CN110718205B - 一种无次级路径有源噪声控制系统及实现方法 - Google Patents

一种无次级路径有源噪声控制系统及实现方法 Download PDF

Info

Publication number
CN110718205B
CN110718205B CN201910985890.9A CN201910985890A CN110718205B CN 110718205 B CN110718205 B CN 110718205B CN 201910985890 A CN201910985890 A CN 201910985890A CN 110718205 B CN110718205 B CN 110718205B
Authority
CN
China
Prior art keywords
band
sub
filter
control
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910985890.9A
Other languages
English (en)
Other versions
CN110718205A (zh
Inventor
陈锴
卢晶
刘晓峻
狄敏
姚志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Nanjing University Of Science And Technology Electronic Information Technology Co ltd
Nanjing Nanda Electronic Wisdom Service Robot Research Institute Co ltd
Original Assignee
Jiangsu Province Nanjing University Of Science And Technology Electronic Information Technology Co ltd
Nanjing Nanda Electronic Wisdom Service Robot Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Nanjing University Of Science And Technology Electronic Information Technology Co ltd, Nanjing Nanda Electronic Wisdom Service Robot Research Institute Co ltd filed Critical Jiangsu Province Nanjing University Of Science And Technology Electronic Information Technology Co ltd
Priority to CN201910985890.9A priority Critical patent/CN110718205B/zh
Publication of CN110718205A publication Critical patent/CN110718205A/zh
Application granted granted Critical
Publication of CN110718205B publication Critical patent/CN110718205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

本发明公开了一种无次级路径有源噪声控制系统及实现方法,包括一个以上的子带自适应滤波器、子带分解器一、子带分解器二、子带综合器、全通带控制滤波器,所述子带自适应滤波器包括依次连接的相位调节器和子带控制滤波器,本发明使用相位调节器替代传统有源噪声控制系统中的次级路径滤波,该系统通过计算来获得相位调节器的调节值,进而使系统达到最优的收敛和控制效果。

Description

一种无次级路径有源噪声控制系统及实现方法
技术领域
本发明涉及一种无次级路径有源噪声控制系统及实现方法,属于噪声控制技术领域。
背景技术
近年来,随着人们对周围声学环境要求的不断提高,有源噪声控制越来越受到重视。有源噪声控制是一种利用反向声波对实际噪声进行消除的技术。与传统的被动噪声控制相比较,有源噪声控制对较难控制的低频噪声更为有效,再加上其体积小配置灵活等特点,具有较为广泛的应用前景。然而,传统的有源噪声控制算法需要对次级路径预先进行匹配,但是在一些有源噪声应用场景中,难以预先对次级路径进行匹配,或者实际次级路径会随着时间变化,因此,在线次级路径估计或者无次级路径有源噪声控制系统便成为工业界和学术界关注的焦点。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种无次级路径有源噪声控制系统及实现方法,该有源噪声控制系统使用相位调节器替代传统有源噪声控制系统中的次级路径滤波,该系统通过计算来获得相位调节器的调节值,进而使系统达到最优的收敛和控制效果。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种无次级路径有源噪声控制系统,包括一个以上的子带自适应滤波器、子带分解器一、子带分解器二、子带综合器、全通带控制滤波器,所述子带自适应滤波器包括依次连接的相位调节器和子带控制滤波器,其中:
所述子带分解器一用于将参考信号分解形成子带参考信号。
所述子带分解器二用于将误差信号分解形成子带误差信号。
所述相位调节器用于将子带参考信号进行相位调节,调节后的将子带参考信号输入到子带控制滤波器。
所述相位调节器的调节幅度
Figure 931037DEST_PATH_IMAGE001
是以下方程的最小二乘解:
Figure 390968DEST_PATH_IMAGE002
其中,
Figure 761907DEST_PATH_IMAGE003
Figure 898359DEST_PATH_IMAGE004
为特定常量,
Figure 987537DEST_PATH_IMAGE005
Figure 985580DEST_PATH_IMAGE006
对参考信号
Figure 211025DEST_PATH_IMAGE007
的比值,即:
Figure 783958DEST_PATH_IMAGE008
其中,
Figure 94854DEST_PATH_IMAGE009
对信号的多帧平均,
Figure 896588DEST_PATH_IMAGE006
为子带滤波器系数为
Figure 242118DEST_PATH_IMAGE010
得到的子带残 留噪声,
Figure 723303DEST_PATH_IMAGE007
是子带参考信号。
所述子带控制滤波器用于根据调节后的将子带参考信号和子带误差信号对子带滤波器系数进行更新,并将更新后的子带滤波器系数发送给子带综合器。
所述子带综合器用于将更新后的子带滤波器系数合成为全通带滤波器系数,并将合成后的全通带滤波器系数发送给全通带控制滤波器。
所述全通带控制滤波器根据发送过来的合成后的全通带滤波器系数进行更新,得到更新后的全通带控制滤波器。更新后的全通带控制滤波器根据参考信号得到控制源的输出激励控制源,从而在特定区域形成反向声波,进而达到控制的效果。
优选的:
Figure 521494DEST_PATH_IMAGE011
Figure 126919DEST_PATH_IMAGE012
,获得方程组为:
Figure 326956DEST_PATH_IMAGE013
求得该方程组的最小二乘解:
Figure 976112DEST_PATH_IMAGE014
其中,
Figure 402546DEST_PATH_IMAGE015
(15)
由于
Figure 670716DEST_PATH_IMAGE001
在区间
Figure 849894DEST_PATH_IMAGE016
内,所以
Figure 545317DEST_PATH_IMAGE001
的最终表达式为
Figure 318101DEST_PATH_IMAGE017
其中,
Figure 999749DEST_PATH_IMAGE001
表示调节幅度。
一种无次级路径有源噪声控制系统的实现方法,包括以下步骤:
步骤1,根据相位角度和频域建立各子带中频域有源噪声的表达式:
Figure 174379DEST_PATH_IMAGE018
(1)
其中,
Figure 165337DEST_PATH_IMAGE019
Figure 425417DEST_PATH_IMAGE020
分别是
Figure 910756DEST_PATH_IMAGE021
Figure 939892DEST_PATH_IMAGE022
的频域表达式,
Figure 364402DEST_PATH_IMAGE021
表示参考信号,
Figure 987144DEST_PATH_IMAGE022
表示次级源输 出,
Figure 135229DEST_PATH_IMAGE023
是帧索引,
Figure 18871DEST_PATH_IMAGE024
出控制滤波器在第
Figure 617211DEST_PATH_IMAGE023
帧的频域表达式,
Figure 586304DEST_PATH_IMAGE025
表示控制步长,
Figure 413446DEST_PATH_IMAGE026
表示误差信号,
Figure 417174DEST_PATH_IMAGE027
表示虚数单位,
Figure 186416DEST_PATH_IMAGE011
是相位角度,
Figure 642805DEST_PATH_IMAGE028
是共轭操作,
Figure 273638DEST_PATH_IMAGE029
Figure 866293DEST_PATH_IMAGE026
的频域表示,
Figure 806436DEST_PATH_IMAGE030
Figure 750121DEST_PATH_IMAGE031
分别是主路径和次 级路径的频域表示;
步骤2,假定次级路径
Figure 184645DEST_PATH_IMAGE031
的相位角的大小为
Figure 631807DEST_PATH_IMAGE001
,则控制滤波器的更新公式为:
Figure 745781DEST_PATH_IMAGE032
(2)
其中,
Figure 911183DEST_PATH_IMAGE033
是最优滤波器,将公式(2)变形得到:
Figure 149397DEST_PATH_IMAGE034
(3)
显然,
Figure 716645DEST_PATH_IMAGE035
能否收敛到最优解
Figure 733011DEST_PATH_IMAGE036
取决于公式(3)的右边第一项,即
Figure 651289DEST_PATH_IMAGE037
(4)
因此,公式(4)的右边项小于1是保证公式(1)的收敛性的必要条件,即
Figure 693194DEST_PATH_IMAGE038
(5)
步骤3,控制滤波器每隔
Figure 849369DEST_PATH_IMAGE039
个采样点完成一次更新,则控制滤波器
Figure 567795DEST_PATH_IMAGE040
表示为:
Figure 707789DEST_PATH_IMAGE041
(6)
其中,
Figure 22227DEST_PATH_IMAGE042
(7)
则系统的目标是获得
Figure 564067DEST_PATH_IMAGE011
,使得
Figure 187815DEST_PATH_IMAGE043
的值最小,由于
Figure 815106DEST_PATH_IMAGE040
Figure 198814DEST_PATH_IMAGE011
相关,所以
Figure 329581DEST_PATH_IMAGE040
可写 成
Figure 386880DEST_PATH_IMAGE010
,由公式(1)可知,当
Figure 501466DEST_PATH_IMAGE019
稳定时,
Figure 157707DEST_PATH_IMAGE043
Figure 408560DEST_PATH_IMAGE010
决定,因此,
Figure 374110DEST_PATH_IMAGE043
也能改成
Figure 975993DEST_PATH_IMAGE006
,即
Figure 435924DEST_PATH_IMAGE044
(8)
将公式(6)带入到公式(8)中,可得:
Figure 806863DEST_PATH_IMAGE045
(9)
则,
Figure 943315DEST_PATH_IMAGE006
对参考信号
Figure 766914DEST_PATH_IMAGE007
的比值
Figure 30537DEST_PATH_IMAGE005
定义为
Figure 255982DEST_PATH_IMAGE046
(10)
其中,
Figure 563335DEST_PATH_IMAGE047
对信号多帧均值,则
Figure 139810DEST_PATH_IMAGE005
简化成
Figure 941544DEST_PATH_IMAGE048
(11)
其中,
Figure 21495DEST_PATH_IMAGE049
(12)
步骤4,设定
Figure 768259DEST_PATH_IMAGE050
,获得方程组为
Figure 566451DEST_PATH_IMAGE051
(13)
求得该方程组的最小二乘解
Figure 171875DEST_PATH_IMAGE052
(14)
其中,
Figure 106333DEST_PATH_IMAGE053
(15)
由于
Figure 21069DEST_PATH_IMAGE001
在区间
Figure 306557DEST_PATH_IMAGE016
内,所以
Figure 715672DEST_PATH_IMAGE001
的最终表达式为:
Figure 770216DEST_PATH_IMAGE054
(16)
步骤5,公式(14)中
Figure 855852DEST_PATH_IMAGE003
Figure 363057DEST_PATH_IMAGE004
的解为
Figure 310285DEST_PATH_IMAGE055
(17)
步骤6,将
Figure 484914DEST_PATH_IMAGE003
Figure 475873DEST_PATH_IMAGE004
Figure 470373DEST_PATH_IMAGE001
带回到公式(13)中分别计算
Figure 955713DEST_PATH_IMAGE056
的估计值
Figure 984848DEST_PATH_IMAGE057
,最小二乘的归一化残留误差和为:
Figure 143779DEST_PATH_IMAGE058
(18)
其中,
Figure 891155DEST_PATH_IMAGE059
表示最小二乘的归一化残留误差和。
优选的:步骤2中当
Figure 180185DEST_PATH_IMAGE011
等于
Figure 63827DEST_PATH_IMAGE001
时,步长
Figure 662168DEST_PATH_IMAGE025
取最大值,控制滤波器能够获得最大的收敛速 度。
本发明相比现有技术,具有以下有益效果:
本发明能在次级路径未知的情况下,对声场传递函数进行匹配,从而达到控制噪声的效果,本发明所涉及的无次级路径有源噪声控制系统能够满足大部分有源噪声控制应用,具有广泛的应用前景。
附图说明
图1是无次级路径有源噪声控制系统实现框图。
图2是子带中自适应滤波器工作原理图。
图3是无次级路径有源噪声控制实现流程图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
一种无次级路径有源噪声控制系统,如图1所示,包括一个以上的子带自适应滤波器、子带分解器一、子带分解器二、子带综合器、全通带控制滤波器,如图2所示,所述子带自适应滤波器包括依次连接的相位调节器和子带控制滤波器,其中:
所述子带分解器一用于将参考信号分解形成子带参考信号。
所述子带分解器二用于将误差信号分解形成子带误差信号。
所述相位调节器用于将子带参考信号进行相位调节,调节后的将子带参考信号输入到子带控制滤波器。
所述子带控制滤波器用于根据调节后的将子带参考信号和子带误差信号对子带滤波器系数进行更新,并将更新后的子带滤波器系数发送给子带综合器。
所述子带综合器用于将更新后的子带滤波器系数合成为全通带滤波器系数,并将合成后的全通带滤波器系数发送给全通带控制滤波器。
所述全通带控制滤波器根据发送过来的合成后的全通带滤波器系数进行更新,得到更新后的全通带控制滤波器。更新后的全通带控制滤波器根据参考信号得到控制源的输出激励控制源,从而在特定区域形成反向声波,进而达到控制的效果。
参考信号通过子带分解器一形成子带参考信号,误差信号通过子带分解器二形成子带误差信号。在各个子带中,子带参考信号通过相位调节器后,根据子带误差信号对子带滤波器系数进行更新,更新得到的子带滤波器系数被合成为全通带滤波器系数,根据全通带滤波器系数对全通带滤波器系数进行更新,参考信号通过更新后的全通带滤波器得到控制源的输出激励控制源,从而在特定区域形成反向声波,进而达到控制的效果。
一种无次级路径有源噪声控制系统的实现方法,如图3所示,包括以下步骤:
基于上述实现框架,各子带中,频域有源噪声的表达式为
Figure 631261DEST_PATH_IMAGE060
(1)
其中,
Figure 458402DEST_PATH_IMAGE023
是帧索引,
Figure 462130DEST_PATH_IMAGE011
是相位角度,
Figure 965793DEST_PATH_IMAGE019
Figure 422182DEST_PATH_IMAGE020
分别是
Figure 53015DEST_PATH_IMAGE021
Figure 911249DEST_PATH_IMAGE022
的频域表达式,
Figure 851392DEST_PATH_IMAGE024
出控制 滤波器在第
Figure 795078DEST_PATH_IMAGE023
帧的频域表达式,
Figure 823076DEST_PATH_IMAGE030
Figure 411184DEST_PATH_IMAGE031
分别是主路径和次级路径的频域表示,
Figure 397594DEST_PATH_IMAGE028
是共轭操作。假 定次级路径
Figure 956139DEST_PATH_IMAGE031
的相位角为
Figure 53408DEST_PATH_IMAGE001
,则控制滤波器的更新公式为
Figure 496022DEST_PATH_IMAGE061
(2)
其中,
Figure 653334DEST_PATH_IMAGE062
是最优滤波器,将公式(2)变形得到
Figure 696245DEST_PATH_IMAGE063
(3)
显然,
Figure 331626DEST_PATH_IMAGE035
能否收敛到最优解
Figure 894325DEST_PATH_IMAGE064
取决于公式(3)的右边第一项,即
Figure 956959DEST_PATH_IMAGE065
(4)
因此,公式(4)的右边项小于1是保证公式(1)的收敛性的必要条件,即
Figure 487166DEST_PATH_IMAGE066
(5)
因此,
Figure 191817DEST_PATH_IMAGE011
Figure 609023DEST_PATH_IMAGE001
的差别决定了有源噪声控制系统的收敛特性,当
Figure 108138DEST_PATH_IMAGE011
等于
Figure 860062DEST_PATH_IMAGE001
时,步长
Figure 837245DEST_PATH_IMAGE025
取最 大值,控制滤波器能够获得最大的收敛速度。
假定控制滤波器每隔
Figure 374537DEST_PATH_IMAGE039
个采样点才完成一次更新,则控制滤波器
Figure 44553DEST_PATH_IMAGE040
可表示为
Figure 304281DEST_PATH_IMAGE067
(6)
其中,
Figure 85155DEST_PATH_IMAGE068
(7)
则系统的目标是获得
Figure 476953DEST_PATH_IMAGE011
,使得
Figure 52291DEST_PATH_IMAGE043
的值最小。由于
Figure 778807DEST_PATH_IMAGE040
Figure 628952DEST_PATH_IMAGE011
相关,所以
Figure 875256DEST_PATH_IMAGE040
可写 成
Figure 621496DEST_PATH_IMAGE010
。由公式(1)可知,当
Figure 835308DEST_PATH_IMAGE019
稳定时,
Figure 957985DEST_PATH_IMAGE043
Figure 58796DEST_PATH_IMAGE010
决定,因此,
Figure 241516DEST_PATH_IMAGE043
也能改成
Figure 942624DEST_PATH_IMAGE006
, 即
Figure 868992DEST_PATH_IMAGE069
(8)
将公式(6)带入到公式(8)中,可得
Figure 824310DEST_PATH_IMAGE045
(9)
则,
Figure 443510DEST_PATH_IMAGE006
对参考信号
Figure 369265DEST_PATH_IMAGE007
的比值定义为
Figure 833745DEST_PATH_IMAGE070
(10)
其中,
Figure 909148DEST_PATH_IMAGE047
对信号多帧均值,则
Figure 699249DEST_PATH_IMAGE005
可以简化成
Figure 843792DEST_PATH_IMAGE071
(11)
其中,
Figure 377541DEST_PATH_IMAGE072
(12)
设定
Figure 307451DEST_PATH_IMAGE011
Figure 2875DEST_PATH_IMAGE073
,可以获得方程组为
Figure 900292DEST_PATH_IMAGE074
(13)
求得该方程组的最小二乘解
Figure 972154DEST_PATH_IMAGE075
(14)
其中,
Figure 756570DEST_PATH_IMAGE076
(15)
由于
Figure 888474DEST_PATH_IMAGE001
在区间
Figure 7609DEST_PATH_IMAGE016
内,所以
Figure 883161DEST_PATH_IMAGE001
的最终表达式为
Figure 787663DEST_PATH_IMAGE077
(16)
公式(14)中
Figure 824889DEST_PATH_IMAGE003
Figure 693969DEST_PATH_IMAGE004
的解为
Figure 107633DEST_PATH_IMAGE078
(17)
最后,将
Figure 866642DEST_PATH_IMAGE003
Figure 74769DEST_PATH_IMAGE004
Figure 168496DEST_PATH_IMAGE001
带回到公式(13)中分别计算
Figure 385851DEST_PATH_IMAGE079
的估计值
Figure 999366DEST_PATH_IMAGE080
,定义最小二乘的归一化残留误差和为
Figure 643974DEST_PATH_IMAGE081
(18)
在实际的有源噪声控制系统中,难以获得
Figure 224997DEST_PATH_IMAGE001
和实际次级路径相位角的偏差, 但
Figure 980463DEST_PATH_IMAGE059
可 以用来验证
Figure 714064DEST_PATH_IMAGE001
的有效性,即
Figure 529573DEST_PATH_IMAGE059
的值越小,
Figure 332313DEST_PATH_IMAGE001
的有效性越好。
一种无次级路径有源噪声控制系统的使用方法,包括以下步骤:
1、使用传声器作为参考信号采集和误差信号采集,使用扬声器作为控制源。
2、使用DSP电路板作为控制器实现的硬件平台。
3、初始化系统参数,如设定子带数为64个子带,设定子带降采样率为32,设定子带分解和子带综合所需要的原型滤波器长度为512,载入子带分解和子带综合所需要的原型滤波器系数。
4、初始化系统变量,包括将全通带滤波器系数初始化为0,把各个子带滤波器系数初始化为0,将各个子代自适应滤波器步长初始化为0.01。
5、系统在运行过程中将参考信号分解成子带参考信号,将误差信号分解成子带误差信号。
6、设定
Figure 891470DEST_PATH_IMAGE082
,对子带中的处理过程进行采样计数,经过100个采样点获得
Figure 479577DEST_PATH_IMAGE083
7、分别设定
Figure 465988DEST_PATH_IMAGE084
,根据公式(6)计算得到
Figure 24533DEST_PATH_IMAGE085
,将
Figure 121802DEST_PATH_IMAGE085
代入系统, 得到
Figure 564416DEST_PATH_IMAGE006
8、根据
Figure 721727DEST_PATH_IMAGE006
联立方程组(13),进而根据最小二乘法得到
Figure 499059DEST_PATH_IMAGE001
的最优解。
9、计算
Figure 400019DEST_PATH_IMAGE059
并验证
Figure 962719DEST_PATH_IMAGE001
的有效性,如果
Figure 290932DEST_PATH_IMAGE001
有效,则
Figure 555560DEST_PATH_IMAGE086
进行自适应滤波,如果
Figure 994632DEST_PATH_IMAGE001
无效,回到第 6步重新计算
Figure 270892DEST_PATH_IMAGE001
10、如果系统发生异常,如滤波器系数发散,则回到第6步重新计算
Figure 910952DEST_PATH_IMAGE001
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种无次级路径有源噪声控制系统,其特征在于:包括一个以上的子带自适应滤波器、子带分解器一、子带分解器二、子带综合器、全通带控制滤波器,所述子带自适应滤波器包括依次连接的相位调节器和子带控制滤波器,其中:
所述子带分解器一用于将参考信号分解形成子带参考信号;
所述子带分解器二用于将误差信号分解形成子带误差信号;
所述相位调节器用于将子带参考信号进行相位调节,调节后的将子带参考信号输入到子带控制滤波器;
所述相位调节器的调节幅度
Figure 939747DEST_PATH_IMAGE001
是以下方程的最小二乘解:
Figure 916930DEST_PATH_IMAGE002
其中,
Figure 703490DEST_PATH_IMAGE003
Figure 373505DEST_PATH_IMAGE004
为特定常量,
Figure 97879DEST_PATH_IMAGE001
表示调节幅度,
Figure 62774DEST_PATH_IMAGE005
表示相位角度,
Figure 579206DEST_PATH_IMAGE006
Figure 295489DEST_PATH_IMAGE007
对子带参考信号
Figure 631793DEST_PATH_IMAGE008
的比值,即:
Figure 340992DEST_PATH_IMAGE009
其中,
Figure 711930DEST_PATH_IMAGE010
对信号的多帧平均,
Figure 599115DEST_PATH_IMAGE007
表示子带滤波器系数为
Figure 688294DEST_PATH_IMAGE011
得到的子带残留 噪声,
Figure 935604DEST_PATH_IMAGE008
是子带参考信号;
所述子带控制滤波器用于根据调节后的将子带参考信号和子带误差信号对子带滤波器系数进行更新,并将更新后的子带滤波器系数发送给子带综合器;
所述子带综合器用于将更新后的子带滤波器系数合成为全通带滤波器系数,并将合成后的全通带滤波器系数发送给全通带控制滤波器;
所述全通带控制滤波器根据发送过来的合成后的全通带滤波器系数进行更新,得到更新后的全通带控制滤波器;更新后的全通带控制滤波器根据参考信号得到控制源的输出激励控制源,从而在特定区域形成反向声波,进而达到控制的效果。
2.根据权利要求1所述无次级路径有源噪声控制系统,其特征在于:相位角度
Figure 426628DEST_PATH_IMAGE005
Figure 484714DEST_PATH_IMAGE012
,获得方程组为:
Figure 795610DEST_PATH_IMAGE013
求得该方程组的最小二乘解:
Figure 846611DEST_PATH_IMAGE014
其中,
Figure 192142DEST_PATH_IMAGE015
由于
Figure 421129DEST_PATH_IMAGE001
在区间
Figure 219321DEST_PATH_IMAGE016
内,所以
Figure 76943DEST_PATH_IMAGE001
的最终表达式为:
Figure 276980DEST_PATH_IMAGE017
其中,
Figure 676869DEST_PATH_IMAGE001
表示调节幅度。
3.一种基于权利要求1所述无次级路径有源噪声控制系统的实现方法,其特征在于,包括以下步骤:
步骤1,根据相位角度和频域建立各子带中频域有源噪声的表达式:
Figure 962356DEST_PATH_IMAGE018
(1)
其中,
Figure 620740DEST_PATH_IMAGE019
Figure 675283DEST_PATH_IMAGE020
分别是
Figure 246073DEST_PATH_IMAGE021
Figure 18857DEST_PATH_IMAGE022
的频域表达式,
Figure 215352DEST_PATH_IMAGE021
表示参考信号,
Figure 124402DEST_PATH_IMAGE022
表示次级源输出,
Figure 459569DEST_PATH_IMAGE023
是帧索引,
Figure 126173DEST_PATH_IMAGE024
出控制滤波器在第
Figure 204988DEST_PATH_IMAGE023
帧的频域表达式,
Figure 93178DEST_PATH_IMAGE025
表示控制步长,
Figure 68087DEST_PATH_IMAGE026
表示虚数单位,
Figure 753147DEST_PATH_IMAGE005
是相 位角度,
Figure 166811DEST_PATH_IMAGE027
是共轭操作,
Figure 968895DEST_PATH_IMAGE028
Figure 317968DEST_PATH_IMAGE029
的频域表示,
Figure 287061DEST_PATH_IMAGE029
表示误差信号,
Figure 629049DEST_PATH_IMAGE030
Figure 367198DEST_PATH_IMAGE031
分别是主路径和次级 路径的频域表示;
步骤2,假定次级路径
Figure 887172DEST_PATH_IMAGE031
的相位角的大小为
Figure 343561DEST_PATH_IMAGE001
,则控制滤波器的更新公式为:
Figure 223661DEST_PATH_IMAGE032
(2)
其中,
Figure 81896DEST_PATH_IMAGE033
是最优滤波器,将公式(2)变形得到:
Figure 507192DEST_PATH_IMAGE034
(3)
显然,
Figure 450877DEST_PATH_IMAGE035
能否收敛到最优解
Figure 134669DEST_PATH_IMAGE036
取决于公式(3)的右边第一项,即
Figure 847410DEST_PATH_IMAGE037
(4)
因此,公式(4)的右边项小于1是保证公式(1)的收敛性的必要条件,即
Figure 709186DEST_PATH_IMAGE038
(5)
步骤3,控制滤波器每隔
Figure 874589DEST_PATH_IMAGE039
个采样点完成一次更新,则控制滤波器
Figure 99421DEST_PATH_IMAGE040
表示为:
Figure 932248DEST_PATH_IMAGE041
(6)
其中,
Figure 964926DEST_PATH_IMAGE042
(7)
则系统的目标是获得
Figure 617624DEST_PATH_IMAGE005
,使得
Figure 643218DEST_PATH_IMAGE043
的值最小,由于
Figure 330551DEST_PATH_IMAGE040
Figure 534130DEST_PATH_IMAGE005
相关,所以
Figure 674125DEST_PATH_IMAGE040
可写成
Figure 237830DEST_PATH_IMAGE011
,由公式(1)可知,当
Figure 779670DEST_PATH_IMAGE019
稳定时,
Figure 154151DEST_PATH_IMAGE043
Figure 781441DEST_PATH_IMAGE011
决定,因此,
Figure 883258DEST_PATH_IMAGE043
也能改成
Figure 545184DEST_PATH_IMAGE007
, 即
Figure 824986DEST_PATH_IMAGE044
(8)
将公式(6)带入到公式(8)中,可得:
Figure 939573DEST_PATH_IMAGE045
(9)
则,
Figure 107730DEST_PATH_IMAGE007
对参考信号
Figure 358583DEST_PATH_IMAGE008
的比值
Figure 74866DEST_PATH_IMAGE006
定义为
Figure 676749DEST_PATH_IMAGE046
(10)
其中,
Figure 385948DEST_PATH_IMAGE047
对信号多帧均值,则
Figure 756886DEST_PATH_IMAGE006
简化成
Figure 644071DEST_PATH_IMAGE048
(11)
其中,
Figure 733250DEST_PATH_IMAGE049
(12)
步骤4,设定
Figure 980560DEST_PATH_IMAGE005
Figure 206005DEST_PATH_IMAGE050
,获得方程组为
Figure 529670DEST_PATH_IMAGE051
(13)
求得该方程组的最小二乘解
Figure 840566DEST_PATH_IMAGE052
(14)
其中,
Figure 891567DEST_PATH_IMAGE053
(15)
由于
Figure 237098DEST_PATH_IMAGE001
在区间
Figure 466085DEST_PATH_IMAGE016
内,所以
Figure 264277DEST_PATH_IMAGE001
的最终表达式为:
Figure 121899DEST_PATH_IMAGE054
(16)
步骤5,公式(14)中
Figure 321936DEST_PATH_IMAGE003
Figure 721825DEST_PATH_IMAGE004
的解为:
Figure 7313DEST_PATH_IMAGE055
(17)
步骤6,将
Figure 400117DEST_PATH_IMAGE003
Figure 454660DEST_PATH_IMAGE004
Figure 291029DEST_PATH_IMAGE001
带回到公式(13)中分别计算
Figure 63813DEST_PATH_IMAGE056
的估计值
Figure 994729DEST_PATH_IMAGE057
,最小二乘的归一化残留误差和为:
Figure 169358DEST_PATH_IMAGE058
(18)
其中,
Figure 911049DEST_PATH_IMAGE059
表示最小二乘的归一化残留误差和。
4.根据权利要求3所述实现方法,其特征在于:步骤2中当
Figure 171130DEST_PATH_IMAGE005
等于
Figure 905736DEST_PATH_IMAGE001
时,步长
Figure 934872DEST_PATH_IMAGE025
取最大值,控 制滤波器能够获得最大的收敛速度。
CN201910985890.9A 2019-10-17 2019-10-17 一种无次级路径有源噪声控制系统及实现方法 Active CN110718205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910985890.9A CN110718205B (zh) 2019-10-17 2019-10-17 一种无次级路径有源噪声控制系统及实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910985890.9A CN110718205B (zh) 2019-10-17 2019-10-17 一种无次级路径有源噪声控制系统及实现方法

Publications (2)

Publication Number Publication Date
CN110718205A CN110718205A (zh) 2020-01-21
CN110718205B true CN110718205B (zh) 2023-02-14

Family

ID=69211755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910985890.9A Active CN110718205B (zh) 2019-10-17 2019-10-17 一种无次级路径有源噪声控制系统及实现方法

Country Status (1)

Country Link
CN (1) CN110718205B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11238841B2 (en) * 2020-03-31 2022-02-01 Honda Motor Co., Ltd. Active noise control device
CN112017683B (zh) * 2020-10-20 2021-01-05 南京南大电子智慧型服务机器人研究院有限公司 一种频域无次级路径有源噪声控制系统
CN113140209B (zh) * 2021-04-23 2022-06-14 南京邮电大学 基于相位自动补偿的无次级通道的频域主动噪声控制方法
CN113593516B (zh) * 2021-07-22 2024-04-02 中国船舶集团有限公司第七一一研究所 主动式振动及噪声控制方法、系统、存储介质和船舶

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559736B2 (en) * 2015-05-20 2017-01-31 Mediatek Inc. Auto-selection method for modeling secondary-path estimation filter for active noise control system
US9923550B2 (en) * 2015-09-16 2018-03-20 Bose Corporation Estimating secondary path phase in active noise control
US9773491B2 (en) * 2015-09-16 2017-09-26 Bose Corporation Estimating secondary path magnitude in active noise control
US9704471B1 (en) * 2016-03-30 2017-07-11 Bose Corporation Adaptive modeling of secondary path in an active noise control system
CN109448686A (zh) * 2018-12-13 2019-03-08 重庆邮电大学 基于次级通道在线辨识新算法交叉更新有源噪声控制系统

Also Published As

Publication number Publication date
CN110718205A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN110718205B (zh) 一种无次级路径有源噪声控制系统及实现方法
CN100578622C (zh) 一种自适应麦克阵列系统及其语音信号处理方法
Ardekani et al. On the convergence of real-time active noise control systems
US6594365B1 (en) Acoustic system identification using acoustic masking
CN108200522B (zh) 一种变正则化比例归一化子带自适应滤波方法
JPH01314500A (ja) 能動音響減衰方法及び装置
Kuo et al. Frequency-domain delayless active sound quality control algorithm
WO2014036918A1 (zh) 一种自适应消除噪声的方法和装置
CN111627414B (zh) 一种主动去噪方法、装置及电子设备
JPH08241086A (ja) 雑音消去装置
CN111031448B (zh) 回声消除方法、装置、电子设备和存储介质
CN109379652B (zh) 一种耳机有源噪声控制的次级通道离线辨识方法
US5838802A (en) Apparatus for cancelling vibrations
CN109658947B (zh) 一种同步建模和控制的主动噪声控制方法
CN107071196A (zh) 一种自适应回声消除方法
CN102118675A (zh) 带有自适应反馈补偿装置的助听器
CN112017683B (zh) 一种频域无次级路径有源噪声控制系统
Xie et al. A feedforward and feedback composite active noise reduction headset based on inverse filter frequency equalization and its DSP system implementation
US5987143A (en) Method and apparatus for erasing acoustic echo
US20230131827A1 (en) Method for generating active noise reduction filter, storage medium and earphone
CN113141562A (zh) 用于协调第一麦克风和第二麦克风的相应的相位响应的方法
JP2007281860A (ja) 適応信号処理装置およびその適応信号処理方法
CN113347536B (zh) 基于线性预测与子带自适应滤波的声反馈抑制算法
CN117789691B (zh) 一种用于电话通信的回声消除方法及系统
KR20050047374A (ko) 통신 기기용 하이브리드 소음 제거 시스템 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant