CN110715796B - 一种基于相推法的光器件时延测量方法及装置 - Google Patents

一种基于相推法的光器件时延测量方法及装置 Download PDF

Info

Publication number
CN110715796B
CN110715796B CN201911057880.5A CN201911057880A CN110715796B CN 110715796 B CN110715796 B CN 110715796B CN 201911057880 A CN201911057880 A CN 201911057880A CN 110715796 B CN110715796 B CN 110715796B
Authority
CN
China
Prior art keywords
frequency
phase
optical device
time delay
frequency point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911057880.5A
Other languages
English (en)
Other versions
CN110715796A (zh
Inventor
潘时龙
李树鹏
卿婷
傅剑斌
潘万胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou 614 Information Technology Co ltd
Nanjing University of Aeronautics and Astronautics
Original Assignee
Suzhou 614 Information Technology Co ltd
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou 614 Information Technology Co ltd, Nanjing University of Aeronautics and Astronautics filed Critical Suzhou 614 Information Technology Co ltd
Priority to CN201911057880.5A priority Critical patent/CN110715796B/zh
Publication of CN110715796A publication Critical patent/CN110715796A/zh
Priority to PCT/CN2020/087447 priority patent/WO2021082377A1/zh
Application granted granted Critical
Publication of CN110715796B publication Critical patent/CN110715796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Abstract

本发明公开了一种基于相推法的光器件时延测量方法,预先根据测量需求确定扫频频率范围并在其中选取多个扫频频点;在每一个扫频频点,用该频率的微波调制信号对光载波进行调制,并通过鉴相器测量出调制光信号经过待测光器件前后微波调制信号的相位变化;对所测得的一系列相位变化进行相位展开,并利用相位展开所得到的各扫频频点的展开相位计算出最大扫频频点的整周模糊度,最后根据所述最大扫频频点的整周模糊度计算出待测光器件的时延。本发明还公开了一种基于相推法的光器件时延测量装置。本发明可大幅度减少扫描频点数,从而提高测量效率并减少环境误差对测量的影响。

Description

一种基于相推法的光器件时延测量方法及装置
技术领域
本发明涉及一种光器件时延测量方法,尤其涉及一种基于相推法的光器件时延测量方法及装置。
背景技术
常用的光器件时延测量方法主要有脉冲法、频率扫描干涉法和相推法三种。脉冲法通过观测发射光脉冲与接收光脉冲的时间间隔计算出被测光器件的时延,由于光器件色散会对光脉冲进行展宽,恶化测量精度,因此脉冲法不适合对长光纤等色散量较大的光器件进行精确测量。此外,窄脉冲的频谱范围较宽,在测量通带范围较小的光器件时,无法全部通过,进而恶化测量精度(例如:超密集波分复用器、光控时延芯片等)。脉冲法存在着许多不可避免的误差,如仪器分辨力误差、光器件色散误差等。因此脉冲法的测量精度只是米量级,且随着光器件时延的增加,测量误差也随着增大。频率扫描干涉法需要使用连续扫频激光器,价格昂贵,而且受限于这种激光器的线宽跟扫频线性度,其测量范围较小,一般为公里(10微秒)量级,而且测量精度随着光器件时延的增大而明显减小。此外,频率扫描干涉法本质上是以大带宽换取高测量精度,所以在测量通带范围小的光器件时,测量精度会下降。相推法由于使用相位变化来推算光器件时延,精度较高,且可以规避大时延量恶化精度的问题。但是现有相推法在测量大时延的时候,需要精细的频率扫描,扫描频点数激增,测量时间大大加长,容易引入环境误差。
传统相推法使用光矢量分析仪测量光器件的相位响应,进而算出光器件时延响应。然而较高的时延测量精度需要极宽的扫频范围,对测量仪器要求较高,价格昂贵,且容易受到色散的影响。为克服这一问题,2019年李树鹏等人(S.P.Li,X.C.Wang,T.Qing,S.F.Liu,J.B.Fu,M.Xue,S.L.Pan,"Optical Fiber Transfer Delay Measurement Basedon Phase-Derived Ranging,"IEEE Photonics Technology Letters,vol.31,no.16,pp.1351-1354,Aug.2019.)提出的基于相推法的高精度光纤时延测量系统,通过对窄线宽光源进行外调制,调制后的光信号通过环形器进入被测光纤,反射光经过光电转换之后通过鉴相器得到调制信号在待测光纤中经历的相位变化,再以固定的频率间隔在较小的一段频率范围内对调制信号进行线性扫频,得到一系列的相位变化,并由此推算出光纤时延。由于扫频范围小,不仅降低了对器件的要求,避免了色散的影响而且适用于测量通带范围小的光器件,可测光器件的种类范围较大。但是由于扫频的频率间隔决定了能测量的光器件时延,所以测量大时延的时候,需要较小的频率间隔,而频率范围不变,那么扫描的频点数就会激增,所需要的测量时间随之增长,不仅测量效率低,还会引入环境误差。
发明内容
本发明所要解决的技术问题在于克服现有相推法光器件时延测量技术的不足,提供一种基于相推法的光器件时延测量方法,可大幅度减少扫描频点数,从而提高测量效率并减少环境误差对测量的影响。
本发明具体采用以下技术方案解决上述技术问题:
一种基于相推法的光器件时延测量方法,预先根据测量需求确定扫频频率范围并在其中选取多个扫频频点;在每一个扫频频点,用该频率的微波调制信号对光载波进行调制,并通过鉴相器测量出调制光信号经过待测光器件前后微波调制信号的相位变化;对所测得的一系列相位变化进行相位展开,并利用相位展开所得到的各扫频频点的展开相位计算出最大扫频频点的整周模糊度,最后根据所述最大扫频频点的整周模糊度计算出待测光器件的时延;所选取的最小扫频频点频率ωa、最大扫频频点频率ωb、扫频频点数量m以及各扫频频点的频率ωi具体如下:
Figure BDA0002257014320000021
Figure BDA0002257014320000022
Figure BDA0002257014320000023
Figure BDA0002257014320000024
其中,Δθ为所述鉴相器的相位精度,Δτ为时延测量目标精度,τ0为测量系统的时延,τmax为最大可测时延,λ为取值范围为(0,1]的修正系数。
优选地,所述相位展开的方法具体如下:
扫频频点ω2的展开相位φ(ω2)通过经典相位展开算法得到,其余扫频频点的展开相位通过下式得到:
Figure BDA0002257014320000031
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
优选地,最大扫频频点的整周模糊度Nb按照下式得到:
Figure BDA0002257014320000032
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
优选地,所述修正系数λ的取值范围为[0.80,0.99]。
优选地,所述根据最大扫频频点的整周模糊度计算出待测光器件时延,具体根据以下公式:
Figure BDA0002257014320000033
其中,τD为待测光器件的时延,Nb为最大扫频频点的整周模糊度。
根据相同的发明思路还可以得到以下技术方案:
一种基于相推法的光器件时延测量装置,包括:
频点确定单元,用于预先根据测量需求确定扫频频率范围并在其中选取多个扫频频点;相位测量单元,用于在每一个扫频频点,用该频率的微波调制信号对光载波进行调制,并通过鉴相器测量出调制光信号经过待测光器件前后微波调制信号的相位变化;
解算单元,用于对所测得的一系列相位变化进行相位展开,并利用相位展开所得到的各扫频频点的展开相位计算出最大扫频频点的整周模糊度,最后根据所述最大扫频频点的整周模糊度计算出待测光器件的时延;
频点确定单元所选取的最小扫频频点频率ωa、最大扫频频点频率ωb、扫频频点数量m以及各扫频频点的频率ωi具体如下:
Figure BDA0002257014320000041
Figure BDA0002257014320000042
Figure BDA0002257014320000043
Figure BDA0002257014320000044
其中,Δθ为所述鉴相器的相位精度,Δτ为时延测量目标精度,τ0为测量系统的时延,τmax为最大可测时延,λ为取值范围为(0,1]的修正系数。
优选地,所述相位展开的方法具体如下:
扫频频点ω2的展开相位φ(ω2)通过经典相位展开算法得到,其余扫频频点的展开相位通过下式得到:
Figure BDA0002257014320000045
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
优选地,最大扫频频点的整周模糊度Nb按照下式得到:
Figure BDA0002257014320000046
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
优选地,所述修正系数λ的取值范围为[0.80,0.99]。
优选地,所述根据最大扫频频点的整周模糊度计算出待测光器件的时延,具体根据以下公式:
Figure BDA0002257014320000047
其中,τD为待测光器件的时延,Nb为最大扫频频点的整周模糊度。
相比现有技术,本发明技术方案具有以下有益效果:
本发明对现有基于相推法的高精度光器件时延测量技术进行改进,采用非线性扫频,频率间隔按照指数级递增,在相同的扫描范围内,相比于现有的线性扫频方式,本方法需要扫描的频点数较少,扫描时间大大减少;此外,由于扫描频点大幅减少,对微波扫频源的要求也大幅降低,同时减少了环境误差的引入,提高了测量精度。
具体实施方式
针对现有基于相推法的高精度光器件时延测量技术由于扫描频点数过多所导致的测量效率低且易引入环境噪声的不足,本发明的解决思路是摈弃传统的线性扫描方式,转而采用非线性扫频,频率间隔按照指数级递增。这样,在相同的扫描范围内,需要扫描的频点数和扫描时间大大减少;此外,由于扫描频点大幅减少,对微波扫频源的要求也大幅降低,同时减少了环境误差的引入,提高了测量精度。
为便于公众理解,在对本发明技术方案进行详细说明之前,先对现有基于相推法的高精度光器件时延测量技术的基本原理进行介绍。
以(S.P.Li,X.C.Wang,T.Qing,S.F.Liu,J.B.Fu,M.Xue,S.L.Pan,"OpticalFiberTransfer Delay Measurement Based on Phase-Derived Ranging,"IEEEPhotonicsTechnology Letters,vol.31,no.16,pp.1351-1354,Aug.2019.)中的测量系统为例,激光源发出一束光载波到MZM调制器,偏置点控制器控制MZM调制器的偏置点位于线性点,再将微波源输出的微波信号加载到MZM调制器的RF输入口,所产生的探测光信号均可表示为:
Eo(t)=A(1+Mcos(ωet))exp(jωct) (1)
其中,A是光场幅度,ωe和ωc分别是微波信号和光载波的角频率,M是调幅系数。探测光经过光环形器到待测光器件传输后到达高灵敏度光电探测模块,此时的光场可表示为:
Er(t)=A(1+Mcos(ωe(t-τ0D)))exp(jωc(t-τ0D)) (2)
其中,τ0是探测光在测量系统中的总传输时间,τD是探测光在待测光器件中的总传输时间。返回的探测光经过光电转换后,通过滤波器提取出一倍频信号,其电场可表示为:
i(t)=2ηMA2cos(ωe(t-τ0D)) (3)
其中,η为光电转换系数。从公式(3)可以看出,频率为ωe的微波信号的相位变化可表示为:
Figure BDA0002257014320000061
由于鉴相器测得的相位范围一般为-π到π,因此鉴相器得到的频率为ωe的微波信号的相位变化可表示为:
Figure BDA0002257014320000062
其中,n为整数,一般也叫做频率ωe的整周模糊度。
现有的相推法通过线性扫频来解算整周模糊度。首先确定扫频区间[ωab],起始频率ωa和终止频率ωb可由如下公式确定:
Figure BDA0002257014320000063
其中,Δθ为鉴相器的相位精度,Δτ为所需要的光器件时延的测量精度。利用这种方法确定的扫频区间较小,所以不仅可以用来测量光纤也可以用于测量光芯片等通带范围较小的光器件。不过现有的相推法需要使用经典相位展开算法,所以它扫频的频率步进Δω需要满足
Figure BDA0002257014320000064
其中,m为扫频点数,τ0为系统时延,可由校准得到,τmax为最大可测时延,由此,可以得到需要扫频的频点数为:
Figure BDA0002257014320000065
其中,[…]为取整符号,此处为“进一法”取整,即:去掉数值的小数部分再加一,如果数值本身是整数则不变。由此,可以得到需要扫描的各个频率点:
Figure BDA0002257014320000066
依次扫描各个频点,可以得到相应的相位响应θ(ω1),θ(ω2)…θ(ωm)。再通过经典相位展开算法得到展开的相位响应,可以用MATLAB的unwrap函数来实现。这种经典相位展开算法的描述如下:判断相邻两个频点测得的相位差的绝对值是否大于等于π,如果满足,就将后一个频率点的相位加上或者减去一个2π,使得相邻频点测得的相位差的绝对值小于π。展开的相位响应随频率呈线性变化,可利用最小二乘法线性拟合得到展开的相位响应随频率变化的线性函数φ(ωi)=k·ωi+b,再将拟合得到的斜率k用于解算ωb的整周模糊度:
Figure BDA0002257014320000071
其中,[…]为取整运算符,此处为“四舍五入”取整,如果数值是负数,则先取绝对值,再“四舍五入”后加上负号。最后,结合公式(4)、(5)可得待测光器件的时延为:
Figure BDA0002257014320000072
在测量光纤这种传输介质时,其长度可以通过下式计算:
Figure BDA0002257014320000073
其中,c为真空中光速,n0为光纤折射率(可由光纤生产厂商提供的手册中查询得到)。如果是反射式测量,还需要除以二。
这种测量方法受限于经典相位展开算法,其扫频点数随着最大可测时延的增大呈线性增长,在测量大时延的时候,测量速度较慢。例如:测量一段公里级别长度的光纤,测量精度为0.1毫米的话,需要扫描成千上万个频点。
与该方法不同,本发明使用非线性频率扫描,后续频率与起始频率的频差呈指数级上升,具体的扫频频率确定方法如下。首先确定起始频率ωa和终止频率ωb
Figure BDA0002257014320000074
其中,修正系数λ∈(0,1],这是一个经验值,视系统稳定性而定,其优选的取值范围为[0.80,0.99]。接着确定扫频点数:
Figure BDA0002257014320000075
其中,[…]为取整符号,此处为“进一法”取整。最后确定起始频率ω1=ωa与终止频率ωm=ωb之间的频率:
Figure BDA0002257014320000076
至此,本发明可以确定好各个扫描频率,依次扫描各个频点,可以得到相应的相位响应θ(ω1),θ(ω2)…θ(ωm)。由于采用非线性扫频,扫频步进呈指数级上升,所以需要的频点数量大大减少,测量速度可获得较大的提升,其相应的时延解算算法如下:
首先,利用经典相位展开算法计算出第二个频点的展开相位φ(ω2),再按照如下公式计算出剩余频点的展开相位:
Figure BDA0002257014320000081
其中,[…]为取整符号,此处为“四舍五入”取整。由此可解算出终止频率的整周模糊度:
Figure BDA0002257014320000082
其中,[…]为取整运算符,此处为“四舍五入”取整。最后,可由公式(10)得到待测光器件的时延。测量光纤时,可由公式(11)计算出长度。
本发明可直接采用现有基于相推法的高精度光器件时延测量系统的硬件部分,只需要对软件部分进行简单修改即可实现。

Claims (10)

1.一种基于相推法的光器件时延测量方法,预先根据测量需求确定扫频频率范围并在其中选取多个扫频频点;在每一个扫频频点,用该点频率的微波调制信号对光载波进行调制,并通过鉴相器测量出调制光信号经过待测光器件前后微波调制信号的相位变化;对所测得的一系列相位变化进行相位展开,并利用相位展开所得到的各扫频频点的展开相位计算出最大扫频频点的整周模糊度,最后根据所述最大扫频频点的整周模糊度计算出待测光器件的时延;其特征在于,所选取的最小扫频频点频率ωa、最大扫频频点频率ωb、扫频频点数量m以及各扫频频点的频率ωi具体如下:
Figure FDA0002590987130000011
Figure FDA0002590987130000015
Figure FDA0002590987130000012
Figure FDA0002590987130000013
其中,Δθ为所述鉴相器的相位精度,Δτ为时延测量目标精度,τ0为测量系统的时延,τmax为最大可测时延,λ为取值范围为(0,1]的修正系数。
2.如权利要求1所述光器件时延测量方法,其特征在于,所述相位展开的方法具体如下:
扫频频点频率ω2的展开相位φ(ω2)通过经典相位展开算法得到,其余扫频频点频率的展开相位通过下式得到:
Figure FDA0002590987130000014
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
3.如权利要求1所述光器件时延测量方法,其特征在于,最大扫频频点的整周模糊度Nb按照下式得到:
Figure FDA0002590987130000021
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整;φ(ωb)表示最大扫频频点频率ωb的展开相位。
4.如权利要求1所述光器件时延测量方法,其特征在于,所述修正系数λ的取值范围为[0.80,0.99]。
5.如权利要求1所述光器件时延测量方法,其特征在于,所述根据最大扫频频点的整周模糊度计算出待测光器件的时延,具体根据以下公式:
Figure FDA0002590987130000022
其中,τD为待测光器件的时延,Nb为最大扫频频点的整周模糊度。
6.一种基于相推法的光器件时延测量装置,包括:
频点确定单元,用于预先根据测量需求确定扫频频率范围并在其中选取多个扫频频点;相位测量单元,用于在每一个扫频频点,用该点频率的微波调制信号对光载波进行调制,并通过鉴相器测量出调制光信号经过待测光器件前后微波调制信号的相位变化;
解算单元,用于对所测得的一系列相位变化进行相位展开,并利用相位展开所得到的各扫频频点的展开相位计算出最大扫频频点的整周模糊度,最后根据所述最大扫频频点的整周模糊度计算出待测光器件的时延;
其特征在于,频点确定单元所选取的最小扫频频点频率ωa、最大扫频频点频率ωb、扫频频点数量m以及各扫频频点的频率ωi具体如下:
Figure FDA0002590987130000023
Figure FDA0002590987130000024
Figure FDA0002590987130000025
Figure FDA0002590987130000026
其中,Δθ为所述鉴相器的相位精度,Δτ为时延测量目标精度,τ0为测量系统的时延,τmax为最大可测时延,λ为取值范围为(0,1]的修正系数。
7.如权利要求6所述光器件时延测量装置,其特征在于,所述相位展开的方法具体如下:
扫频频点频率ω2的展开相位φ(ω2)通过经典相位展开算法得到,其余扫频频点频率的展开相位通过下式得到:
Figure FDA0002590987130000031
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整。
8.如权利要求6所述光器件时延测量装置,其特征在于,最大扫频频点的整周模糊度Nb按照下式得到:
Figure FDA0002590987130000032
其中,[…]为取整符号,表示对其中的数据进行“四舍五入”取整;φ(ωb)表示最大扫频频点频率ωb的展开相位。
9.如权利要求6所述光器件时延测量装置,其特征在于,所述修正系数λ的取值范围为[0.80,0.99]。
10.如权利要求6所述光器件时延测量装置,其特征在于,
所述根据最大扫频频点的整周模糊度计算出待测光器件的时延,具体根据以下公式:
Figure FDA0002590987130000033
其中,τD为待测光器件的时延,Nb为最大扫频频点的整周模糊度。
CN201911057880.5A 2019-11-01 2019-11-01 一种基于相推法的光器件时延测量方法及装置 Active CN110715796B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911057880.5A CN110715796B (zh) 2019-11-01 2019-11-01 一种基于相推法的光器件时延测量方法及装置
PCT/CN2020/087447 WO2021082377A1 (zh) 2019-11-01 2020-04-28 一种基于相推法的光器件时延测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911057880.5A CN110715796B (zh) 2019-11-01 2019-11-01 一种基于相推法的光器件时延测量方法及装置

Publications (2)

Publication Number Publication Date
CN110715796A CN110715796A (zh) 2020-01-21
CN110715796B true CN110715796B (zh) 2020-08-28

Family

ID=69213632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911057880.5A Active CN110715796B (zh) 2019-11-01 2019-11-01 一种基于相推法的光器件时延测量方法及装置

Country Status (2)

Country Link
CN (1) CN110715796B (zh)
WO (1) WO2021082377A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715796B (zh) * 2019-11-01 2020-08-28 南京航空航天大学 一种基于相推法的光器件时延测量方法及装置
CN112751614B (zh) * 2020-12-24 2022-03-04 北京无线电计量测试研究所 一种基于两站间的阿秒级光纤时间传递方法
CN113340571B (zh) * 2021-05-29 2023-11-10 南京航空航天大学 基于光矢量分析的光时延测量方法及装置
CN113364541B (zh) * 2021-06-02 2023-04-18 东南大学 基于多频点信号强度的无线信号主径传输时延测量方法
CN113395110B (zh) * 2021-06-15 2022-04-22 南京航空航天大学 基于单频微波相推的光时延测量方法及装置
CN113328797B (zh) * 2021-06-15 2022-04-22 南京航空航天大学 基于脉冲光调制的光时延测量方法及装置
CN114039657B (zh) * 2021-11-05 2022-11-01 南京航空航天大学 一种基于单次采样的光时延测量方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728593B (zh) * 2014-01-13 2015-10-21 武汉大学 一种实现地波超视距雷达同时多频发射/接收的方法
CN104990690B (zh) * 2015-06-12 2018-04-17 南京航空航天大学 一种光器件频率响应测量装置与方法
CN106209290B (zh) * 2016-07-14 2018-10-09 清华大学 一种传输时延和传输距离测量系统和方法
JP6769944B2 (ja) * 2017-12-12 2020-10-14 日本電信電話株式会社 モード遅延時間差分布試験方法および試験装置
CN208971520U (zh) * 2018-10-31 2019-06-11 中国电子科技集团公司第三十四研究所 一种传输光纤延时的测量系统
CN109495169B (zh) * 2018-12-03 2021-06-29 中国人民解放军陆军工程大学 一种光纤链路的大量程高精度时延测量装置和方法
CN110207822B (zh) * 2019-05-29 2020-07-14 上海交通大学 高灵敏度光学时延估计系统、方法及介质
CN110715796B (zh) * 2019-11-01 2020-08-28 南京航空航天大学 一种基于相推法的光器件时延测量方法及装置

Also Published As

Publication number Publication date
WO2021082377A1 (zh) 2021-05-06
CN110715796A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN110715796B (zh) 一种基于相推法的光器件时延测量方法及装置
CN101839698B (zh) 参考光光功率校准的布里渊光时域反射仪及其校准方法
JP7074311B2 (ja) 光学的距離測定装置および測定方法
CN108801153B (zh) 光纤长度测量方法及测量装置
CN112923960B (zh) 用于校正非线性调谐效应的光纤参数测量装置
CN110995341B (zh) 基于光载微波干涉的光纤时延测量方法及装置
JP2002305340A (ja) 掃引レーザ用波長校正装置及び方法
CN112129491B (zh) 基于单光频梳干涉的光纤时延测量方法及装置
WO2018070442A1 (ja) 光角度変調測定装置及び測定方法
CN108267636A (zh) 基于光子技术的调频微波信号参数测量方法及装置
CN112683495A (zh) 一种具有时域分析能力的光器件频响测量方法及装置
US6909496B2 (en) Method and device for easily and rapidly measuring nonlinear refractive index of optical fiber
CN113340571A (zh) 基于光矢量分析的光时延测量方法及装置
CN113280745A (zh) 一种双重频扫频激光测距装置及方法
JP3144692B2 (ja) 色分散の測定方法
CN108007307B (zh) 一种光纤的测量方法以及测量装置
CN109031341B (zh) 一种使用连续调频激光雷达装置的物体运动速度测量方法
CN110849586B (zh) 光纤干涉器参数测量方法及装置
CN115900787A (zh) 光谱域反射仪的实现方法及系统
CN106291576B (zh) 基于锁模脉冲强度调制的激光测距方法及其系统
CN114414993A (zh) 一种电光强度调制器芯片频率响应测试的装置与方法
CN114189281B (zh) 基于频域相位联合的光延时测量方法及装置
CN113225126B (zh) 一种相位调制器的测试系统及测量方法
CN112432764B (zh) 光器件宽带频率响应测量方法及装置
CN207675081U (zh) 一种光纤的测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant