CN110716366A - 基于光延迟的光电混合模数转换方法与系统 - Google Patents

基于光延迟的光电混合模数转换方法与系统 Download PDF

Info

Publication number
CN110716366A
CN110716366A CN201911020169.2A CN201911020169A CN110716366A CN 110716366 A CN110716366 A CN 110716366A CN 201911020169 A CN201911020169 A CN 201911020169A CN 110716366 A CN110716366 A CN 110716366A
Authority
CN
China
Prior art keywords
sampling
optical
paths
digital conversion
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911020169.2A
Other languages
English (en)
Other versions
CN110716366B (zh
Inventor
邱琪
张天航
范志强
苏君
史双瑾
王云祥
廖云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911020169.2A priority Critical patent/CN110716366B/zh
Publication of CN110716366A publication Critical patent/CN110716366A/zh
Application granted granted Critical
Publication of CN110716366B publication Critical patent/CN110716366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

发明涉及基于光延迟的光电混合模数转换方法与系统,其中方法包括:A.由时钟分配与控制模块产生1:n占空比的采样电脉冲信号,同时为n路并行电子模数转换模块提供电采样时钟信号;B.将光源输出的激光注入到电光调制器,由采样电脉冲信号调制得到采样光脉冲;C.将采样光脉冲放大后均分到n个延迟通道中延时形成n路并行时空分离的采样光脉冲;D.通过模拟信号对采样光脉冲调制,再对调制后的采样光脉冲展宽并转换成电信号;E.将得到的电信号模数变换完成量化,得到n路并行输出的数据信号;F.将所述n路并行的数据信号融合后输出。本发明有效降低了光电模数转换成本,并且还明显减小了采样光脉冲的抖动。

Description

基于光延迟的光电混合模数转换方法与系统
技术领域
本发明涉及光电混合模数转换的方法与系统,具体讲是基于光延迟的光电混合模数转换方法与系统。
背景技术
近年来,随着微波技术的高速发展,对模拟信号转换成数字信号的要求越来越高,其中包括高采样率、高带宽、高量化位数等核心技术指标。
目前,基于电子技术的模数转换技术,在采样率和带宽两项指标上具有先天不足。上个世纪90年代至今,投入了大量的人力和物力研究基于光电子技术的模数转换技术,经历了基于LiNbO3调制器阵列的模数转换,基于光纤激光器的高重频锁模飞秒脉冲采样的模数转换等技术路线,其中重点研究了超高速的采样光速率和高的量化位数等关键技术。多年的国内外研究表明,基于光子技术的超高速采样率和超宽带调制技术是模数转换技术青睐光子技术的主要理由,而量化技术采用电子技术是目前的最佳方法。
目前大家公认采用较多的方案为,锁模光纤激光器产生高重复频率飞秒光脉冲信号,通过复用组合成重复频率大于10GHz以上的采样光脉冲序列,然后模拟信号采用宽带LiNbO3调制器对该高重频采样光脉冲序进行调制,完成对模拟信号的光采样。为了便于电量化需要将被调制的飞秒脉冲展宽,通常采用光纤色散来实现脉冲展宽,展宽的光脉冲序列分组,形成并行的采样光脉冲,然后光电转换送入并行的电子模数转换芯片实现量化,最后对并行的数据进行融合,完成了整个模数转换。该方法的特点是,第一通过锁模光纤激光器得到高重频的采样光脉冲,第二是并行处理并将光脉冲展宽再光电变换。它的优点是引入飞秒脉冲技术采样速率有较大的范围,不足是飞秒脉冲光纤激光器成本较高,且光脉冲从飞秒展宽到纳秒有较大的信号损伤。
发明内容
本发明提供了一种基于光延迟的光电混合模数转换方法与系统,可以降低光电模数转换成本,并且减小采样光脉冲的抖动。
本发明基于光延迟的光电混合模数转换方法,包括:
A.由时钟分配与控制模块产生1:n占空比的采样电脉冲信号,同时为n路并行电子模数转换模块提供电采样时钟信号;
B.将光源输出的激光,注入到电光调制器,采样电脉冲放大模块放大所述的采样电脉冲信号后,由所述的电光调制器调制得到相应占空比和脉宽的采样光脉冲;
C.将所述的采样光脉冲放大后均分到n个延迟通道中进行延时,形成n路并行的时空分离的采样光脉冲;
D.通过模拟信号放大模块输出的模拟信号对所述n路并行的时空分离的采样光脉冲调制,完成光采样,然后对该调制后的采样光脉冲进行展宽,并将展宽后的采样光脉冲转换成n路电信号;展宽的目的是为了适应电子模数转换芯片较低的量化带宽和采样速率。
E.将得到的n路电信号进行模数变换完成量化,得到n路并行输出的数据信号;
F.将所述n路并行的数据信号融合后输出。
本发明的方法结合了光子技术的高采样率和电子技术的高数量化位数,由高速电光调制技术得到光脉冲,再由光信号多路分配与多路光纤延迟得到时空分离的多路高重复频率的采样光脉冲,具有光纤延时精度高,容易达到亚皮秒量级,且形成的采样光脉冲抖动小的优点,通过有效控制脉冲宽度和延迟通道数可以有效地增加光采样的速率。实现了宽带、高采样率、高有效位数和成本较低的目的。
进一步的,步骤A中,时钟分配与控制模块产生频率为f的电采样时钟信号,并且所述采样电脉冲信号的重复频率和n路并行电子模数转换模块中每一路的电采样时钟信号的频率均为f/n。
进一步的,步骤A中,采样电脉冲信号的脉冲宽度在一个时钟周期(1/f秒)内可调。
进一步的,步骤B中,光源输出的为宽光谱的激光。
进一步的,步骤C中,延迟的步进为1/f秒。
本发明还提供一种用于上述方法的基于光延迟的光电混合模数转换系统,具有时钟分配与控制模块,时钟分配与控制模块将产生1:n占空比的采样电脉冲信号输出到采样电脉冲放大模块、将产生的电采样时钟信号输出到n路并行电子模数转换模块;
电光调制器同时接收光源输出的激光和采样电脉冲放大模块的输出的采样电脉冲信号,采样电脉冲放大模块放大所述的采样电脉冲信号,由电光调制器调制得到相应占空比和脉宽的采样光脉冲,电光调制器输出的采样光脉冲通过光放大器和光分配器连接至n路光纤延时模块,将形成的n路并行的时空分离的光取样脉冲输出到n路电光调制模块,n路电光调制模块根据接收的模拟信号放大模块输出的模拟信号,对所述n路并行的时空分离的光取样脉冲进行调制,完成光采样,并将调至后的n路采样光脉冲通过n路光脉冲展宽模块展宽后,经n路光电探测与放大模块转换成电信号,再由n路电子模数转换模块接收所述的电信号,将该电信号模数变换后得到的n路数据信号并行输出到n路数据融合与处理模块进行数据融合与处理后输出。
进一步的,所述的电光调制器为产生高重频脉冲信号的宽带电光调制器。
进一步的,在所述的n路光脉冲展宽模块中具有n段光纤,光纤的长度与光信号的色散、光源谱宽、以及脉冲的展宽量相适应。
进一步的,所述的光源为宽光谱半导体的激光光源。通过采用低成本的宽谱半导体激光光源作为光源,有效降低了成本。通过模拟信号对多路时空分离的采样光脉冲进行调制完成光采样,量化采样了多路电子模数转换芯片,并且通过宽谱光源与光纤色散结合适度的脉冲展宽解决了电子模数转换芯片的带宽远小于光采样脉冲带宽的技术难题。
进一步的,在n路光纤延时模块中,具有n个用于延时的等步进光纤结构的通道。
本发明基于光延迟的光电混合模数转换方法与系统,有效降低了光电模数转换成本,并且还明显减小了采样光脉冲的抖动。
以下结合实施例的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
附图说明
图1为本发明基于光延迟的光电混合模数转换系统的框图。
图2为图1中n=8的实施例框图。
图3为本发明基于光延迟的光电混合模数转换方法的流程图。
具体实施方式
如图1和图2所示本发明基于光延迟的光电混合模数转换系统,包括有:
时钟分配与控制模块:产生频率为20GHz的电采样时钟信号,并产生1:n(本实施例中n取值为8,以下均以8表示n)占空比的重复频率为2.5GHz的采样电脉冲信号,同时为8路电子模数转换模块中的每一路都提供2.5GHz频率的电采样时钟信号。
采样电脉冲放大模块:接收时钟分配与控制模块产生采样电脉冲信号,并将所述的采样电脉冲信号放大后输出到电光调制器中;
光源:谱宽为10nm的1.55μm波段半导体激光光源;
电光调制器:LiNbO3 MZI型的电光调制器,其调制带宽大于40GHz;
光放大器:1.55μm波段的光放大器,饱和输出功率大于23dBm;
光分配器:1:8的单模光纤功率分配器;
8路光纤延时模块:包含有8个通道的等步进光纤,其中延时步进为50ps(皮秒),形成8路并行的时空分离的采样光脉冲,其光采样频率为20GS/s;
模拟信号放大模块:将模拟信号放大后,输出宽带模拟信号到8路电光调制模块,对所述8路并行的时空分离的采样光脉冲进行调制;
8路电光调制模块:完成宽带模拟信号对8路并行延时形成的时空分离的采样光脉冲的调制,完成光采样;
8路光脉冲展宽模块:对完成调制的8路时空分离的采样光脉冲进行展宽,采用8个通道1km G.652标准单模光纤;
8路光探测与放大模块:对8路展宽后的采样光脉冲转换成电信号并放大;
8路电子模数转换模块:对8路并行光电变换放大得到的电信号进行模数转换得到并行输出的数据信号,模数转换芯片采用采样速率大于2.5GS/s的芯片;
8路数据融合与处理模块:完成对并行的8路数据信号进行数据融合与处理。
如图2和图3所示,本发明基于光延迟的光电混合模数转换方法,包括:
A.由时钟分配与控制模块产生20GHz频率的电采样时钟信号,并且产生1:8占空比且重复频率为2.5GHz的采样电脉冲信号,同时为8路并行电子模数转换模块提供2.5GHz的电采样时钟信号;
B.调制带宽大于40GHz的LiNbO3 MZI型的电光调制器分别接收半导体激光光源输出的谱宽为10nm的1.55μm波段的半导体激光,以及时钟分配与控制模块通过采样电脉冲放大模块放大后输出的2.5GHz的采样电脉冲信号。在电光调制器中将半导体激光通过采样电脉冲信号调制得到1:8占空比的重复频率为2.5GHz的采样光脉冲信号;
C.将所述重复频率为2.5GHz的采样光脉冲信号经光放大器放大后,通过光分配器均分到8路光纤延时模块中的8个通道的延时,延时步进为50ps,8个通道总共延时为400ps,从而形成了8路并行的时空分离的采样光脉冲,其光采样频率为20GS/s;
D.模拟信号通过模拟信号放大模块输出宽带模拟信号,在8路电光调制模块中对所述8路并行的时空分离的采样光脉冲调制,完成光采样,然后将调制后的采样光脉冲在8路光脉冲展宽模块中进行展宽,得到脉冲展宽的8路光脉冲,再将该8路光脉冲经过8路光探测与放大模块转换成8路电信号;
E.8路电子模数转换模块将得到的8路电信号进行模数变换完成量化,得到8路并行输出的数据信号,其中8路电子模数转换模块中的电子模数转换芯片的采样频率为2.5GS/s;
F.最后通过8路数据融合与处理模块将所述8路并行的数据信号融合后输出。
本发明结合了光子技术的高采样率和电子技术的高数量化位数,由高速电光调制技术得到光脉冲,再由光信号多路分配与多路光纤延时得到时空分离的多路高重复频率的采样光脉冲,具有光纤延时精度高,容易达到亚皮秒量级,且形成的采样光脉冲抖动小的优点,通过有效控制脉冲宽度和延迟通道数可以有效地增加光采样的速率。并且通过宽谱光源与光纤色散结合适度的脉冲展宽解决了电子模数转换芯片的带宽远小于光采样脉冲带宽的技术难题。

Claims (10)

1.基于光延迟的光电混合模数转换方法,其特征包括:
A.由时钟分配与控制模块产生1:n占空比的采样电脉冲信号,同时为n路并行电子模数转换模块提供电采样时钟信号;
B.将光源输出的激光,注入到电光调制器,采样电脉冲放大模块放大所述的采样电脉冲信号后,由所述的电光调制器调制得到相应占空比和脉宽的采样光脉冲;
C.将所述的采样光脉冲放大后均分到n个延迟通道中进行延时,形成n路并行的时空分离的采样光脉冲;
D.通过模拟信号放大模块输出的模拟信号对所述n路并行的时空分离的采样光脉冲调制,完成光采样,然后对该调制后的采样光脉冲进行展宽,并将展宽后的采样光脉冲转换成n路电信号;
E.将得到的n路电信号进行模数变换完成量化,得到n路并行输出的数据信号;
F.将所述n路并行的数据信号融合后输出。
2.如权利要求1所述的基于光延迟的光电混合模数转换方法,其特征为:步骤A中,时钟分配与控制模块产生频率为f的电采样时钟信号,并且所述采样电脉冲信号的重复频率和n路并行电子模数转换模块中每一路的电采样时钟信号的频率均为f/n。
3.如权利要求1所述的基于光延迟的光电混合模数转换方法,其特征为:步骤A中,采样电脉冲信号的脉冲宽度在一个时钟周期内可调。
4.如权利要求1所述的基于光延迟的光电混合模数转换方法,其特征为:步骤B中,光源输出的为宽光谱的激光。
5.如权利要求2所述的基于光延迟的光电混合模数转换方法,其特征为:步骤C中,延时的步进为1/f秒。
6.用于权利要求1至5之一所述方法的基于光延迟的光电混合模数转换系统,其特征为:具有时钟分配与控制模块,时钟分配与控制模块将产生1:n占空比的采样电脉冲信号输出到采样电脉冲放大模块、将产生的电采样时钟信号输出到n路并行电子模数转换模块;
电光调制器同时接收光源输出的激光和采样电脉冲放大模块的输出的采样电脉冲信号,采样电脉冲放大模块放大所述的采样电脉冲信号,由电光调制器调制得到相应占空比和脉宽的采样光脉冲,电光调制器输出的采样光脉冲通过光放大器和光分配器连接至n路光纤延时模块,将形成的n路并行的时空分离的光取样脉冲输出到n路电光调制模块,n路电光调制模块根据接收的模拟信号放大模块输出的模拟信号,对所述n路并行的时空分离的光取样脉冲进行调制,完成光采样,并将调至后的n路采样光脉冲通过n路光脉冲展宽模块展宽后,经n路光电探测与放大模块转换成电信号,再由n路电子模数转换模块接收所述的电信号,将该电信号模数变换后得到的n路数据信号并行输出到n路数据融合与处理模块进行数据融合与处理后输出。
7.如权利要求6所述的基于光延迟的光电混合模数转换系统,其特征为:所述的电光调制器为产生高重频脉冲信号的宽带电光调制器。
8.如权利要求6所述的基于光延迟的光电混合模数转换系统,其特征为:在所述的n路光脉冲展宽模块中具有n段光纤,光纤的长度与光信号的色散、光源谱宽、以及脉冲的展宽量相适应。
9.如权利要求6所述的基于光延迟的光电混合模数转换系统,其特征为:所述的光源为宽光谱半导体的激光光源。
10.如权利要求6所述的基于光延迟的光电混合模数转换系统,其特征为:在n路光纤延时模块中,具有n个用于延时的等步进光纤结构的通道。
CN201911020169.2A 2019-10-25 2019-10-25 基于光延迟的光电混合模数转换方法与系统 Active CN110716366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911020169.2A CN110716366B (zh) 2019-10-25 2019-10-25 基于光延迟的光电混合模数转换方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911020169.2A CN110716366B (zh) 2019-10-25 2019-10-25 基于光延迟的光电混合模数转换方法与系统

Publications (2)

Publication Number Publication Date
CN110716366A true CN110716366A (zh) 2020-01-21
CN110716366B CN110716366B (zh) 2020-09-18

Family

ID=69214281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911020169.2A Active CN110716366B (zh) 2019-10-25 2019-10-25 基于光延迟的光电混合模数转换方法与系统

Country Status (1)

Country Link
CN (1) CN110716366B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458953A (zh) * 2020-05-07 2020-07-28 上海交通大学 基于光子并行采样的光模数转换架构及其实现方法
CN114513259A (zh) * 2022-04-19 2022-05-17 电子科技大学 强度调制的光信号的采样与量化方法及装置
CN114646941A (zh) * 2022-05-13 2022-06-21 武汉镭晟科技有限公司 一种用于相干激光雷达的电调脉冲激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825720A1 (fr) * 1996-08-23 1998-02-25 Thomson-Csf Convertisseur analogique/numérique
CN105319798A (zh) * 2015-11-16 2016-02-10 上海交通大学 采样率按2的任意幂次可重构的光学模数转换装置
CN106444215A (zh) * 2016-08-30 2017-02-22 上海交通大学 频率响应可配置的光模数转换装置
CN106896619A (zh) * 2015-12-17 2017-06-27 中国航天科工集团八五研究所 基于光子拉伸的模数转换装置及方法
CN107861306A (zh) * 2017-11-24 2018-03-30 北京遥感设备研究所 一种适用于光电模数转换的超短光脉冲源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825720A1 (fr) * 1996-08-23 1998-02-25 Thomson-Csf Convertisseur analogique/numérique
CN105319798A (zh) * 2015-11-16 2016-02-10 上海交通大学 采样率按2的任意幂次可重构的光学模数转换装置
CN106896619A (zh) * 2015-12-17 2017-06-27 中国航天科工集团八五研究所 基于光子拉伸的模数转换装置及方法
CN106444215A (zh) * 2016-08-30 2017-02-22 上海交通大学 频率响应可配置的光模数转换装置
CN107861306A (zh) * 2017-11-24 2018-03-30 北京遥感设备研究所 一种适用于光电模数转换的超短光脉冲源

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FILIPPO SCOTTI等: "High Precision Photonic ADC with Four Time-Domain-Demultiplexed Interleaved Channels", 《 18TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE HELD JOINTLY WITH 2013 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING》 *
YUNHUA LIANG等: "Photonic-assisted multi-channel compressive sampling based on effective time delay pattern", 《OPTICS EXPRESS》 *
张天航等: "光模数转换技术及其研究进展", 《激光与光电子学进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458953A (zh) * 2020-05-07 2020-07-28 上海交通大学 基于光子并行采样的光模数转换架构及其实现方法
CN114513259A (zh) * 2022-04-19 2022-05-17 电子科技大学 强度调制的光信号的采样与量化方法及装置
CN114513259B (zh) * 2022-04-19 2022-07-29 电子科技大学 强度调制的光信号的采样与量化方法及装置
CN114646941A (zh) * 2022-05-13 2022-06-21 武汉镭晟科技有限公司 一种用于相干激光雷达的电调脉冲激光器

Also Published As

Publication number Publication date
CN110716366B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN110716366B (zh) 基于光延迟的光电混合模数转换方法与系统
CN103809346B (zh) 一种超高速光学模数转换装置
CN106990642B (zh) 基于调制器多通道解复用的光模数转换装置
Wiberg et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers
CN106647102B (zh) 基于光时域压缩的超高速数模转换方法及装置
CN105467717B (zh) 一种基于时间拉伸的微波信号光学模数转换方法及装置
Diez et al. 160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier
CN102799045A (zh) 基于双驱m-z型调制器的全光模数转换结构及实现方法
CN102608832A (zh) 一种具有波长转换功能的全光码型转换方法
CN113114249A (zh) 一种宽带高速光采样模数转换器实现装置及方法
US6826208B1 (en) Nonlinear transmission line integrated circuit
CN101311811A (zh) 全光模数转换器
Goyal et al. Single tone and multi tone microwave over fiber communication system using direct detection method
Novick et al. Error-free kerr comb-driven sip microdisk transmitter
US8730562B1 (en) Parallel optical sampler
CN105391512A (zh) 一种基于色散平坦光纤单级调制的多载波产生系统
Zhang et al. Optical assisted digital-to-analog conversion using dispersion-based wavelength multiplexing
CN111679530B (zh) 一种基于射频信号延迟光子时间拉伸模数转换方法及系统
Zhang et al. Optical up-conversion for WDM-RoF transmission using multiple optical carrier suppression in OFCG
Moeller et al. Enhanced THz generation for wireless communications using short optical pulses
GB2540744A (en) Photonic Digital-to-Analogue Converter
Wiberg et al. Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion
Esman et al. Photonic parametric sampled analog-to-digital conversion at 100 GHz and 6 ENOBs
Termos et al. Concurrent M-QAM transmission performance assessment in a combined four SOA-MZIs arrangement
Lonappan Time-Stretch Accelerated Instrumentation for High-Speed Signal Analysis and Ultra-fast Device Characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant