂等不同形式,作为结构材料和功能材料,在能源、环境、航空和航天等领域具有广阔的应用前景,所需设备简单,成本低廉,工艺操作方便。
附图说明
图1是本发明实施例1中制备的油包水型Pickering乳液及其光学显微镜照片;
图2是本发明实施例1中制备的多孔混杂复合材料扫描电镜照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明采用以固体颗粒为稳定剂的Pickering乳液模板技术,在液-液界面张力作用下,具有适宜两亲性的固体颗粒吸附于不相容的两相界面,导致体系自由能降低,同时在分散的液滴之间形成空间阻隔,使热力学不稳定的乳液体系获得动力学上的稳定。当以具有聚合活性单体为油相时,不同类型Pickering乳液模板技术能够制备壳-核结构聚合物微球和多孔聚合物基复合材料。作为稳定剂的功能化固体颗粒一方面起到控制乳液类型、稳定乳液的作用,另一方面作为功能填料赋予复合材料以导电性和导热性,使获得具备吸附、催化、阻尼和静电屏蔽、热量耗散功能的聚合物基复合材料成为可能。
本发明提供一种导热多孔混杂复合材料的制备方法,利用油包水型Pickering乳液两相界面能作为驱动力,把氧化石墨烯-碳纳米管混杂材料组装成为三维连续宏观网络,经聚合、脱水干燥后获得导热多孔聚合物基复合材料。氧化石墨烯是采用化学剥离方法获得的二维石墨烯衍生物,在制备过程中,氧化处理在石墨烯表面,尤其在边缘引入了大量的羟基、环氧基和羧基等极性基团,形成部分sp3杂化碳原子,而未被氧化的区域仍然保持疏水的sp2杂化碳原子结构,因此氧化石墨烯在保留石墨烯柔性二维形貌的同时,兼具胶体和表面活性剂的属性。碳纳米管是具有高导电、高导热性能的一维碳纳米材料,高长径比和强π-π相互作用使碳纳米管极易缠结和聚集。将亲水氧化石墨烯和疏水碳纳米管组装成为两亲性可调的碳纳米混杂材料,不但克服了一维碳纳米管和二维石墨烯在结构和功能方面的各向异性,而且能够作为Pickering乳液稳定剂和功能性填料制备结构功能一体化复合材料。
以下实施例是对本发明的进一步说明,实施例中采用的二甲基亚砜、单体、引发剂和环氧树脂、固化剂为市购产品。本发明实施例中采用的表面羧基修饰碳纳米管、表面氨基修饰碳纳米管和表面羟基修饰碳纳米管均为市购产品,本实施例采用的氧化石墨烯直径为20μm~80μm;本发明实施例中采用的超声场工作频率为45kHz,功率为100W。
实施例1
本实施例的多孔混杂复合材料制备方法按照以下步骤进行:
(1)将200mg氧化石墨烯在100ml二甲基亚砜溶剂中超声分散40分钟,得到2mg/ml的氧化石墨烯分散液;
(2)将50mg羧基化多壁碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散1.5小时后得到碳纳米管-氧化石墨烯分散体系;
(3)将600mg的2-甲基咪唑加入至步骤(2)所得氧化石墨烯-碳纳米管分散体系中,超声分散1小时后,加热至155℃并保持7.5小时,然后冷却至室温,经离心分离、洗涤、真空干燥,获得氧化石墨烯-碳纳米管混杂材料;
(4)将氧化石墨烯-碳纳米管混杂材料加入至10ml苯乙烯单体中,加入3wt%偶氮二异丁腈(按单体质量计算),室温超声分散0.5小时后作为油相,氧化石墨烯-碳纳米管混杂材料的加入量为油相质量的1.5%;
(5)以pH值为3的盐酸为水相,在磁力搅拌下,在40分钟内滴加至步骤(4)所得的苯乙烯/氧化石墨烯-碳纳米管混杂材料组成的油相中,制得由氧化石墨烯-碳纳米管混杂材料稳定的油包水型Pickering乳液(如图1所示),油相和水相体积比为1:2;
(6)将步骤(5)所得油包水型Pickering乳液放置在在鼓风干燥箱内,升温至65℃,保温24小时,制得导热多孔混杂聚苯乙烯复合材料(如图2所示),其热扩散系数为0.33mm2/s。
实施例2
(1)将200mg氧化石墨烯在100ml二甲基亚砜溶剂中超声分散40分钟,得到2mg/ml氧化石墨烯分散液;
(2)将40mg氨基化双壁碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散1.5小时后得到碳纳米管-氧化石墨烯分散体系;
(3)将600mg的2-甲基咪唑加入至步骤(2)所得氧化石墨烯-碳纳米管分散体系中,超声分散2小时后,加热至155℃并保持7.5小时,然后冷却至室温,经离心分离、洗涤、真空干燥,获得氧化石墨烯-碳纳米管混杂材料;
(4)将氧化石墨烯-碳纳米管混杂材料加入至12ml甲基丙烯酸甲酯单体中,加入3wt%偶氮二异丁腈(按单体质量计算),室温超声分散1小时后作为油相,氧化石墨烯-碳纳米管混杂材料的加入量为油相质量的1.5%;
(5)以pH值为4的盐酸作为水相,在磁力搅拌下,在40分钟内滴加至步骤(4)所得的甲基丙烯酸甲酯/氧化石墨烯-碳纳米管混杂材料组成的油相中,制得由氧化石墨烯-碳纳米管混杂材料稳定的油包水型Pickering乳液,油相和水相体积比为1:2;
(6)将油包水型Pickering乳液放置在鼓风干燥箱内,升温至75℃,保温24小时,制得导热多孔混杂聚甲基丙烯酸甲酯复合材料,其热扩散系数为0.32mm2/s。
实施例3
(1)将400mg氧化石墨烯在100ml二甲基亚砜溶剂中超声分散40分钟,得到4mg/ml氧化石墨烯分散液;
(2)将100mg氨基化碳纳米管加入到步骤(1)所得的氧化石墨烯分散液中,超声分散2小时后,得到氨基化碳纳米管-氧化石墨烯分散体系;
(3)将1.2g的2-甲基咪唑加入至步骤(2)所得的氧化石墨烯-碳纳米管分散体系中,超声分散2小时后,加热至155℃并保持7.5小时,然后冷却至室温,经离心分离、洗涤、真空干燥,获得氧化石墨烯-碳纳米管混杂材料;
(4)将氧化石墨烯-碳纳米管混杂材料加入至环氧树脂E44和二亚乙基三胺混合物中(质量比100:5)中,室温超声分散2小时后作为油相,氧化石墨烯-碳纳米管混杂材料的加入量为油相质量的1.5%;
(5)以pH值为4的盐酸作为水相,在磁力搅拌下,滴加至步骤(4)所得环氧树脂/氧化石墨烯-碳纳米管混杂材料组成的油相中,制得用氧化石墨烯-碳纳米管混杂材料稳定的油包水型Pickering乳液,油相和水相体积比为1:3;
(6)将油包水型Pickering乳液在鼓风干燥箱内升温至65℃,保温24小时,制得导热多孔混杂环氧树脂复合材料,其热扩散系数为0.35mm2/s。
以上技术方案阐述了本发明的技术思路,不能以此限定本发明的保护范围,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上技术方案所作的任何改动及修饰,均属于本发明技术方案的保护范围。
Claims (10)
1.一种导热多孔混杂复合材料的制备方法,其特征在于,包括如下步骤:
(1)将氧化石墨烯在二甲基亚砜溶剂中超声分散,得到氧化石墨烯分散液;
(2)将碳纳米管加入到步骤(1)所得的氧化石墨烯分散液中,超声分散后得到碳纳米管-氧化石墨烯分散体系;
(3)将2-甲基咪唑加入至步骤(2)所得的氧化石墨烯-碳纳米管分散体系中,超声分散后,加热至155℃并保持7.5小时,然后冷却至室温,经离心分离、洗涤、真空干燥,获得氧化石墨烯-碳纳米管混杂材料;
(4)将步骤(3)所得的氧化石墨烯-碳纳米管混杂材料加入至液态单体或预聚物中,室温下超声分散后作为油相;
(5)将pH值为3~4盐酸作为水相,并在磁力搅拌下,将其滴加至步骤(4)所得的油相中,制得由氧化石墨烯-碳纳米管混杂材料稳定的油包水型Pickering乳液;
(6)将油包水型Pickering乳液放置在在鼓风干燥箱内,升温至65~75℃,并保温24小时,制得导热多孔混杂复合材料。
2.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(1)中所述氧化石墨烯的直径为20μm~80μm,氧化石墨烯分散液的浓度为1~10mg/ml。
3.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(2)中所述碳纳米管为表面羧基修饰碳纳米管或表面氨基修饰碳纳米管或表面羟基修饰碳纳米管,所述碳纳米管为单壁或双壁或多壁碳纳米管。
4.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(2)中所述氧化石墨烯与碳纳米管的质量比为5:1~2:1。
5.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(3)中所述2-甲基咪唑的加入量为氧化石墨烯质量的3倍。
6.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(5)中所述液态单体为苯乙烯或甲基丙烯酸甲酯,并以偶氮二异丁腈作为引发剂,所述引发剂用量为单体质量3%。
7.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(5)中所述预聚物为质量比为100:5的E44环氧树脂和二亚乙基三胺的混合物。
8.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(4)中氧化石墨烯-碳纳米管混杂材料的加入量为油相质量的1.5%,步骤(5)中所述油相和水相的体积比为1:2~3。
9.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,所述步骤(1)中超声分散时间为20~40分钟,步骤(2)中的超声分散时间为1.5~2小时,步骤(3)中的超声分散时间为1~2小时,步骤(4)中的超声分散时间为0.5~2小时,其中,超声场工作频率为45kHz,功率为100W。
10.根据权利要求1所述的一种导热多孔混杂复合材料的制备方法,其特征在于,步骤(5)中所制得的导热多孔混杂复合材料的热扩散系数为0.32~0.35mm2/s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910874713.3A CN110724214B (zh) | 2019-09-17 | 2019-09-17 | 一种导热多孔混杂复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910874713.3A CN110724214B (zh) | 2019-09-17 | 2019-09-17 | 一种导热多孔混杂复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110724214A true CN110724214A (zh) | 2020-01-24 |
CN110724214B CN110724214B (zh) | 2022-06-10 |
Family
ID=69219026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910874713.3A Active CN110724214B (zh) | 2019-09-17 | 2019-09-17 | 一种导热多孔混杂复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110724214B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106117400A (zh) * | 2016-07-19 | 2016-11-16 | 沈阳航空航天大学 | 碳纳米管‑氧化石墨烯增强聚合物基复合材料的制备方法 |
CN106189088A (zh) * | 2016-07-19 | 2016-12-07 | 沈阳航空航天大学 | 一种碳纳米管‑氧化石墨烯混杂增强复合材料的制备方法 |
EP3335783A1 (en) * | 2016-12-16 | 2018-06-20 | ETH Zurich | Universal emulsion stabilizers for pickering emulsions |
-
2019
- 2019-09-17 CN CN201910874713.3A patent/CN110724214B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106117400A (zh) * | 2016-07-19 | 2016-11-16 | 沈阳航空航天大学 | 碳纳米管‑氧化石墨烯增强聚合物基复合材料的制备方法 |
CN106189088A (zh) * | 2016-07-19 | 2016-12-07 | 沈阳航空航天大学 | 一种碳纳米管‑氧化石墨烯混杂增强复合材料的制备方法 |
EP3335783A1 (en) * | 2016-12-16 | 2018-06-20 | ETH Zurich | Universal emulsion stabilizers for pickering emulsions |
Non-Patent Citations (1)
Title |
---|
王柏臣等: ""纳米碳混杂多孔复合材料的制备与性能"", 《沈阳航空航天大学学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN110724214B (zh) | 2022-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110562963B (zh) | 一种石墨烯-碳纳米管混杂海绵的制备方法 | |
Yu et al. | Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels | |
Qian et al. | Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding | |
Muhd Julkapli et al. | Nanocellulose as a green and sustainable emerging material in energy applications: a review | |
Zhang et al. | Formation of superhydrophobic microspheres of poly (vinylidene fluoride–hexafluoropropylene)/graphene composite via gelation | |
Qiu et al. | Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage | |
Huang et al. | Controllable synthesis of latex particles with multicavity structures | |
Nie et al. | Synthesis of Janus rubber hybrid particles and interfacial behavior | |
CN107262064A (zh) | 一种聚酰胺‑胺接枝氧化石墨烯包覆型生物小分子吸附剂的制备方法 | |
Tu et al. | Pore structure of macroporous polymers using polystyrene/silica composite particles as pickering stabilizers | |
CN104860293A (zh) | 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法 | |
CN105669967A (zh) | 聚醚高分子刷杂化的纳米无机材料及其制备方法 | |
Normatov et al. | Interconnected Silsesquioxane− Organic Networks in Porous Nanocomposites Synthesized within High Internal Phase Emulsions | |
Li et al. | Poly (vinyl alcohol) assisted regulation of aramid nanofibers aerogel structure for thermal insulation and adsorption | |
Liu et al. | Designer core–shell nanoparticles as polymer foam cell nucleating agents: The impact of molecularly engineered interfaces | |
Mao et al. | Selective distribution of SrTiO3 in co-continuous composites: an effective method to improve the dielectric and mechanical properties | |
CN104861424A (zh) | 一种聚合物基轻质高强泡沫材料的制备方法 | |
Jalalian et al. | Air templated macroporous epoxy foams with silica particles as property-defining additive | |
Xu et al. | Rigid thermosetting epoxy/multi-walled carbon nanotube foams with enhanced conductivity originated from a flow-induced concentration effect | |
CN1640933A (zh) | 一种制备聚合物/碳纳米管复合材料的方法 | |
CN110724214B (zh) | 一种导热多孔混杂复合材料的制备方法 | |
CN108584934B (zh) | 一种磺酸基功能化石墨烯分散体系及其制备方法 | |
Long et al. | SiO2 nanostructure-based aerogels with high strength and deformability for thermal insulation | |
Xie et al. | Robust CoFe2O4@ Carbon Nanotube/Polydimethylsiloxane Foams with Low Thermal Conductivity for Electromagnetic Interference Shielding | |
CN110699038B (zh) | 一种宽玻璃化转变温域的磁性多孔复合材料制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |