WO2009107186A1 - Multibranched division phase shifter - Google Patents

Multibranched division phase shifter Download PDF

Info

Publication number
WO2009107186A1
WO2009107186A1 PCT/JP2008/053167 JP2008053167W WO2009107186A1 WO 2009107186 A1 WO2009107186 A1 WO 2009107186A1 JP 2008053167 W JP2008053167 W JP 2008053167W WO 2009107186 A1 WO2009107186 A1 WO 2009107186A1
Authority
WO
WIPO (PCT)
Prior art keywords
side strip
nth
phase shifter
ring
center
Prior art date
Application number
PCT/JP2008/053167
Other languages
French (fr)
Japanese (ja)
Inventor
タン チェン グェン
正敞 苅込
崇 西村
永枝 小林
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to AU2008351831A priority Critical patent/AU2008351831B2/en
Priority to CN200880127483.4A priority patent/CN101971413B/en
Priority to PCT/JP2008/053167 priority patent/WO2009107186A1/en
Publication of WO2009107186A1 publication Critical patent/WO2009107186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters

Definitions

  • the present invention relates to a multi-branch distribution phase shifter, and more particularly to a multi-branch distribution phase shifter applied to a phase circuit or the like for controlling the tilt angle of an array antenna.
  • FIG. 7 is a perspective view showing an example of a conventional distributed phase shifter.
  • the distribution phase shifter shown in FIG. 7 includes an input-side strip conductor 3 and an annular output-side strip conductor 2 that is partially opened on a dielectric substrate 10.
  • One end on the ring center (center axis is indicated by P) side is arranged at the center of the ring of the output side strip conductor 2. Moreover, it has a sliding part (5a, 5b) which slides on the output side strip conductor 2, The length is (lambda) / 4 on either side, and both ends of the output side strip conductor 2 are Each becomes an output end. Further, one end of the arm portion 5c on the center side of the ring is arranged at the center of the ring.
  • a high dielectric constant insulator (4a, 4b) which is an insulating material of a general high-frequency electric wire such as polyfluorinated ethylene, is output to the arm portion 5c, the input side strip conductor 3, and the sliding portion (5a, 5b). They are respectively interposed between the side strip conductors 2.
  • the high frequency signal input from the input side strip conductor 3 is coupled to the arm portion 5c through the high dielectric constant insulator 4a, and passes through this to the left and right sliding portions at the tip. (5a, 5b) is reached.
  • the left and right sliding portions (5a, 5b) are coupled to the output side strip conductor 2 via the high dielectric constant insulator 4b. Then, by rotating the arm portion, it is possible to give a predetermined phase difference between the excitation power output from both ends of the output side strip conductor 2.
  • FIG. 7 is a diagram for explaining an example of a conventional multi-branch distribution phase shifter.
  • 30a, 30b, and 30c are distribution phase shifters shown in FIG. 7, 31 is a three distributor, and 32 is a link mechanism (or gear mechanism).
  • 32 is a link mechanism (or gear mechanism).
  • the input high frequency signal is divided into three by the three distributors 31, and the three distributed high frequency signals are respectively distributed to the distribution phase shifters (30a, 30b, 30c).
  • the link mechanism (or gear mechanism) 32 By inputting and rotating the conductor slider in synchronization with the link mechanism (or gear mechanism) 32, a desired phase difference is provided between the distribution phase shifters (30a, 30b, 30c), and the respective distributions are made. Excitation power having a predetermined phase difference between the outputs of the phase shifters (30a, 30b, 30c) can be obtained.
  • the multi-branch distribution phaser shown in FIG. 8 requires a link mechanism (or gear mechanism) 32 together with the distributor 31, is complicated in configuration, has a large area, and has a large number of parts, so the cost is high. There was a problem.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a multi-branch distribution phase that is simple in configuration, small in area, and further capable of reducing cost. Is to provide a vessel.
  • the present invention includes a dielectric substrate and annulus (n ⁇ 2) formed on the dielectric substrate and arranged concentrically around an arbitrary point. Assuming that the first to n-th rings are selected from the ones with the smallest radius among the (n ⁇ 2) rings, the arcs constituting a part of the first to n-th rings, respectively.
  • a first to nth output side strip conductors having both ends as output ends, an input side strip conductor formed on the dielectric substrate and having one end positioned at the center of the ring,
  • the first to nth sliding portions each having an arc shape that constitutes a part of the first to nth annular rings and shorter in length than the output-side strip conductor, and the first to nth sliding portions It has the sliding part and can rotate around the center of the ring
  • the high-frequency signal output from the first to n-th output-side strip conductors is changed by changing the characteristic impedance of the arm portions reaching the first to n-th sliding portions. Change the amplitude ratio.
  • the arm portion has a ring-shaped conductor formed so as to surround the center of the ring at one end on the center side of the ring, and one end is connected to the ring-shaped conductor. And first and second lines having the first to nth arcuate sliding portions on the other end side.
  • FIG. 1 is a plan view showing a schematic configuration of a multi-branch distribution phase shifter according to an embodiment of the present invention.
  • the multi-branch distribution phase shifter of this embodiment includes three arc-shaped output side strip conductors (2a, 2b, 2c) partially opened on the dielectric substrate 10, the input side strip conductor 3, Is placed.
  • a ground conductor (not shown) is formed on the back surface of the dielectric substrate 10.
  • the first to third of the three circular rings having the smallest diameter
  • the output side strip conductor (2a) constitutes a part of the first ring
  • the output side strip conductor (2b) constitutes a part of the second ring
  • the side strip conductor (2c) constitutes a part of the third annular ring
  • both ends of each output side strip conductor (2a, 2b, 2c) are respectively connected to output ends (here, six output ends).
  • sliding portions (7a, 7b, 7c) are provided on the output side strip conductors (2a, 2b, 2c), respectively.
  • Each sliding part (7a, 7b, 7c) slides on each output side strip conductor (2a, 2b, 2c), and the length of the arc shape of each sliding part (7a, 7b, 7c) is , ⁇ o / 2 ( ⁇ o is the design center frequency) or less.
  • Each sliding portion (7a, 7b, 7c) can be rotated around the center of the ring (center axis P in FIG. 1) by an arm portion having a first line 6b and a second line 6c. Is done.
  • the arm portion has a ring-shaped conductor 6 a formed at one end on the center side of the ring so as to surround the center of the ring.
  • the input-side strip conductor 3 also has a ring-shaped conductor 3a formed so as to surround the center of the ring, and the ring-shaped conductor 3a of the input-side strip conductor 3 and the ring-shaped conductor 6a of the arm portion. Between the two, an insulator 4a is disposed.
  • the insulator 4b is also disposed between each sliding portion (7a, 7b, 7c) and each output side strip conductor (2a, 2b, 2c).
  • the insulators (4a, 4b) are made of, for example, an insulating material for a general high-frequency electric wire such as polyfluorinated ethylene.
  • the high frequency signal input from the input side strip conductor 3 reaches the ring-shaped conductor 3a, and the ring-shaped conductor 6a of the arm portion via the high dielectric constant insulator 4a. Combined, passes through the first line 6b and the second line 6c, reaches each sliding part (7a, 7b, 7c), and the high dielectric constant insulator at each sliding part (7a, 7b, 7c)
  • the output side strip conductors (2a, 2b, 2c) are coupled to each other through 4b. Then, by inserting a rotation shaft into the center of the ring (P in FIG.
  • each output side strip conductor (2a, 2b, 2c) has a desired phase difference between each output side strip conductor (2a, 2b, 2c), and each output side Excitation power having a predetermined phase difference can be obtained between the terminals of the strip conductors (2a, 2b, 2c).
  • each output side Excitation power having a predetermined phase difference can be obtained between the terminals of the strip conductors (2a, 2b, 2c).
  • the ring-shaped conductor 6a of the arm portion and the first sliding portion 7a, or the line width of the first line 6b and the second line 6c between the sliding portions is reduced.
  • the respective output side strip conductors (2a, 2b, 2c) It is possible to change the amplitude ratio of the high-frequency signal output from.
  • FIG. 4 is a perspective view showing a schematic configuration of a modified example of the multi-branch distribution phase shifter according to the embodiment of the present invention.
  • the multi-branch distribution phase shifter shown in FIG. 4 is different from the multi-branch distribution phase shifter shown in FIG. 1 in that the output-side strip conductor is composed of two output-side strip conductors (2a, 2b).
  • the other configuration is the same as that of the multi-branch distribution phase shifter shown in FIG. 1, detailed description thereof is omitted.
  • FIG. 5 is a graph showing simulation results of distribution loss characteristics and return loss characteristics of an example of the multi-branch distribution phase shifter shown in FIG. The graph shown in FIG.
  • FIG. 5 is a graph showing the results of calculation with the characteristic impedance of the input side strip conductor 3 and each output side strip conductor (2a, 2b) as 50 ⁇ .
  • the horizontal axis is frequency
  • one scale is 0.5 GHz
  • the vertical axis is attenuation
  • one scale is ( ⁇ 5 dB).
  • a curve indicated by A in FIG. 5 indicates the return loss of the input terminal (O1 in FIG. 4).
  • the curve shown in FIG. 5B shows the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O2 in FIG. 4) and the input terminal (O1 in FIG. 4) to the output terminal (in FIG. 4).
  • the distribution loss to O3) is shown.
  • the curve shown in FIG. 5C shows the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O4 in FIG. 4) and the input terminal (O1 in FIG. 4) to the output terminal (in FIG. 4).
  • the distribution loss to O5) is shown.
  • the curve B is drawn as a single curve.
  • the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O4 in FIG. 4) and the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O5 in FIG. 4) In order to show substantially the same characteristics, the curve C is drawn as a single curve in FIG. As can be seen from the distribution loss characteristics (B, C) shown in FIG. 5, in the multi-branch distribution phase shifter of the present embodiment, the distribution loss has a substantially constant value.
  • FIG. 6 is a perspective view showing a schematic configuration of a modified example of the multi-branch distribution phase shifter according to the embodiment of the present invention.
  • the multi-branch distribution phase shifter shown in FIG. 6 is different from the multi-branch distribution phase shifter shown in FIG. 1 in that the arm portion is composed of a single first line 6b. Since this is the same as the multi-branch distribution phase shifter shown in FIG. As shown in FIG. 1, the arm portion is composed of the first line 6b and the second line 6c. As shown in FIG. 6, the arm portion is composed of a single first line 6b.
  • the phase of the broadband high-frequency signal can be varied as compared with the case of doing so.
  • each sliding portion (7a, 7b, 7c) has been described in the case of ⁇ o / 2, but the arc shape of each sliding portion (7a, 7b, 7c) is described.
  • the length of is (2 ⁇ ⁇ o) / 5 ⁇ Lo ⁇ (3 ⁇ ⁇ o) / 5, more preferably, where Lo is the length of the arc shape of each sliding portion (7a, 7b, 7c). It is desirable that (9 ⁇ ⁇ o) / 20 ⁇ Lo ⁇ (11 ⁇ ⁇ o) / 20.
  • the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.
  • the present invention relates to a multi-branch distribution phase shifter, and is particularly effective when applied to a phase circuit for controlling the tilt angle of an array antenna.

Abstract

Provided is a multibranched division phase shifter the structure of which is simple, the area of which is small, and the cost of which is low. The multibranched division phase shifter comprises first to nth output side strip conductors, which are formed on a dielectric substrate, which have arc shapes constituting portions of first to nth circular rings, respectively when the first to nth (n≥2) circular rings coaxially arranged to be in the shape of circles with a given point in the center are supposed, and both ends of which are output ends, an input side strip conductor which is formed on the dielectric substrate and one end of which ispositioned on the center of the circular ring, first to nth sliding sections which have arch shapes constituting portions of the first to nth circular rings, respectively and the lengths of which are shorter than that of the output side strip conductor, and an arm section which has the first to nth sliding sections and can rotate around the center of the circular ring. An insulator is interposed between the first to nth output side strip conductors and the first to nth arc-shaped oscillation sections and between the input side strip conductor and the arm section.

Description

多分岐分配移相器Multi-branch distribution phase shifter
 本発明は、多分岐分配移相器に係り、特に、アレイアンテナのチルト角を制御する位相回路等に適用される多分岐分配移相器に関する。 The present invention relates to a multi-branch distribution phase shifter, and more particularly to a multi-branch distribution phase shifter applied to a phase circuit or the like for controlling the tilt angle of an array antenna.
 携帯電話基地局用等のアレイアンテナでは、例えば、基地局のサ-ビスエリアを最適化する等の理由により、各基地局におけるアレイアンテナから放射される放射ビ-ムのチルト角を制御している。
 この放射ビームのチルト角を変更するためには、各アレイアンテナ素子に給電する励振電力の位相分布を、移相器により変更する必要がある。
 この移相器として、例えば、下記特許文献1,特許文献2に記載されている分配移相器が知られている。
 図7は、従来の分配移相器の一例を示す斜視図である。
 図7に示す分配移相器は、誘電体基板10の上に入力側ストリップ導体3と、一部が開かれた円環状の出力側ストリップ導体2とを設置し、入力側ストリップ導体3の円環の中心(中心軸をPで示す)側の一端を、出力側ストリップ導体2の円環の中心に配置する。
 また、出力側ストリップ導体2の上を摺動する摺動部(5a,5b)を有し、その長さは、左右にそれぞれλ/4となっており、出力側ストリップ導体2の両端が、それぞれ出力端となる。さらに、アーム部5cの円環の中心側の一端を、円環の中心に配置する。
 そして、ポリフッ化エチレンなどの一般の高周波電線の絶縁材料である高誘電率絶縁体(4a,4b)を、アーム部5cと入力側ストリップ導体3、および、摺動部(5a,5b)と出力側ストリップ導体2との間にそれぞれ介在させる。
 図7に示す分配移相器では、入力側ストリップ導体3より入力された高周波信号は、高誘電率絶縁体4aを介してアーム部5cに結合され、これを通って先端の左右の摺動部(5a,5b)に到る。そして、この左右の摺動部(5a,5b)で高誘電率絶縁体4bを介して出力側ストリップ導体2に結合される。
 そして、アーム部を回転することにより、出力側ストリップ導体2の両端から出力される励振電力の間に所定の位相差を持たせることができる。
In an array antenna for a mobile phone base station or the like, the tilt angle of the radiation beam radiated from the array antenna in each base station is controlled, for example, for the purpose of optimizing the service area of the base station. .
In order to change the tilt angle of the radiation beam, it is necessary to change the phase distribution of the excitation power supplied to each array antenna element by a phase shifter.
As this phase shifter, for example, a distributed phase shifter described in Patent Literature 1 and Patent Literature 2 below is known.
FIG. 7 is a perspective view showing an example of a conventional distributed phase shifter.
The distribution phase shifter shown in FIG. 7 includes an input-side strip conductor 3 and an annular output-side strip conductor 2 that is partially opened on a dielectric substrate 10. One end on the ring center (center axis is indicated by P) side is arranged at the center of the ring of the output side strip conductor 2.
Moreover, it has a sliding part (5a, 5b) which slides on the output side strip conductor 2, The length is (lambda) / 4 on either side, and both ends of the output side strip conductor 2 are Each becomes an output end. Further, one end of the arm portion 5c on the center side of the ring is arranged at the center of the ring.
Then, a high dielectric constant insulator (4a, 4b), which is an insulating material of a general high-frequency electric wire such as polyfluorinated ethylene, is output to the arm portion 5c, the input side strip conductor 3, and the sliding portion (5a, 5b). They are respectively interposed between the side strip conductors 2.
In the distributed phase shifter shown in FIG. 7, the high frequency signal input from the input side strip conductor 3 is coupled to the arm portion 5c through the high dielectric constant insulator 4a, and passes through this to the left and right sliding portions at the tip. (5a, 5b) is reached. The left and right sliding portions (5a, 5b) are coupled to the output side strip conductor 2 via the high dielectric constant insulator 4b.
Then, by rotating the arm portion, it is possible to give a predetermined phase difference between the excitation power output from both ends of the output side strip conductor 2.
 なお、本願発明に関連する先行技術文献としては以下のものがある。
特開平5-121915号公報 特開2000-196302号公報
As prior art documents related to the invention of the present application, there are the following.
JP-A-5-121915 JP 2000-196302 A
 しかしながら、図7から分かるように、図7に示す分配移相器では、入力された高周波信号を、2分配することしかできない。
 そのため、入力される高周波信号を3分配以上分配し、かつ、所定の位相差を有する出力を得るためには、図8に示すような多分岐分配位相器が使用される。
 なお、図8は、従来の多分岐分配位相器の一例を説明するための図である。図8において、30a,30b,30cは、それぞれ図7に示す分配位相器、31は3分配器、32はリンク機構(またはギア機構)である。
 図8に示す多分岐分配位相器では、入力された高周波信号を、3分配器31で3分配して、この3分配された高周波信号を、それぞれ分配移相器(30a,30b,30c)に入力し、リンク機構(またはギア機構)32で同期して導体摺動子を回転させることにより、分配位相器(30a,30b,30c)間で所望の位相差を有し、かつ、それぞれの分配移相器(30a,30b,30c)の出力間で所定の位相差を有する励振電力を得ることができる。
 しかしながら、この図8に示す多分岐分配位相器は、分配器31とともにリンク機構(またはギア機構)32が必要となり、構成が複雑で、面積も大きく、さらに、部品点数も多いのでコストが高いという問題点があった。
 本発明は、前記従来技術の問題点を解決するためになされたものであり、本発明の目的は、構成が単純で、面積も小さく、さらに、コストを低減することが可能な多分岐分配位相器を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
However, as can be seen from FIG. 7, the distribution phase shifter shown in FIG. 7 can only distribute the input high-frequency signal into two.
Therefore, a multi-branch distribution phase shifter as shown in FIG. 8 is used to distribute an input high-frequency signal by three or more distributions and obtain an output having a predetermined phase difference.
FIG. 8 is a diagram for explaining an example of a conventional multi-branch distribution phase shifter. In FIG. 8, 30a, 30b, and 30c are distribution phase shifters shown in FIG. 7, 31 is a three distributor, and 32 is a link mechanism (or gear mechanism).
In the multi-branch distribution phase shifter shown in FIG. 8, the input high frequency signal is divided into three by the three distributors 31, and the three distributed high frequency signals are respectively distributed to the distribution phase shifters (30a, 30b, 30c). By inputting and rotating the conductor slider in synchronization with the link mechanism (or gear mechanism) 32, a desired phase difference is provided between the distribution phase shifters (30a, 30b, 30c), and the respective distributions are made. Excitation power having a predetermined phase difference between the outputs of the phase shifters (30a, 30b, 30c) can be obtained.
However, the multi-branch distribution phaser shown in FIG. 8 requires a link mechanism (or gear mechanism) 32 together with the distributor 31, is complicated in configuration, has a large area, and has a large number of parts, so the cost is high. There was a problem.
The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a multi-branch distribution phase that is simple in configuration, small in area, and further capable of reducing cost. Is to provide a vessel.
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
 前述の目的を達成するために、本発明は、誘電基板と、前記誘電体基板上に形成されるとともに、任意の一点を中心として同心円状に配置される(n≧2)個の円環を仮定し、前記(n≧2)個の円環の中で半径の小さいものから1番目ないしn番目の円環とするとき、それぞれ前記1番目ないしn番目の円環の一部を構成する円弧形状を有し、両端が出力端とされる1番目ないしn番目の出力側ストリップ導体と、前記誘電体基板上に形成され、前記円環の中心に一端が位置決めされた入力側ストリップ導体と、それぞれ前記1番目ないしn番目の円環の一部を構成する円弧形状を有し、出力側ストリップ導体よりも長さが短い1番目ないしn番目の摺動部と、前記1番目ないしn番目の前記摺動部を有し、前記円環の中心の回りに回転可能なアーム部とを備え、前記1番目ないしn番目の出力側ストリップ導体と、前記1番目ないしn番目の円弧状の摺動部との間、および、前記入力側ストリップ導体とアーム部との間に絶縁体を介在させたことを特徴とする。
 また、本発明では、前記1番目ないしn番目の前記それぞれの摺動部に至る前記アーム部の特性インピーダンスを変化させて、前記1番目ないしn番目の出力側ストリップ導体から出力される高周波信号の振幅比を変化させる。
 また、本発明では、前記アーム部は、前記円環の中心側の一端に、前記円環の中心を取り囲むように形成されたリング形状の導体を有するとともに、一端が前記リング形状の導体に接続され、他端側に前記1番目ないしn番目の円弧状の摺動部を有する第1および第2の線路を有する。
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
In order to achieve the above-mentioned object, the present invention includes a dielectric substrate and annulus (n ≧ 2) formed on the dielectric substrate and arranged concentrically around an arbitrary point. Assuming that the first to n-th rings are selected from the ones with the smallest radius among the (n ≧ 2) rings, the arcs constituting a part of the first to n-th rings, respectively. A first to nth output side strip conductors having both ends as output ends, an input side strip conductor formed on the dielectric substrate and having one end positioned at the center of the ring, The first to nth sliding portions each having an arc shape that constitutes a part of the first to nth annular rings and shorter in length than the output-side strip conductor, and the first to nth sliding portions It has the sliding part and can rotate around the center of the ring An arm portion, between the first to n-th output side strip conductors and the first to n-th arc-shaped sliding portions, and between the input-side strip conductors and the arm portions. It is characterized in that an insulator is interposed.
In the present invention, the high-frequency signal output from the first to n-th output-side strip conductors is changed by changing the characteristic impedance of the arm portions reaching the first to n-th sliding portions. Change the amplitude ratio.
According to the present invention, the arm portion has a ring-shaped conductor formed so as to surround the center of the ring at one end on the center side of the ring, and one end is connected to the ring-shaped conductor. And first and second lines having the first to nth arcuate sliding portions on the other end side.
 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。
 本発明によれば、構成が単純で、面積も小さく、さらに、コストを低減することが可能な多分岐分配位相器を提供することが可能となる。
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
According to the present invention, it is possible to provide a multi-branch distribution phase shifter having a simple configuration, a small area, and capable of reducing cost.
本発明の実施例の多分岐分配移相器の概略構成を示す平面図である。It is a top view which shows schematic structure of the multibranch distribution phase shifter of the Example of this invention. 本発明の実施例の多分岐分配移相器のアーム部と、入力側ストリップ導体の関係を説明するための図である。It is a figure for demonstrating the relationship between the arm part of the multibranch distribution phase shifter of the Example of this invention, and an input side strip conductor. 本発明の実施例の分配移相器の摺動部と、第1の線路および第2の線路の関係を説明するための図である。It is a figure for demonstrating the relationship between the sliding part of the distribution phase shifter of the Example of this invention, and a 1st track | line and a 2nd track | line. 本発明の実施例の多分岐分配移相器の変形例の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the modification of the multi-branch distribution phase shifter of the Example of this invention. 本発明の実施例の多分岐分配移相器の一例の分配損失特性と反射減衰量特性のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the distribution loss characteristic and return loss characteristic of an example of the multi-branch distribution phase shifter of the Example of this invention. 本発明の実施例の多分岐分配移相器の変形例の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the modification of the multi-branch distribution phase shifter of the Example of this invention. 従来の分配移相器の一例を示す斜視図である。It is a perspective view which shows an example of the conventional distribution phase shifter. 従来の多分岐分配移相器の一例を示す平面図である。It is a top view which shows an example of the conventional multibranch distribution phase shifter.
符号の説明Explanation of symbols
 2,2a,2b,2c 出力側ストリップ導体
 3 入力側ストリップ導体
 3a,6a リング形状の導体
 4a,4b 高誘電率絶縁体
 5a,5b,7a,7b,7c 摺動部
 5c アーム部
 6b 第1の線路
 6c 第2の線路
 10 誘電体基板
 11 回転基板
 30a,30b,30c 分配位相器
 31 3分配器
 32 リンク機構(またはギア機構)
2, 2a, 2b, 2c Output side strip conductor 3 Input side strip conductor 3a, 6a Ring- shaped conductor 4a, 4b High dielectric constant insulator 5a, 5b, 7a, 7b, 7c Sliding part 5c Arm part 6b First Line 6c Second line 10 Dielectric substrate 11 Rotating substrate 30a, 30b, 30c Distribution phase shifter 31 3 Divider 32 Link mechanism (or gear mechanism)
 以下、図面を参照して本発明の実施例を詳細に説明する。
 なお、実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 図1は、本発明の実施例の多分岐分配移相器の概略構成を示す平面図である。
 本実施例の多分岐分配移相器は、誘電体基板10の上に一部が開かれた3個の円弧形状の出力側ストリップ導体(2a,2b,2c)と、入力側ストリップ導体3とが配置される。誘電体基板10の裏面には、接地導体(図示せず)が形成される。
 ここで、任意の一点を中心(中心軸をPで示す)として同心円状に配置される3個の円環を仮定し、3個の円環の中で直径の小さいものから1番目ないし3番目の円環とするとき、出力側ストリップ導体(2a)は、1番目の円環の一部を構成し、出力側ストリップ導体(2b)は、2番目の円環の一部を構成し、出力側ストリップ導体(2c)は、3番目の円環の一部を構成し、さらに、各出力側ストリップ導体(2a,2b,2c)の両端が、それぞれ出力端(ここでは、6個の出力端)となる。
 また、各出力側ストリップ導体(2a,2b,2c)上には、それぞれ摺動部(7a,7b,7c)が設けられる。各摺動部(7a,7b,7c)は、各出力側ストリップ導体(2a,2b,2c)の上を摺動し、各摺動部(7a,7b,7c)の円弧形状の長さは、λo/2(λoは、設計中心周波数)以下とされる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all the drawings for explaining the embodiments, parts having the same functions are given the same reference numerals, and repeated explanation thereof is omitted.
FIG. 1 is a plan view showing a schematic configuration of a multi-branch distribution phase shifter according to an embodiment of the present invention.
The multi-branch distribution phase shifter of this embodiment includes three arc-shaped output side strip conductors (2a, 2b, 2c) partially opened on the dielectric substrate 10, the input side strip conductor 3, Is placed. A ground conductor (not shown) is formed on the back surface of the dielectric substrate 10.
Here, assuming three circular rings arranged concentrically with an arbitrary point as the center (the central axis is indicated by P), the first to third of the three circular rings having the smallest diameter The output side strip conductor (2a) constitutes a part of the first ring, and the output side strip conductor (2b) constitutes a part of the second ring, The side strip conductor (2c) constitutes a part of the third annular ring, and both ends of each output side strip conductor (2a, 2b, 2c) are respectively connected to output ends (here, six output ends). )
Further, sliding portions (7a, 7b, 7c) are provided on the output side strip conductors (2a, 2b, 2c), respectively. Each sliding part (7a, 7b, 7c) slides on each output side strip conductor (2a, 2b, 2c), and the length of the arc shape of each sliding part (7a, 7b, 7c) is , Λo / 2 (λo is the design center frequency) or less.
 各摺動部(7a,7b,7c)は、第1の線路6bと、第2の線路6cとを有するアーム部により、円環の中心(図1の中心軸P)の回りに回転可能とされる。
 図2に示すように、アーム部は、円環の中心側の一端に、円環の中心を取り囲むように形成されたリング形状の導体6aを有する。また、入力側ストリップ導体3も、円環の中心を取り囲むように形成されたリング形状の導体3aを有し、入力側ストリップ導体3のリング形状の導体3aと、アーム部のリング形状の導体6aとの間には、絶縁体4aが配置される。
 また、各摺動部(7a,7b,7c)と、各出力側ストリップ導体(2a,2b,2c)との間にも、絶縁体4bが配置される。ここで、絶縁体(4a,4b)は、例えば、ポリフッ化エチレンなどの一般の高周波電線の絶縁材料で構成される。
 また、図3に示すように、第1の線路6b、および第2の線路6cは、各摺動部(7a,7b,7c)の中心から等間隔の位置(T1=T2)で、各摺動部(7a,7b,7c)に接続される。
Each sliding portion (7a, 7b, 7c) can be rotated around the center of the ring (center axis P in FIG. 1) by an arm portion having a first line 6b and a second line 6c. Is done.
As shown in FIG. 2, the arm portion has a ring-shaped conductor 6 a formed at one end on the center side of the ring so as to surround the center of the ring. The input-side strip conductor 3 also has a ring-shaped conductor 3a formed so as to surround the center of the ring, and the ring-shaped conductor 3a of the input-side strip conductor 3 and the ring-shaped conductor 6a of the arm portion. Between the two, an insulator 4a is disposed.
The insulator 4b is also disposed between each sliding portion (7a, 7b, 7c) and each output side strip conductor (2a, 2b, 2c). Here, the insulators (4a, 4b) are made of, for example, an insulating material for a general high-frequency electric wire such as polyfluorinated ethylene.
Further, as shown in FIG. 3, the first line 6b and the second line 6c are arranged at equal intervals (T1 = T2) from the center of each sliding portion (7a, 7b, 7c). Connected to the moving parts (7a, 7b, 7c).
 本実施例の分配移相器でも、入力側ストリップ導体3より入力された高周波信号は、リング形状の導体3aに至り、高誘電率絶縁体4aを介して、アーム部のリング形状の導体6aと結合され、第1の線路6bと第2の線路6cを通って、各摺動部(7a,7b,7c)に到り、各摺動部(7a,7b,7c)で高誘電率絶縁体4bを介して、それぞれの出力側ストリップ導体(2a,2b,2c)に結合される。
 そして、円環の中心(図1のP)に回転軸を挿入し、この回転軸を回転してアーム部を回転、即ち、各摺動部(7a,7b,7c)を回転させることにより、各出力側ストリップ導体(2a,2b,2c)の両端から出力される励振電力として、各出力側ストリップ導体(2a,2b,2c)間で所望の位相差を有し、かつ、それぞれの出力側ストリップ導体(2a,2b,2c)の端子間で所定の位相差を有する励振電力を得ることができる。
 なお、アーム部のリング形状の導体6aと1番目の摺動部7aとの間、あるいは、各摺動部の間の第1の線路6bと第2の線路6cの線路幅を小さくする等の方法により、各摺動部(7a,7b,7c)に至る第1の線路6bと第2の線路6cの特性インピーダンスをそれぞれ変化させることにより、それぞれの出力側ストリップ導体(2a,2b,2c)から出力される高周波信号の振幅比を変化させることが可能である。
Also in the distributed phase shifter of the present embodiment, the high frequency signal input from the input side strip conductor 3 reaches the ring-shaped conductor 3a, and the ring-shaped conductor 6a of the arm portion via the high dielectric constant insulator 4a. Combined, passes through the first line 6b and the second line 6c, reaches each sliding part (7a, 7b, 7c), and the high dielectric constant insulator at each sliding part (7a, 7b, 7c) The output side strip conductors (2a, 2b, 2c) are coupled to each other through 4b.
Then, by inserting a rotation shaft into the center of the ring (P in FIG. 1) and rotating the rotation shaft to rotate the arm portion, that is, by rotating each sliding portion (7a, 7b, 7c), The excitation power output from both ends of each output side strip conductor (2a, 2b, 2c) has a desired phase difference between each output side strip conductor (2a, 2b, 2c), and each output side Excitation power having a predetermined phase difference can be obtained between the terminals of the strip conductors (2a, 2b, 2c).
In addition, between the ring-shaped conductor 6a of the arm portion and the first sliding portion 7a, or the line width of the first line 6b and the second line 6c between the sliding portions is reduced. By changing the characteristic impedances of the first line 6b and the second line 6c reaching the sliding parts (7a, 7b, 7c) by the method, the respective output side strip conductors (2a, 2b, 2c) It is possible to change the amplitude ratio of the high-frequency signal output from.
 図4は、本発明の実施例の多分岐分配移相器の変形例の概略構成を示す斜視図である。
 図4に示す多分岐分配移相器は、出力側ストリップ導体が、2本の出力側ストリップ導体(2a,2b)で構成される点で、図1に示す多分岐分配移相器と相異するが、それ以外の構成は、図1に示す多分岐分配移相器と同じであるので再度の詳細な説明は省略する。
 図5は、図4に示す多分岐分配移相器の一例の分配損失特性と反射減衰量特性のシミュレーション結果を示すグラフである。
 図5に示すグラフは、入力側ストリップ導体3、および各出力側ストリップ導体(2a,2b)の特性インピーダンスを50Ωとして計算した結果を示すグラフである。
 また、図5のグラフにおいて、横軸は周波数であり、1目盛りが0.5GHz、縦軸は減衰量であり、1目盛りが(-5dB)である。
FIG. 4 is a perspective view showing a schematic configuration of a modified example of the multi-branch distribution phase shifter according to the embodiment of the present invention.
The multi-branch distribution phase shifter shown in FIG. 4 is different from the multi-branch distribution phase shifter shown in FIG. 1 in that the output-side strip conductor is composed of two output-side strip conductors (2a, 2b). However, since the other configuration is the same as that of the multi-branch distribution phase shifter shown in FIG. 1, detailed description thereof is omitted.
FIG. 5 is a graph showing simulation results of distribution loss characteristics and return loss characteristics of an example of the multi-branch distribution phase shifter shown in FIG.
The graph shown in FIG. 5 is a graph showing the results of calculation with the characteristic impedance of the input side strip conductor 3 and each output side strip conductor (2a, 2b) as 50Ω.
In the graph of FIG. 5, the horizontal axis is frequency, one scale is 0.5 GHz, the vertical axis is attenuation, and one scale is (−5 dB).
 図5のAに示す曲線は、入力端子(図4のO1)の反射減衰量を示す。また、図5のBに示す曲線は、入力端子(図4のO1)から出力端子(図4のO2)への分配損失、および、入力端子(図4のO1)から出力端子(図4のO3)への分配損失を示す。
 さらに、図5のCに示す曲線は、入力端子(図4のO1)から出力端子(図4のO4)への分配損失、および、入力端子(図4のO1)から出力端子(図4のO5)への分配損失を示す。
 なお、入力端子(図4のO1)から出力端子(図4のO2)への分配損失、および、入力端子(図4のO1)から出力端子(図4のO3)へ分配損失は、ほぼ同様の特性を示すために、図5では、Bの曲線は、一本の曲線にように描かれている。
 同様に、入力端子(図4のO1)から出力端子(図4のO4)への分配損失、および、入力端子(図4のO1)から出力端子(図4のO5)への分配損失も、ほぼ同様の特性を示すために、図5では、Cの曲線は、一本の曲線にように描かれている。
 図5に示す分配損失特性(B、C)から分かるように、本実施例の多分岐分配移相器においては、分配損失は、ほぼ一定の値となっている。
A curve indicated by A in FIG. 5 indicates the return loss of the input terminal (O1 in FIG. 4). Further, the curve shown in FIG. 5B shows the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O2 in FIG. 4) and the input terminal (O1 in FIG. 4) to the output terminal (in FIG. 4). The distribution loss to O3) is shown.
Further, the curve shown in FIG. 5C shows the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O4 in FIG. 4) and the input terminal (O1 in FIG. 4) to the output terminal (in FIG. 4). The distribution loss to O5) is shown.
The distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O2 in FIG. 4) and the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O3 in FIG. 4) are almost the same. In FIG. 5, the curve B is drawn as a single curve.
Similarly, the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O4 in FIG. 4) and the distribution loss from the input terminal (O1 in FIG. 4) to the output terminal (O5 in FIG. 4) In order to show substantially the same characteristics, the curve C is drawn as a single curve in FIG.
As can be seen from the distribution loss characteristics (B, C) shown in FIG. 5, in the multi-branch distribution phase shifter of the present embodiment, the distribution loss has a substantially constant value.
 図6は、本発明の実施例の多分岐分配移相器の変形例の概略構成を示す斜視図である。
 図6に示す多分岐分配移相器は、アーム部が、単一の第1の線路6bで構成される点で、図1に示す多分岐分配移相器と相違するが、それ以外の構成は図1に示す多分岐分配移相器と同じであるので再度の詳細な説明は省略する。
 図1に示すように、アーム部を、第1の線路6bと第2の線路6cとで構成する方が、図6に示すように、アーム部を、単一の第1の線路6bで構成する場合よりも、より広帯域の高周波信号の位相を可変することができる。
 なお、前述の説明では、各摺動部(7a,7b,7c)の円弧形状の長さは、λo/2の場合について説明したが、各摺動部(7a,7b,7c)の円弧形状の長さは、各摺動部(7a,7b,7c)の円弧形状の長さをLoとするとき、(2×λo)/5≦Lo≦(3×λo)/5、より好ましくは、(9×λo)/20≦Lo≦(11×λo)/20が望ましい。
 以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
FIG. 6 is a perspective view showing a schematic configuration of a modified example of the multi-branch distribution phase shifter according to the embodiment of the present invention.
The multi-branch distribution phase shifter shown in FIG. 6 is different from the multi-branch distribution phase shifter shown in FIG. 1 in that the arm portion is composed of a single first line 6b. Since this is the same as the multi-branch distribution phase shifter shown in FIG.
As shown in FIG. 1, the arm portion is composed of the first line 6b and the second line 6c. As shown in FIG. 6, the arm portion is composed of a single first line 6b. The phase of the broadband high-frequency signal can be varied as compared with the case of doing so.
In the above description, the length of the arc shape of each sliding portion (7a, 7b, 7c) has been described in the case of λo / 2, but the arc shape of each sliding portion (7a, 7b, 7c) is described. The length of is (2 × λo) / 5 ≦ Lo ≦ (3 × λo) / 5, more preferably, where Lo is the length of the arc shape of each sliding portion (7a, 7b, 7c). It is desirable that (9 × λo) / 20 ≦ Lo ≦ (11 × λo) / 20.
As mentioned above, the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.
 本発明は、多分岐分配移相器に係り、特に、アレイアンテナのチルト角を制御する位相回路等に適用し有効である。 The present invention relates to a multi-branch distribution phase shifter, and is particularly effective when applied to a phase circuit for controlling the tilt angle of an array antenna.

Claims (3)

  1.  誘電基板と、
     前記誘電体基板上に形成されるとともに、任意の一点を中心として同心円状に配置される(n≧2)個の円環を仮定し、前記(n≧2)個の円環の中で半径の小さいものから1番目ないしn番目の円環とするとき、それぞれ前記1番目ないしn番目の円環の一部を構成する円弧形状を有し、両端が出力端とされる1番目ないしn番目の出力側ストリップ導体と、
     前記誘電体基板上に形成され、前記円環の中心に一端が位置決めされた入力側ストリップ導体と、
     それぞれ前記1番目ないしn番目の円環の一部を構成する円弧形状を有し、出力側ストリップ導体よりも長さが短い1番目ないしn番目の摺動部と、
     前記1番目ないしn番目の前記摺動部を有し、前記円環の中心の回りに回転可能なアーム部とを備え、
     前記1番目ないしn番目の出力側ストリップ導体と、前記1番目ないしn番目の円弧状の摺動部との間、および、前記入力側ストリップ導体とアーム部との間に絶縁体を介在させたことを特徴とする多分岐分配移相器。
    A dielectric substrate;
    Assuming (n ≧ 2) rings that are formed on the dielectric substrate and arranged concentrically around an arbitrary point, the radius among the (n ≧ 2) rings is assumed. When the first to n-th rings are selected from the smallest, the first to n-th rings have arc shapes that form part of the first to n-th rings, and both ends are output ends. The output side strip conductor,
    An input side strip conductor formed on the dielectric substrate and having one end positioned at the center of the ring;
    First to nth sliding portions each having an arc shape that constitutes a part of the first to nth annular rings and shorter in length than the output side strip conductor;
    The first to nth sliding portions, and an arm portion rotatable around the center of the ring,
    Insulators are interposed between the first to n-th output side strip conductors and the first to n-th arc-shaped sliding portions, and between the input-side strip conductors and the arm portions. A multi-branch distribution phase shifter characterized by that.
  2.  前記1番目ないしn番目の前記それぞれの摺動部に至る前記アーム部の特性インピーダンスを変化させて、前記1番目ないしn番目の出力側ストリップ導体から出力される高周波信号の振幅比を変化させることを特徴とする請求項1に記載の多分岐分配移相器。 Changing the characteristic impedance of the arm part reaching the first to nth sliding parts to change the amplitude ratio of the high-frequency signal output from the first to nth output side strip conductors. The multi-branch distribution phase shifter according to claim 1.
  3.  前記アーム部は、前記円環の中心側の一端に、前記円環の中心を取り囲むように形成されたリング形状の導体を有するとともに、一端が前記リング形状の導体に接続され、他端側に前記1番目ないしn番目の円弧状の摺動部を有する第1および第2の線路を有することを特徴とする請求項1または請求項2に記載の多分岐分配移相器。 The arm portion has a ring-shaped conductor formed at one end on the center side of the ring so as to surround the center of the ring, and one end is connected to the ring-shaped conductor, 3. The multi-branch distribution phase shifter according to claim 1, further comprising first and second lines having the first to nth arcuate sliding portions. 4.
PCT/JP2008/053167 2008-02-25 2008-02-25 Multibranched division phase shifter WO2009107186A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2008351831A AU2008351831B2 (en) 2008-02-25 2008-02-25 Multibranched division phase shifter
CN200880127483.4A CN101971413B (en) 2008-02-25 2008-02-25 Multibranched division phase shifter
PCT/JP2008/053167 WO2009107186A1 (en) 2008-02-25 2008-02-25 Multibranched division phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053167 WO2009107186A1 (en) 2008-02-25 2008-02-25 Multibranched division phase shifter

Publications (1)

Publication Number Publication Date
WO2009107186A1 true WO2009107186A1 (en) 2009-09-03

Family

ID=41015600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053167 WO2009107186A1 (en) 2008-02-25 2008-02-25 Multibranched division phase shifter

Country Status (3)

Country Link
CN (1) CN101971413B (en)
AU (1) AU2008351831B2 (en)
WO (1) WO2009107186A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009056A1 (en) * 2013-07-16 2015-01-22 엘지이노텍 주식회사 Phase shifter and transmission system equipped with same
CN107046168A (en) * 2016-09-18 2017-08-15 北京邮电大学 A kind of microstrip antenna

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306872B (en) * 2011-07-09 2015-03-25 广州桑瑞通信设备有限公司 Symmetrical multichannel power division phase shifter of electro-governing antenna
WO2012106900A1 (en) * 2011-07-18 2012-08-16 华为技术有限公司 Phase shifter
WO2012106903A1 (en) * 2011-07-19 2012-08-16 华为技术有限公司 Phase shifter
CN103401073B (en) * 2013-08-13 2016-01-06 武汉虹信通信技术有限责任公司 A kind of nonmetal contact antenna radiation unit phase adjusted controller
CN104201472B (en) * 2014-08-21 2017-10-27 南京澳博阳射频技术有限公司 A kind of big angle of declination antenna for base station feeding network
CN107431274A (en) * 2015-03-31 2017-12-01 日本电业工作株式会社 Antenna and phase shifting control device
CN112103651B (en) * 2020-08-06 2023-12-05 广东盛路通信科技股份有限公司 Rotary arc phase shifter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121915A (en) * 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd Distribution phase shifter
JPH104305A (en) * 1996-06-18 1998-01-06 Furukawa Electric Co Ltd:The Power distribution type phase shifter
JP2003507914A (en) * 1999-08-17 2003-02-25 カトライン−ベルケ・カーゲー High frequency phase shifter unit
US20050219133A1 (en) * 2004-04-06 2005-10-06 Elliot Robert D Phase shifting network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121915A (en) * 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd Distribution phase shifter
JPH104305A (en) * 1996-06-18 1998-01-06 Furukawa Electric Co Ltd:The Power distribution type phase shifter
JP2003507914A (en) * 1999-08-17 2003-02-25 カトライン−ベルケ・カーゲー High frequency phase shifter unit
US20050219133A1 (en) * 2004-04-06 2005-10-06 Elliot Robert D Phase shifting network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009056A1 (en) * 2013-07-16 2015-01-22 엘지이노텍 주식회사 Phase shifter and transmission system equipped with same
CN107046168A (en) * 2016-09-18 2017-08-15 北京邮电大学 A kind of microstrip antenna

Also Published As

Publication number Publication date
CN101971413A (en) 2011-02-09
AU2008351831B2 (en) 2013-07-25
CN101971413B (en) 2014-06-18
AU2008351831A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2009107186A1 (en) Multibranched division phase shifter
US11145978B2 (en) Phased array antennas having multi-level phase shifters
JP4198355B2 (en) High-frequency phase shifter unit
JP3120497B2 (en) Distribution phase shifter
AU2008305786B2 (en) Antenna arrangement
JP4156647B2 (en) Multi-branch distribution phase shifter
CN107403981B (en) A kind of manufacturing method of minimized wide-band slow-wave structure phase shifter
KR20050008882A (en) Phase Shifter Having Power Dividing Function
US2951996A (en) Variable transmission network
JP4650561B2 (en) Phase shifter
WO2009104265A1 (en) Distributed phase shifter
JP4142072B2 (en) Distribution phase shifter
JP5773272B2 (en) Power distribution type phase shifter and antenna device
KR101098684B1 (en) Phase shifter where a slot is formed on a ground member and antenna including the same
KR101413989B1 (en) Antenna phase shifter having multi-axles
JP2006238184A (en) Power distributor and power distribution device
JPH104305A (en) Power distribution type phase shifter
JP5819485B1 (en) Distribution phase shifter
KR100555876B1 (en) Signal process apparatus for phase transition and attenuation on the multi transmission line
JP2017224931A (en) Phase shifter and antenna device
JP5783072B2 (en) Power distribution type phase shifter and radio wave transmission system
JP2001085902A (en) Phase shifter
TWI763460B (en) Antenna unit pair and antenna array
JP5280973B2 (en) antenna
KR20020041609A (en) Phase shifter for controlling beam tilt in wireless communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127483.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720820

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1778/MUMNP/2010

Country of ref document: IN

Ref document number: 12010501907

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008351831

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008351831

Country of ref document: AU

Date of ref document: 20080225

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08720820

Country of ref document: EP

Kind code of ref document: A1