CN110718359A - Manufacturing structure and method of surface-mounted integrally-formed inductor - Google Patents

Manufacturing structure and method of surface-mounted integrally-formed inductor Download PDF

Info

Publication number
CN110718359A
CN110718359A CN201911090216.0A CN201911090216A CN110718359A CN 110718359 A CN110718359 A CN 110718359A CN 201911090216 A CN201911090216 A CN 201911090216A CN 110718359 A CN110718359 A CN 110718359A
Authority
CN
China
Prior art keywords
coil
built
plate main
pressing plate
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911090216.0A
Other languages
Chinese (zh)
Inventor
庄仲郑
王丹娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou Xinji Electronic Technology Co Ltd
Original Assignee
Shantou Xinji Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou Xinji Electronic Technology Co Ltd filed Critical Shantou Xinji Electronic Technology Co Ltd
Priority to CN201911090216.0A priority Critical patent/CN110718359A/en
Publication of CN110718359A publication Critical patent/CN110718359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating

Abstract

The invention relates to a manufacturing structure and a method of a surface-mounted integrally-formed inductor. In a forming die, two groups of pressing plate main bodies are respectively placed right above and right below a built-in coil, the pressing surface of each pressing plate main body needs to face the built-in coil, two poles of the built-in coil need to respectively exceed the range of two end parts of each pressing plate main body, and the two groups of pressing plate main bodies and the built-in coil are integrally formed into a blank body by adopting pressurization or heating. Two poles of the built-in coil are exposed outside the blank after molding, and external electrodes are formed at two ends of the blank. The inductor manufactured by the invention has good blank coverage, almost has no leakage magnetic flux, can increase the size of the coil to the maximum extent, improve Isat and reduce Rdc, and can reduce the damage to the pressing plate main body and reduce the size of the inductor by combining the shape of the pressing plate main body.

Description

Manufacturing structure and method of surface-mounted integrally-formed inductor
Technical Field
The invention belongs to the technical field of manufacturing surface-mounted inductors, and particularly relates to a manufacturing structure and a manufacturing method of a surface-mounted integrally-formed inductor.
Background
At present, a coil surface-mount inductor formed of a sealing material made of magnetic powder and resin has been widely used in the industry, and this field emphasizes the Isat value of direct current superimposed current and the Rdc value of DC resistance, and requires that the higher Isat value and the lower Rdc value are required as the Isat value becomes higher and the smaller size becomes, and therefore, it is required to increase the size of a built-in coil while reducing leakage flux and to secure the coil in the middle of the whole body with a small outer size.
As in the patent literature: japanese patent No. 4714779 discloses a manufacturing method using an E-type tablet in which a coil formed by winding a copper wire is placed on an E-type flat plate, and both end portions of the coil are placed outside the outer wall of the flat plate, and then the coil and the flat plate are placed in a molding die so as to be sandwiched between the inner walls of the molding die, and a green body is formed by resin molding or powder molding. Although this method can ensure the coil to be centered, as shown in fig. 4, the thickness of the outer wall of the E-shaped plate needs to be at least 0.1 to 0.15mm or more because the formed E-shaped plate needs to maintain its wrapping property and durability, and if the size of the surface mount inductor is smaller, it is not negligible that the outer wall of the E-shaped plate cannot be reduced, so that the built-in coil can only be reduced, and the Rdc value cannot be reduced;
as another example, patent document: japanese patent No. 6060116 discloses a manufacturing method using a flat sheet shape, which employs a flat sheet type instead of an E-shaped flat sheet to increase the size of a built-in coil, as shown in fig. 5, but this method cannot fix the coil position when molding in a mold, and the resulting blank is not balanced in left and right directions, and the coil is exposed and generates more leakage flux, and the final product cannot achieve the best uniformity.
Disclosure of Invention
The invention aims to provide a manufacturing structure of a surface-mounted integrally-formed inductor and a method thereof aiming at the prior technical situation, wherein the upper and lower pressing plate main bodies are utilized to complete positioning and cover the whole coil, the formed blank has almost no leakage magnetic flux, the coil can be enlarged to the maximum extent, and high Isat and low Rdc are obtained.
In order to achieve the purpose, the invention adopts the following technical scheme:
the utility model provides a surface mounting integrated into one piece inductor's manufacture structure, built-in coil has, two sets of clamp plate main parts are located built-in coil upper and lower side respectively, the clamp plate main part has the pressfitting face, both sides have the arch, form the form that both sides are high, the centre is low, the both ends of built-in coil have and expose the copper line as the electrode, and the electrode part surpasss clamp plate main part both ends, the both sides of built-in coil then correspond the bellying of pressfitting face, through the mould pressfitting, upper and lower two sets of clamp plate main parts accomplish parcel and the packing to built-in coil.
As a structural form, the two sides of the pressing surface are horn-shaped bulges, and the middle of the pressing surface is flat.
As a structural form, both sides and the middle of the pressing surface form an inwards concave cambered surface.
As a structural form, the angular bulges at the two sides of the pressing surface extend to the middle part to be combined to form an inward concave included angle.
Further, as a small-sized inductor, the distance between the side surface of the outer diameter of the built-in coil and the outer surface of the side of the green body may be less than 0.15 mm.
The invention relates to a method for manufacturing a surface-mounted integrally-formed inductor, which specifically comprises the following steps:
(1) pre-rolling a hollow built-in coil;
(2) preforming a mixture of magnetic powder and thermosetting resin into two groups of completely same pressing plate main bodies, wherein the pressing plate main bodies are provided with pressing surfaces, and the pressing surfaces are high at two sides and low in the middle;
(3) in a forming die, two groups of pressing plate main bodies are respectively placed right above and right below a built-in coil, the pressing surface of each pressing plate main body faces the built-in coil, two poles of the built-in coil need to respectively exceed the range of two end parts of each pressing plate main body, and then the two groups of pressing plate main bodies and the built-in coil are integrally formed into a blank body by adopting pressurization or heating;
(4) after the two poles of the built-in coil are exposed outside the blank body after molding, and after insulators of the two poles are removed, external electrodes are formed at two ends of the blank body.
The invention has the beneficial effects that: adopt the coil that the coiling copper line formed and the sealing material that contains magnetic material and resin, integrated into one piece has the sealed blank of coil in the middle of, in the forming process, because the coil obtains the location parcel of clamp plate main part, not only make magnetic powder flow under the drive of thermosetting resin, realize filling and the parcel to the coil, simultaneously under the restriction of mould, can make the side of coil external diameter and the formation blank side outer wall thickness minimization, magnetic leakage flux has been reduced, the area proportion of built-in coil has been increased, be fit for the production of small-size inductor, its manufacturing cost is lower.
Description of the drawings:
FIG. 1 is a view showing a molding structure of a first embodiment of the present invention;
FIG. 2 is a view showing a molding structure of a second embodiment of the present invention;
FIG. 3 is a view showing a molding structure of a third embodiment of the present invention;
FIG. 4 is a cross-sectional view of the resin flow within the forming die during the practice of the present invention;
FIG. 5 is a process diagram of the surface mount inductor molding of Japanese patent No. 4714779;
fig. 6 is a process diagram of the surface mount inductor molding in japanese patent No. 6060116.
The specific implementation mode is as follows:
please refer to fig. 1 to 4, which are schematic structural diagrams illustrating a preferred embodiment of the present invention, the present invention is a manufacturing structure of a surface mount integrated inductor and a method thereof, the structure includes a built-in coil 1 and two sets of pressing plate main bodies 2, the two sets of pressing plate main bodies 2 are respectively located above and below the built-in coil 1, the pressing plate main bodies 2 have a pressing surface, both sides of the pressing plate main bodies have protrusions to form a shape with a high side and a low middle, both ends of the built-in coil 1 have exposed copper wires as electrodes, and the electrodes partially exceed both ends of the pressing plate main bodies 2, so that the electrodes of the built-in coil 1 can be exposed after pressing, both sides of the built-in coil 1 correspond to the protrusions of the pressing surface, so that during pressing, the upper and lower pressing plate main bodies 2 can complete wrapping and filling of the built.
The invention relates to a method for manufacturing a surface-mounted integrally-formed inductor, which specifically comprises the following steps:
(1) pre-coiling a hollow built-in coil 1;
(2) preforming a mixture of magnetic powder and thermosetting resin into two groups of completely identical pressing plate main bodies 2, wherein the pressing plate main bodies 2 are provided with pressing surfaces 21, and the pressing surfaces 21 are embodied as high at two sides and low in the middle;
(3) in a forming die, two groups of pressing plate main bodies 2 are respectively placed right above and right below an internal coil 1, a pressing surface 21 of each pressing plate main body 2 needs to face the internal coil 1, two poles of the internal coil 1 need to respectively exceed the range of two end parts of each pressing plate main body 2, and then the two groups of pressing plate main bodies 2 and the internal coil 1 are integrally formed into a blank body by adopting pressurization or heating;
(4) two poles of the built-in coil 1 are exposed outside the blank after molding, and external electrodes are formed at two ends of the blank after insulators of the two poles are removed.
In specific implementation, the upper and lower pressing plate main bodies 2 must be opposite to each other in terms of the pressing surfaces 21, the built-in coil 1 is arranged between the two pressing plate main bodies 2, two side surfaces of the built-in coil 1, which do not include electrodes, need to correspond to two protruding sides of the pressing plate main bodies 2, and the two pole end parts of the built-in coil 1 should exceed two end parts of the pressing plate main bodies 2, so that the two poles of the coil can be positioned outside a blank body after the two pole end parts.
The upper and lower pressing plate main bodies 2 have the functions of positioning, wrapping and filling, so the shapes of the upper and lower pressing plate main bodies 2 are necessarily the same and are opposite, and the pressing surface 21 of the pressing plate main body 2 can have several forms:
in the first embodiment, as shown in fig. 1, the pressing surface 21 of the pressing plate body 2 has two sides formed with angular protrusions and a flat middle.
In the second embodiment, as shown in fig. 2, two sides and the middle of the pressing surface 21 form an inward-concave arc surface.
In the third embodiment, as shown in fig. 3, the corner-like protrusions on both sides of the pressing surface 21 extend to the middle part to form an inward concave included angle.
Isat and Rdc are preferable if the built-in coil 1 is as large as possible, so that the outer diameter of the coil can be kept small from the inner dimension of the mold, and as a small-sized inductor, the length of the side of the outer diameter of the built-in coil from the outer surface of the side of the billet can be less than 0.15 mm.
The thermosetting resin may be a hot air epoxy resin having a temperature resistance level of 220 c, and by molding with the resin, the protrusions corresponding to the press-fit surfaces on the side surfaces of the coil flow between the side surfaces of the coil and the inner wall of the mold, and even if the coil is enlarged, a molded body in which the entire coil is covered with the resin can be formed.
It should be understood that the above-mentioned drawings are merely illustrative of the preferred embodiments of the present invention, and that the scope of the invention is not limited thereto.

Claims (6)

1. The utility model provides a surface mounting integrated into one piece inductor's manufacture structure which characterized in that: the coil pressing device is provided with a built-in coil and two groups of pressing plate main bodies, wherein the two groups of pressing plate main bodies are respectively positioned above and below the built-in coil, the pressing plate main bodies are provided with pressing surfaces, two sides of each pressing plate main body are provided with bulges to form a shape with a high two sides and a low middle part, two ends of the built-in coil are provided with exposed copper wires serving as electrodes, the electrode parts exceed two ends of the pressing plate main bodies, two sides of the built-in coil correspond to the bulges of the pressing surfaces, and the upper and lower groups of pressing plate main bodies wrap and fill the built-in.
2. The structure of claim 1, wherein: the two sides of the pressing surface are horn-shaped bulges, and the middle of the pressing surface is flat.
3. The structure of claim 1, wherein: the two sides and the middle of the pressing surface form an inwards concave cambered surface.
4. The structure of claim 1, wherein: the hornlike bulges at the two sides of the pressing surface extend to the middle part to be combined to form an inward concave included angle.
5. The structure for manufacturing a surface-mount integrated inductor according to any one of claims 1 to 4, wherein: and the distance between the side surface of the external diameter of the built-in coil and the external surface of the side of the blank body is less than 0.15 mm.
6. A manufacturing method of a surface-mounted integrally-formed inductor is characterized in that: the method specifically comprises the following steps:
(1) pre-rolling a hollow built-in coil;
(2) preforming a mixture of magnetic powder and thermosetting resin into two groups of completely same pressing plate main bodies, wherein the pressing plate main bodies are provided with pressing surfaces, and the pressing surfaces are high at two sides and low in the middle;
(3) in a forming die, two groups of pressing plate main bodies are respectively placed right above and right below a built-in coil, the pressing surface of each pressing plate main body faces the built-in coil, two poles of the built-in coil need to respectively exceed the range of two end parts of each pressing plate main body, and then the two groups of pressing plate main bodies and the built-in coil are integrally formed into a blank body by adopting pressurization or heating;
(4) after the two poles of the built-in coil are exposed outside the blank body after molding, and after insulators of the two poles are removed, external electrodes are formed at two ends of the blank body.
CN201911090216.0A 2019-11-08 2019-11-08 Manufacturing structure and method of surface-mounted integrally-formed inductor Pending CN110718359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911090216.0A CN110718359A (en) 2019-11-08 2019-11-08 Manufacturing structure and method of surface-mounted integrally-formed inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911090216.0A CN110718359A (en) 2019-11-08 2019-11-08 Manufacturing structure and method of surface-mounted integrally-formed inductor

Publications (1)

Publication Number Publication Date
CN110718359A true CN110718359A (en) 2020-01-21

Family

ID=69214900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911090216.0A Pending CN110718359A (en) 2019-11-08 2019-11-08 Manufacturing structure and method of surface-mounted integrally-formed inductor

Country Status (1)

Country Link
CN (1) CN110718359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627669A (en) * 2020-05-25 2020-09-04 昆山玛冀电子有限公司 Magnetic element and preparation method thereof
CN111627650A (en) * 2020-05-25 2020-09-04 昆山玛冀电子有限公司 Magnetic element and preparation method thereof
DE112021006315T5 (en) 2020-12-04 2023-09-14 Hengdian Group Dmegc Magnetics Co., Ltd INTEGRATED CO-BURNED INDUCTOR AND PRODUCTION PROCESS THEREOF
DE112021006318T5 (en) 2020-12-04 2023-09-14 Hengdian Group Dmegc Magnetics Co., Ltd INTEGRATED CO-BURNED INDUCTOR AND PRODUCTION PROCESS THEREOF

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2798265Y (en) * 2005-05-24 2006-07-19 联宝电子股份有限公司 Inductor with disc coil
KR20100094271A (en) * 2009-02-18 2010-08-26 아비코전자 주식회사 Surface mount inductor using ferrite powder and method for manufacturing the same
JP2013110184A (en) * 2011-11-18 2013-06-06 Toko Inc Surface-mounted inductor manufacturing method and surface-mounted inductor
CN103680817A (en) * 2012-08-31 2014-03-26 东光株式会社 Surface-mount inductor and production method thereof
CN106575571A (en) * 2014-07-18 2017-04-19 株式会社村田制作所 Manufacturing method of surface mounted inductor
US20170125158A1 (en) * 2014-07-18 2017-05-04 Murata Manufacturing Co., Ltd. Surface mounted inductor and manufacturing method therefor
CN210606865U (en) * 2019-11-08 2020-05-22 汕头市信技电子科技有限公司 Manufacturing structure of surface-mounted integrally-formed inductor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2798265Y (en) * 2005-05-24 2006-07-19 联宝电子股份有限公司 Inductor with disc coil
KR20100094271A (en) * 2009-02-18 2010-08-26 아비코전자 주식회사 Surface mount inductor using ferrite powder and method for manufacturing the same
JP2013110184A (en) * 2011-11-18 2013-06-06 Toko Inc Surface-mounted inductor manufacturing method and surface-mounted inductor
CN103680817A (en) * 2012-08-31 2014-03-26 东光株式会社 Surface-mount inductor and production method thereof
CN106575571A (en) * 2014-07-18 2017-04-19 株式会社村田制作所 Manufacturing method of surface mounted inductor
US20170125166A1 (en) * 2014-07-18 2017-05-04 Murata Manufacturing Co., Ltd. Manufacturing method of surface mounted inductor
US20170125158A1 (en) * 2014-07-18 2017-05-04 Murata Manufacturing Co., Ltd. Surface mounted inductor and manufacturing method therefor
CN210606865U (en) * 2019-11-08 2020-05-22 汕头市信技电子科技有限公司 Manufacturing structure of surface-mounted integrally-formed inductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627669A (en) * 2020-05-25 2020-09-04 昆山玛冀电子有限公司 Magnetic element and preparation method thereof
CN111627650A (en) * 2020-05-25 2020-09-04 昆山玛冀电子有限公司 Magnetic element and preparation method thereof
DE112021006315T5 (en) 2020-12-04 2023-09-14 Hengdian Group Dmegc Magnetics Co., Ltd INTEGRATED CO-BURNED INDUCTOR AND PRODUCTION PROCESS THEREOF
DE112021006318T5 (en) 2020-12-04 2023-09-14 Hengdian Group Dmegc Magnetics Co., Ltd INTEGRATED CO-BURNED INDUCTOR AND PRODUCTION PROCESS THEREOF

Similar Documents

Publication Publication Date Title
CN110718359A (en) Manufacturing structure and method of surface-mounted integrally-formed inductor
US11908611B2 (en) Manufacturing method for surface mounted inductor
KR101981515B1 (en) Method of manufacturing surface mount inductor
KR101352935B1 (en) A surface-mount inductor and a method of producing the same
US20060001517A1 (en) High current inductor and the manufacturing method
KR102046344B1 (en) Surface-mount inductor and production method thereof
KR101854578B1 (en) Manufacturing method of surface mounted inductor
JP2013110184A (en) Surface-mounted inductor manufacturing method and surface-mounted inductor
CN210606865U (en) Manufacturing structure of surface-mounted integrally-formed inductor
CN104183359B (en) Iron aluminum silicon powder one compacting inductance and production technology thereof
US20210304956A1 (en) Molded-forming power inductor and manufacturing method thereof
WO2018219367A2 (en) Transfer moulding inductive element and manufacturing method therefor
CN210606850U (en) Surface-mounted inductor with composite structure
CN211670091U (en) Easily-formed manufacturing structure of surface-mounted inductor
CN110729113A (en) Manufacturing structure and method of easily-formed surface-mounted inductor
CN110676011A (en) Surface-mounted inductor with composite structure and manufacturing method thereof
CN202917280U (en) Integrated inductor
CN213877719U (en) Inductance element
JP3120921U (en) SMD power choke coil
CN117373802A (en) Combined inductor and preparation method thereof
CN203941793U (en) A kind of novel integrated inductor
CN110797165A (en) Forming structure and method of surface-mounted inductor
CN113345705A (en) Manufacturing process of inductance element with high manufacturing efficiency
CN117373803A (en) Combined inductor and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Wang Danna

Inventor before: Zhuang Zhongzheng

Inventor before: Wang Danna

CB03 Change of inventor or designer information