CN110707398A - Phase shifting device applied to base station electrically-tuned antenna feed network - Google Patents

Phase shifting device applied to base station electrically-tuned antenna feed network Download PDF

Info

Publication number
CN110707398A
CN110707398A CN201911106787.9A CN201911106787A CN110707398A CN 110707398 A CN110707398 A CN 110707398A CN 201911106787 A CN201911106787 A CN 201911106787A CN 110707398 A CN110707398 A CN 110707398A
Authority
CN
China
Prior art keywords
phase
transmission lines
rotor
phase shift
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911106787.9A
Other languages
Chinese (zh)
Inventor
孙健
张隆
梁启迪
简侨兴
陈健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hengxin Technology Co Ltd
Jiangsu Hengxin Wireless Technology Co Ltd
Original Assignee
Jiangsu Hengxin Technology Co Ltd
Jiangsu Hengxin Wireless Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hengxin Technology Co Ltd, Jiangsu Hengxin Wireless Technology Co Ltd filed Critical Jiangsu Hengxin Technology Co Ltd
Priority to CN201911106787.9A priority Critical patent/CN110707398A/en
Publication of CN110707398A publication Critical patent/CN110707398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The invention provides a phase shifting device applied to a base station electrically-tunable antenna feed network, which provides a smaller phase shifting device and ensures reasonable and reliable arrangement of the feed network. It includes phase shift board, rotor, be provided with concentric complex rotor on the surface of the circuit board that is provided with of the centre of a circle position of phase shift board, the rotor rotates with the centre of a circle, the phase shift board is the high frequency circuit board, the circuit board surface of phase shift board contains N sections absolute phase and presents the transmission line that increases the multiple relation and have the same radian, wherein N is more than or equal to 2's natural number, and N section transmission line is located the equal radius circle interval arrangement in the centre of a circle, every group the both ends of transmission line respectively contain an output port, the central zone on the circuit board surface of phase shift board for the centre of a circle is provided with first central coupling district, the regional periphery of first central coupling still is provided with the outside connection transmission line that extends of two different radial positions.

Description

Phase shifting device applied to base station electrically-tuned antenna feed network
Technical Field
The invention relates to the technical field of mobile communication antennas, in particular to a phase shifting device applied to a base station electrically-tunable antenna feed network.
Background
At present, the downward inclination angle of the antenna can be divided into a mechanical downward inclination and an electric tilt downward inclination, the mechanical downward inclination range is limited, and sometimes the required angle cannot be reached, so the electric tilt downward inclination is particularly important. In electrical tilt, dielectric phase shifting and physical phase shifting are the most commonly used. Physical phase shifting is the changing of phase by changing the physical length of the strip line, and dielectric phase shifting is the changing of phase by changing the dielectric constant of the strip line. Along with the application of the multi-frequency antenna is more and more extensive, the frequency bands of one base station antenna are more and more, and even the antenna of one original frequency band is divided into two sub-frequency bands to realize independent electric regulation. This presents a significant challenge to the layout of the feed network for conventional large-sized phase shifters. Therefore, a new technique is needed to improve the problems.
Disclosure of Invention
In view of the above problems, the present invention provides a phase shifting device applied to a feeding network of a base station electrically tunable antenna, which provides a smaller phase shifting device to ensure reasonable and reliable arrangement of the feeding network.
The utility model provides a be applied to phase shift device of basic station electricity accent antenna feed network which characterized in that: the phase-shifting device comprises a phase-shifting plate and a rotor, wherein the surface of a circuit board arranged at the position of the circle center of the phase-shifting plate is provided with the rotor which is in concentric fit with the surface of the circuit board, the rotor rotates around the circle center, the phase-shifting plate is a high-frequency circuit board, the surface of the circuit board of the phase-shifting plate comprises N sections of transmission lines which present multiplication relation of absolute phases and have the same radian, wherein N is a natural number which is more than or equal to 2, the N sections of transmission lines are arranged on an equal-radius circle of the circle center at intervals, two ends of each group of transmission lines respectively comprise an output port, a central area, relative to the circle center, of the surface of the circuit board of the phase-shifting plate is provided with a first central coupling area, the periphery of the first central coupling area is also provided with two connecting transmission lines which extend outwards at different radial positions, one of the, the rotor be printed circuit board, the rotor contain second center coupling district and N transmission line branches, every the radial outer end region of transmission line branch is provided with corresponding coupling district, every the radial inner of transmission line branch connects second center coupling district.
It is further characterized in that:
the second central coupling area of the rotor is provided with N transmission line branches corresponding to the radial range of the N transmission lines;
n sections of transmission lines which have the same radian and represent multiplication relation of absolute phases are realized through different bent lines;
the radial outer ends of the two outwards extending connecting transmission lines of the first central coupling region correspond to the radial region where the transmission lines are located and are located in different spacing regions formed between the transmission lines;
when the phase shift board comprises 2 sections of transmission lines with multiple increasing, a structure with one port and five outputs is realized;
when the phase shift board comprises 3 sections of transmission lines with increasing multiples, a structure with seven outputs at one port is realized;
when the phase shift board comprises 4 sections of transmission lines with multiple increasing, a structure with nine outputs at one port is realized;
when the phase shift board comprises 5 sections of transmission lines with multiple increasing, a structure with eleven outputs in one port is realized.
After the technical scheme is adopted, taking 3 sections of phase incremental multiple transmission lines as an example, a coupling area on the rotor is coupled with the transmission lines on the phase shift plate, taking the circle center as a base point, mechanically rotating the rotor by a fixed angle, the phase change of two output ports of the single absolute phase line section is respectively + phi and-phi, the phase change of the double line section is +2 phi and-2 phi in a similar way, the phase change of the triple line section is +3 phi and-3 phi in a similar way, and the output phase matching is 0 degree by combining the fixed port of the phase shift plate, so that the equal-difference phase output is realized, and the electrically-adjusted inclination angle in a variable range is realized; the feed network amplitude design can be completed through the design of the line width of the line branch sections connected with the central coupling area through the phase shift plate and the rotor plate; it provides a more compact phase shifting device ensuring a reasonable and reliable arrangement of the feed network.
Drawings
FIG. 1 is a schematic diagram of a phase shifting apparatus according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a phase shift plate according to an embodiment of the present invention;
FIG. 3 is a schematic view of a rotor plate according to an embodiment of the present invention;
the names corresponding to the sequence numbers in the figure are as follows:
phase-shifting plate 1, transmission lines 101, 102, 103, first connecting transmission line 104, second connecting transmission line 105, first central coupling region 106, spacing region 107, rotor 2, transmission line branches 201, 202, 203, second central coupling region 204, coupling regions 211, 212, 213.
Detailed Description
A phase shifting device applied to a base station electrically-tunable antenna feed network is shown in figures 1-3: the phase shifting device comprises a phase shifting plate 1 and a rotor 2, wherein the surface of the circuit board at the position of the circle center of the phase shifting plate 1 is provided with the rotor 2 which is concentrically matched, the rotor 2 rotates around the circle center, the phase shifting plate 1 is a high-frequency circuit board, the surface of the circuit board of the phase shifting plate 1 comprises N sections of transmission lines which have the same radian and represent multiplication relation of absolute phases, wherein N is a natural number which is more than or equal to 2, the N sections of transmission lines are arranged on a circle with the same radius at intervals, two ends of each group of transmission lines respectively comprise an output port, a central area, relative to the circle center, of the surface of the circuit board of the phase shifting plate is provided with a first central coupling area 106, the periphery of the first central coupling area 106 is further provided with two connecting transmission lines which extend outwards at different radial positions, one of the connecting transmission lines is input of an antenna total port, and, the rotor 2 is a printed circuit board, the rotor 2 includes a second central coupling area 204 and N transmission line branches, a corresponding coupling area is arranged in a radial outer end area of each transmission line branch, and a radial inner end of each transmission line branch is connected with the second central coupling area 204.
The second central coupling area 204 of the rotor 2 is provided with N transmission line branches corresponding to the radial range where the N transmission lines are located;
n sections of transmission lines which have the same radian and represent multiplication relation of absolute phases are realized through different bent lines;
the two radially outer ends of the two outwardly extending connecting transmission lines of the first central coupling region 106 correspond to the radial regions where the transmission lines are located and are located in different spacing regions 107 formed between the transmission lines;
when the phase shift board comprises 2 sections of transmission lines with multiple increasing, a structure with one port and five outputs is realized;
when the phase shift board comprises 3 sections of transmission lines with increasing multiples, a structure with seven outputs at one port is realized;
when the phase shift board comprises 4 sections of transmission lines with multiple increasing, a structure with nine outputs at one port is realized;
when the phase shift board comprises 5 sections of transmission lines with multiple increment, a structure that one port indicates each output is realized.
In a specific embodiment, as shown in fig. 1-3, the phase shift plate 1 includes three transmission lines 101, 102, and 103 with the same radian and presenting the multiplication relation of absolute phases, the three transmission lines 101, 102, and 103 are located on an equal-radius circle of the same circle center, and the transmission lines presenting the multiplication relation are implemented by different bending lines;
two ends of three transmission lines 101, 102 and 103 on the phase shift plate 1 respectively comprise an output port;
the phase shift plate 1 further comprises a first connecting transmission line 104 and a second connecting transmission line 105 connected through a first central coupling region 106, wherein the second connecting transmission line 105 is used as an antenna main port input, and the first connecting transmission line 104 is used as a fixed phase port output in the phase shift device;
the rotor plate 2 comprises a second central coupling area 204 and transmission line branches 201, 202 and 203 corresponding to the number of transmission lines on the phase shift plate 1, and corresponding coupling areas 211, 212 and 213 are arranged at the radial outer end areas of the transmission line branches 201, 202 and 203;
taking the transmission line 101 as an example, the coupling area 211 on the rotor 2 is coupled with the transmission line 101 on the phase shift plate, and the phase change of two output ports of the single-absolute phase transmission line 101 is + phi and-phi respectively by taking the circle center as a base point and mechanically rotating the rotor 2 by a fixed angle; similarly, the coupling region 212 on the rotor plate 2 is coupled with the transmission line 102 on the phase shift plate, and the phase of the transmission line 102 with double absolute phase changes to +2 Φ and-2 Φ; the coupling area 213 on the rotor 2 is coupled with the transmission line 103 on the phase shift plate, the phase change of the transmission line 103 with triple absolute phase is +3 phi and-3 phi, the output phase matching is 0 degree by combining the fixed port transmission line 104 of the phase shift plate 1, thereby realizing the output of the equal difference phase and realizing the electric tilt angle with variable range. A phase shifting device of a 7-path radiation unit is designed by taking 3-section multiple transmission lines as an example, and an electric tilt angle can be adjusted within a range of 0-13 degrees in a 850MHz frequency band.
The transmission lines with multiple phases and the same radian are arranged on the same circle center and the same radius circle (the transmission lines with multiple phases can be realized by a bent line or in other forms). The rotatable arm with the transmission line rotates around the circle center in a certain radian and is coupled with the arc arm for feeding, so that output of an equal difference phase is realized, and the variable-range electrically-regulated inclination angle of the base station antenna is formed. Compared with the traditional fan-shaped phase shifting device, the phase shifting device has smaller size, is easier to match, has simple structure, is easy to process and is convenient to produce.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (8)

1. The utility model provides a be applied to phase shift device of basic station electricity accent antenna feed network which characterized in that: the phase-shifting device comprises a phase-shifting plate and a rotor, wherein the surface of a circuit board arranged at the position of the circle center of the phase-shifting plate is provided with the rotor which is in concentric fit with the surface of the circuit board, the rotor rotates around the circle center, the phase-shifting plate is a high-frequency circuit board, the surface of the circuit board of the phase-shifting plate comprises N sections of transmission lines which present multiplication relation of absolute phases and have the same radian, wherein N is a natural number which is more than or equal to 2, the N sections of transmission lines are arranged on an equal-radius circle of the circle center at intervals, two ends of each group of transmission lines respectively comprise an output port, a central area, relative to the circle center, of the surface of the circuit board of the phase-shifting plate is provided with a first central coupling area, the periphery of the first central coupling area is also provided with two connecting transmission lines which extend outwards at different radial positions, one of the, the rotor be printed circuit board, the rotor contain second center coupling district and N transmission line branches, every the radial outer end region of transmission line branch is provided with corresponding coupling district, every the radial inner of transmission line branch connects second center coupling district.
2. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: and the second central coupling area of the rotor is provided with N transmission line branches corresponding to the radial range of the N transmission lines.
3. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: the N sections of transmission lines with the same radian and the absolute phases presenting the multiplied relation are realized by different bent lines.
4. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: the radial outer ends of the two outwards extending connecting transmission lines of the first central coupling area correspond to the radial area where the transmission lines are located and are located in different spacing areas formed between the transmission lines.
5. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: when the phase shift board comprises 2 sections of transmission lines with multiple increment, a structure with one port and five outputs is realized.
6. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: when the phase shift board comprises 3 sections of transmission lines with multiple increment, a structure with seven outputs at one port is realized.
7. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: when the phase shift board comprises 4 sections of transmission lines with multiple increasing, a structure with nine outputs at one port is realized.
8. The phase shifting device applied to the feeding network of the base station electrically-tunable antenna, as claimed in claim 1, wherein: when the phase shift board comprises 5 sections of transmission lines with multiple increasing, a structure with eleven outputs in one port is realized.
CN201911106787.9A 2019-11-13 2019-11-13 Phase shifting device applied to base station electrically-tuned antenna feed network Pending CN110707398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106787.9A CN110707398A (en) 2019-11-13 2019-11-13 Phase shifting device applied to base station electrically-tuned antenna feed network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106787.9A CN110707398A (en) 2019-11-13 2019-11-13 Phase shifting device applied to base station electrically-tuned antenna feed network

Publications (1)

Publication Number Publication Date
CN110707398A true CN110707398A (en) 2020-01-17

Family

ID=69205161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106787.9A Pending CN110707398A (en) 2019-11-13 2019-11-13 Phase shifting device applied to base station electrically-tuned antenna feed network

Country Status (1)

Country Link
CN (1) CN110707398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410592A (en) * 2021-06-07 2021-09-17 京信通信技术(广州)有限公司 Base station, antenna and phase-shifting device
CN113540794A (en) * 2021-07-01 2021-10-22 华南理工大学 Phase shifting device, antenna and base station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410592A (en) * 2021-06-07 2021-09-17 京信通信技术(广州)有限公司 Base station, antenna and phase-shifting device
CN113540794A (en) * 2021-07-01 2021-10-22 华南理工大学 Phase shifting device, antenna and base station

Similar Documents

Publication Publication Date Title
KR100480226B1 (en) Radio-frequency phase shift assembly
CN101065883B (en) Quadrifilar helical antenna
CN110707398A (en) Phase shifting device applied to base station electrically-tuned antenna feed network
CN104810577A (en) Base station tunable antenna broadband and slow wave phase shifter
CN112103653A (en) Rotary arc phase shifter
CN1768447B (en) Antenna arrays and methods of making the same
CN102576942B (en) Radial line slot array antenna
CN107104279A (en) A kind of OAM antennas of broadband restructural
CN107403981A (en) A kind of minimized wide-band slow-wave structure phase shifter
WO2009107186A1 (en) Multibranched division phase shifter
JP2001267841A (en) Antenna system and portable radio equipment
CN210430037U (en) Phase shifting device applied to base station electrically-tuned antenna feed network
CA2576631A1 (en) Dipole aerial
CN109193161B (en) Phase shifter and antenna
CN102306872B (en) Symmetrical multichannel power division phase shifter of electro-governing antenna
CN110635237A (en) Miniaturized dual-frequency circuit loading helical antenna
CN106571527A (en) Base station electrically adjustable antenna phase shifter and multiband common base station antenna
JP4156647B2 (en) Multi-branch distribution phase shifter
CN206225556U (en) Electric tuning antenna of base station phase shifter and multifrequency sharing base station antenna
CN110212313B (en) Electrically adjustable orbital angular momentum wave mode reconfigurable antenna
CN209001147U (en) A kind of ultra wide band OAM vortex electromagnetic antenna
KR100306269B1 (en) Telescopic antenna assembly
WO2021104069A1 (en) Radio frequency device
CN114204265A (en) Composite reconfigurable circularly polarized antenna based on broadband orthogonal phase shift structure
CN113161745A (en) Phase balancer and base station antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination