CN110706518B - 一种船舶挂靠港预测技术 - Google Patents

一种船舶挂靠港预测技术 Download PDF

Info

Publication number
CN110706518B
CN110706518B CN201910765474.8A CN201910765474A CN110706518B CN 110706518 B CN110706518 B CN 110706518B CN 201910765474 A CN201910765474 A CN 201910765474A CN 110706518 B CN110706518 B CN 110706518B
Authority
CN
China
Prior art keywords
ship
port
ijl
hanging
berthing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910765474.8A
Other languages
English (en)
Other versions
CN110706518A (zh
Inventor
郑海林
胡勤友
潘亚兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201910765474.8A priority Critical patent/CN110706518B/zh
Publication of CN110706518A publication Critical patent/CN110706518A/zh
Application granted granted Critical
Publication of CN110706518B publication Critical patent/CN110706518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Abstract

一种船舶挂靠港预测技术,旨在解决现有技术中基于马尔科夫预测模型对船舶挂靠港进行预测的过程中忽略了船舶下一挂靠港与上一挂靠港存在关联这一实际变量,导致对船舶下一挂靠港预测精度较低的技术问题。本发明从AIS数据中提取船舶挂靠港时间序列,依据船型和吨位对该序列进行划分,筛选出特定船型、吨位的船舶,即竞争船队;计算船舶相邻挂靠港口间的挂靠频次,根据设定阈值从中筛选出竞争船队频繁挂靠港口,计算船队频繁挂靠港口间转移概率;结合船舶历史轨迹,从中选取关键航路点,建立基于关键航路点和当前挂靠港的隐马尔科夫预测模型。本发明建立的隐马尔科夫预测模型对船舶下一挂靠港与上一挂靠港的实际关联进行了分析,预测精度较高。

Description

一种船舶挂靠港预测技术
技术领域
本发明涉及海域交通管制技术领域,尤其是涉及一种船舶挂靠港预测技术。
背景技术
海上态势感知是海事安全与安保的有力保障。类似船舶自动识别系统(AIS)的船舶动态监控系统,可以提供海量船舶动态数据,而基于海量船舶动态数据的船舶行为识别为海上态势感知提供了良好的支持。相同船型、吨位的船舶挂靠港呈现出一定规律,即存在竞争的船队挂靠相同的港口,使用相同的航线,该类船舶航行行为可以预测。船舶下一挂靠港与上一挂靠港无关,仅与当前挂靠港有关,符合马尔可夫链的特征;根据船舶挂靠港时间序列,计算船舶当前挂靠港与下一挂靠港间转移概率,建立船舶下一挂靠港预测模型,上述是经典的马尔可夫预测模型。
申请号为CN 201310044867.2的中国专利公开了一种舰船辅助航行及编队指挥的方法,包括以下步骤:
1)、确定目的地和编队类型后,由旗舰规划编队中各舰船的航迹,即规划各舰船在规定的时间点到达的规定位置,并将各舰船的规划航迹分别传输至各舰船;
2)、各舰船接收规划航迹后,将水动力系统视为黑箱,反演舰船沿规划航迹所受的合力,根据各舰船当前的实时航行参数以及历史航行状态参数,预测各舰船下一时刻完成在规定的时间点到达规定位置的预测航迹,同时将预测航迹曲线、规划航迹曲线和实时航迹曲线共同绘制在实时航行界面图中,并控制各舰船沿预测航迹运行;
3)、监测各舰船的实时航行参数,并将其作为历史航行状态参数反馈用于预测各船舶在下一时刻完成在规定的时间点到达规定位置的预测航迹,同时在实时航行界面图中,将实时航行参数绘制成与预测航迹曲线相切的操作矢量。
上述专利中,各舰船对水力系统进行非线性系统识别,将水利系统视为黑箱,反演出沿规划航迹所受的合力,并结合当前的实时的航行参数和自身历史航行状态数据,预测在下一时刻完成在规定时间点到达规定位置的最佳的预测航迹,这一预测思路与船舶挂靠港预测模型的建立思路一致,但是由于舰船辅助航行的实时性,上述发明的模型建立过程对船舶挂靠港预测无启示意义。
前文中有介绍,现用的船舶挂靠港预测使用马尔可夫预测模型,上述模型要求状态空间中经过从一个状态到另一个状态的转换的随机过程需要具备无记忆性,即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关,反映在船舶挂靠中即前文所述的船舶下一挂靠港与上一挂靠港无关,仅与当前挂靠港有关;然而,由于船舶存在往返航次,所以船舶下一挂靠港与上一挂靠港实际上存在关联,如何结合船舶的上一挂靠港对船舶的挂靠港进行预测成为船舶挂靠港预测的技术难点。
发明内容
本发明为了克服现有技术中基于马尔科夫预测模型对船舶挂靠港进行预测的过程中忽略了船舶下一挂靠港与上一挂靠港存在关联这一实际变量,导致对船舶下一挂靠港预测精度较低的技术问题,提供一种船舶挂靠港预测技术,所述预测技术使用基于关键航路点和当前挂靠港的隐马尔科夫预测模型对船舶挂靠港进行预测,关键航路点的确定模型以及频繁挂靠港的筛选模型均对船舶下一挂靠港与上一挂靠港的实际关联进行了分析,所述船舶挂靠港预测技术的预测精度较高。
为了实现上述目的,本发明采用以下技术方案。
一种船舶挂靠港预测技术,包括以下步骤:
步骤1:定义船舶在两年的时间内仅挂靠一次的港口为船舶偶尔挂靠港口,对船舶历史航迹进行分析,在船舶历史挂靠港口集合中剔除船舶偶尔挂靠港口后形成挂靠港集合P={{P1},{P2},...,{Pi},...,{Pm}};
步骤2:对步骤1中的挂靠港集合按照l港口i船型的重要度Iil进行专业港划分,将所述挂靠港集合划分为各船型对应的专业港Pi={pil,lonil,latil,nil,dil,Iil|Iil>I1l∧Iil>I2l∧…∧Iil>Inl};
步骤3:对步骤1中的挂靠港集合按照l港口i船型j尺度船舶的重要度Iijl进行专业港尺度划分,将所述挂靠港集合划分为相应尺度船舶挂靠的专业港
Pij={pijl,lonijl,latijl,nijl,dijl,Iijl|Iijl>Ii1l∧Iijl>Ii2l∧...∧Iijl>Iinl};
步骤4:结合步骤1至步骤3定义i船型j尺度挂靠l港口的频繁度
Figure BDA0002171788260000021
定义thfij为i船型j尺度船舶挂靠港频繁度的阈值,通过Pijf={pijl,lonijl,latijl,nijl,dijl,fijl|fijl>thfij}扫描步骤1中的挂靠港集合P,得到频繁挂靠港集合S;
步骤5:利用步骤4中的频繁挂靠港集合S建立转移概率矩阵P,计算船舶自当前挂靠港si转移到下一挂靠港sj的概率
Figure BDA0002171788260000022
步骤6:绘制船舶的历史航行轨迹图,在历史航行轨迹图中标注船舶的历史航行轨迹Si、船舶经过某一段航线的航路节点Lj以及船舶航向分叉节点Dk
步骤7:分析船舶的MMSI所记录的船舶的经纬度、航速、航向以及时间等信息,对连续两个时间点船舶经纬度形成的线段和步骤6中航路节点的标记线段进行跨立实验,若两者相互跨立,则判断船舶经过步骤6中的航路节点;
步骤8:结合步骤5定义航行过程中途径航路节点ok的次数为yjk,船舶的下一挂靠港sj输出航路节点ok的概率为
Figure BDA0002171788260000031
步骤9:根据步骤8定义船舶航行中输出概率矩阵为
B={bjk},bjk=p(ok|sj)1≤j≤N,1≤k≤M,结合步骤4至步骤6确定船舶下一挂靠港集合{s1,s2,...,sN}以及航路节点集合{L1,L2,...,LM};船舶自港口si出发,当船舶途径航路节点Lk时,根据所述的输出概率矩阵和步骤5中所述的转移概率矩阵求得
δ1(j)=δ0(i)pijbjk 1≤j≤N,其中初始值设为δ0(i)=1;将船舶在一次航行中依次经过航路节点Lk,Lm,…,Ln时得到的δ12,...,δn相加求得
Zj=pij(bjk+bjm+…+bjn)1≤j≤N,Zj=max(Z1,Z2,…,ZN)所对应的挂靠港sj即为通过所述船舶挂靠港预测技术预测到的船舶下一挂靠港。
传统技术中使用马尔可夫预测模型对船舶挂靠港进行预测,基于马尔可链的无记忆性,该预测模型忽略了船舶上一挂靠港与船舶下一挂靠港之间的实际关联,所建立的预测模型对船舶下一挂靠港的预测精度较低。本发明中,根据船舶速度,从AIS数据中提取船舶挂靠港时间序列,依据船型和吨位对该序列进行划分,筛选出特定船型、吨位的船舶,即竞争船队;计算船舶相邻挂靠港口间的挂靠频次,根据设定阈值从中筛选出竞争船队频繁挂靠港口,计算船队频繁挂靠港口间转移概率;结合船舶历史轨迹,从中选取关键航路点,建立基于关键航路点和当前挂靠港的隐马尔科夫预测模型,进而实现对船舶下一挂靠港的准确预测。步骤1到步骤2对挂靠港进行了专业港划分,其中,pil为i船型船舶挂靠港l名称,lonil为i船型船舶挂靠港l经度,latil为i船型船舶挂靠港l纬度。步骤1到步骤3对挂靠港进行了专业港尺度划分,其中,pijl为i船型j尺度船舶挂靠港l名称,lonijl为i船型j尺度船舶挂靠港l经度,latijl为i船型j尺度船舶挂靠港l纬度。步骤4对挂靠港进行了频繁挂靠港划分,该划分基于i船型j尺度船舶挂靠l港口的频繁度fijl和i船型j尺度船舶挂靠港频繁度的阈值thfij的大小比较进行,当i船型j尺度船舶挂靠l港口的频繁度fijl大于i船型j尺度船舶挂靠港频繁度的阈值thfij时,称该港口为i船型j尺度船舶对应的频繁挂靠港。步骤5到步骤9依次计算了船队频繁挂靠港口间转移概率,结合船舶历史轨迹,从中选取关键航路点,建立基于关键航路点和当前挂靠港的隐马尔科夫预测模型,进而实现对船舶下一挂靠港的准确预测。
优选的,步骤2中
Figure BDA0002171788260000041
其中,
Figure BDA0002171788260000042
为挂靠l港口i船型船舶总载重吨占比,
Figure BDA0002171788260000043
为挂靠所有港口i船型船舶总载重吨占比。
优选的,步骤3中
Figure BDA0002171788260000044
其中,
Figure BDA0002171788260000045
为挂靠l港口i船型j尺度船舶总载重吨占比,
Figure BDA0002171788260000046
为挂靠所有港口i船型j尺度船舶总载重吨占比。
综上所述,本发明具有如下有益效果:本发明建立的隐马尔科夫预测模型对船舶下一挂靠港与上一挂靠港的实际关联进行了分析,所述船舶挂靠港预测技术的预测精度较高。
附图说明
图1是本发明中船舶历史轨迹上航路节点的标注方法。
图2是本发明中快速排斥试验的示意图。
图中:
S1~S7:船舶的历史航行轨迹;
L1~L7:代表经过某一段航线的航路节点;
D1~D3:船舶在该点处有不同的前行方向或者船舶从不同的方向行驶到此处。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语”纵向”、“横向”、“上“、“下”、“前”、“后“、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例:
一种船舶挂靠港预测技术,包括以下步骤:步骤1:定义船舶在两年的时间内仅挂靠一次的港口为船舶偶尔挂靠港口,对船舶历史航迹进行分析,在船舶历史挂靠港口集合中剔除船舶偶尔挂靠港口后形成挂靠港集合P={{P1},{P2},...,{Pi},...,{Pm}};步骤2:对步骤1中的挂靠港集合按照l港口i船型的重要度Iil进行专业港划分,将所述挂靠港集合划分为各船型对应的专业港Pi={pil,lonil,latil,nil,dil,Iil|Iil>I1l∧Iil>I2l∧...∧Iil>Inl};步骤3:对步骤1中的挂靠港集合按照l港口i船型j尺度船舶的重要度Iijl进行专业港尺度划分,将所述挂靠港集合划分为相应尺度船舶挂靠的专业港Pij={pijl,lonijl,latijl,nijl,dijl,Iijl|Iijl>Ii1l∧Iijl>Ii2l∧...∧Iijl>Iinl};步骤4:结合步骤1至步骤3定义i船型j尺度挂靠l港口的频繁度
Figure BDA0002171788260000051
定义thfij为i船型j尺度船舶挂靠港频繁度的阈值,通过Pijf={pijl,lonijl,latijl,nijl,dijl,fijl|fijl>thfij}扫描步骤1中的挂靠港集合P,得到频繁挂靠港集合S;步骤5:利用步骤4中的频繁挂靠港集合S建立转移概率矩阵P,计算船舶自当前挂靠港si转移到下一挂靠港sj的概率
Figure BDA0002171788260000052
步骤6:绘制船舶的历史航行轨迹图,在历史航行轨迹图中标注船舶的历史航行轨迹Si、船舶经过某一段航线的航路节点Lj以及船舶航向分叉节点Dk;步骤7:分析船舶的MMSI所记录的船舶的经纬度、航速、航向以及时间等信息,对连续两个时间点船舶经纬度形成的线段和步骤6中航路节点的标记线段进行跨立实验,若两者相互跨立,则判断船舶经过步骤6中的航路节点;
步骤8:结合步骤5定义航行过程中途径航路节点ok的次数为yjk,船舶的下一挂靠港sj输出航路节点ok的概率为
Figure BDA0002171788260000061
步骤9:根据步骤8定义船舶航行中输出概率矩阵为B={bjk},bjk=p(ok|sj)1≤j≤N,1≤k≤M,结合步骤4至步骤6确定船舶下一挂靠港集合{s1,s2,...,sN}以及航路节点集合{L1,L2,...,LM};船舶自港口si出发,当船舶途径航路节点Lk时,根据所述的输出概率矩阵和步骤5中所述的转移概率矩阵求得
δ1(j)=δ0(i)pijbjk 1≤j≤N,其中初始值设为δ0(i)=1;将船舶在一次航行中依次经过航路节点Lk,Lm,…,Ln时得到的δ12,...,δn相加求得Zj=pij(bjk+bjm+…+bjn)1≤j≤N,Zj=max(Z1,Z2,…,ZN)所对应的挂靠港sj即为通过所述船舶挂靠港预测技术预测到的船舶下一挂靠港;步骤2中
Figure BDA0002171788260000062
其中,
Figure BDA0002171788260000063
为挂靠l港口i船型船舶总载重吨占比,
Figure BDA0002171788260000064
为挂靠所有港口i船型船舶总载重吨占比;步骤3中
Figure BDA0002171788260000065
其中,
Figure BDA0002171788260000066
为挂靠l港口i船型j尺度船舶总载重吨占比,
Figure BDA0002171788260000067
为挂靠所有港口i船型j尺度船舶总载重吨占比。
利用上述船舶挂靠港预测技术对船舶挂靠港的预测过程如下:
1、建立频繁挂靠港筛选模型:船舶频繁到访目的港是船舶到访频率大于或者等于某一个阈值的船舶停靠港口,确定到访频率阈值可以排除船舶偶尔到访的港口,若一艘船舶两年多的时间里对于某一个港口只到访一次,则这个港口属于该船舶偶尔到访的港口,在总结这艘船舶靠港规律时对此港口不作考虑。
(1)对挂靠港进行专业港划分:对挂靠港集合P进行定义,P={{P1},{P2},...,{Pi},...,{Pm}},其中,{Pi}为i船型船舶挂靠港集合,Pi={{Pi1},{Pi2},...,{Pij},...,{Pin}},{Pij}为i船型j尺度船舶挂靠港集合。定义nijkl为研究时间内i船型j尺度船舶k挂靠港口l的次数,dijkl为i船型j尺度船舶k挂靠港口l的总载重吨,dijkl=dijk*nijkl,则研究时间内挂靠港口l的船舶艘次nl和总载重吨dl计算方法为
Figure BDA0002171788260000071
研究时间内挂靠港口l的i船型船舶艘次nil和总载重吨dil计算方法为
Figure BDA0002171788260000072
定义Ril为挂靠l港口i船型船舶总载重吨占比,Ri为挂靠所有港口i船型船舶总载重吨占比,计算方法为
Figure BDA0002171788260000073
定义Iil为l港口i船型的重要度,计算方法为
Figure BDA0002171788260000074
通过Pi={pil,lonil,latil,nil,dil,Iil|Iil>I1l∧Iil>I2l∧...∧Iil>Inl}将挂靠港划分为各船型对应的专业港,其中,pil为i船型船舶挂靠港l名称,lonil为i船型船舶挂靠港l经度,latil为i船型船舶挂靠港l纬度。
(2)对挂靠港进行专业港尺度划分:研究时间内挂靠港口l的i船型j尺度船舶艘次nijl和总载重吨dijl计算方法为
Figure BDA0002171788260000075
定义Rijl为挂靠l港口i船型j尺度船舶总载重吨占比,Rij为挂靠所有港口i船型j尺度船舶总载重吨占比,计算方法为
Figure BDA0002171788260000076
Iijl为l港口i船型j尺度船舶的重要度,计算方法为
Figure BDA0002171788260000077
计算挂靠港口i船型船舶的尺度重要度,
通过Pij={pijl,lonijl,latijl,nijl,dijl,Iijl|Iijl>Ii1l∧Iijl>Ii2l∧...∧Iijl>Iinl}将各船型挂靠港划分为相应尺度船舶挂靠的专业港,其中,pijl为i船型j尺度船舶挂靠港l名称,lonijl为i船型j尺度船舶挂靠港l经度,latijl为i船型j尺度船舶挂靠港l纬度。
(3)对挂靠港进行频繁挂靠港划分:定义fijl为i船型j尺度船舶挂港l港口的频繁度,计算方法为
Figure BDA0002171788260000081
计算i船型j尺度船舶挂靠l港口的频繁度,
通过Pijf={pijl,lonijl,latijl,nijl,dijl,fijl|fijl>thfij}识别各船型、尺度船舶对应的频繁挂靠港,其中,thfij为i船型j尺度船舶挂靠港频繁度的阈值。
为得到每个船舶的频繁到访港口和港口间的转移概率矩阵,将建模数据进行如下处理:
依次扫描建模数据中的船舶频繁到访港口,当名称不同的港口第一次出现的时候计为si,将船舶所有到访的港口扫描完之后得到频繁到访目的港集合S;
转移概率矩阵P的行和列均为频繁到访港,行对应的频繁到访港记为si,列对应的频繁到访港记为sj。可以得到船舶从si转移到sj的次数;
③将船舶从港口si转移到港口sj的次数除以港口si转出的总次数,得到船舶从si转移到sj的一步转移概率。
表1:船舶在频繁到访港间的转移次数
s<sub>1</sub> s<sub>2</sub> s<sub>j</sub> s<sub>N</sub>
s<sub>1</sub> 0 x<sub>12</sub> x<sub>1j</sub> x<sub>1N</sub>
s<sub>2</sub> x<sub>21</sub> 0 x<sub>2j</sub> x<sub>2N</sub>
s<sub>i</sub> x<sub>i1</sub> x<sub>i2</sub> s<sub>ij</sub> x<sub>iN</sub>
s<sub>N</sub> x<sub>N1</sub> x<sub>N2</sub> x<sub>Nj</sub> 0
船舶当前挂靠港为si,下一挂靠港为sj的概率计算方法为
Figure BDA0002171788260000082
船舶的一步转移概率矩阵为
Figure BDA0002171788260000091
2、建立关键航路点获取模型:船舶在航行时通常根据航路指南以及计划航线行驶,船舶在两个港口之间行驶的航线具有一定的规律性。船舶在频繁到访目的港之间行驶的路线通常比较固定,基本不会有太大的变化。可以选取代表船舶航行位置和路线选择的一些线段来确定船舶前行的方向,称这些线段为船舶航行中的“航路节点”,即能够代表船舶行驶在该航线上的一些小线段。通过船舶一个航次中经过航路节点的顺序确定船舶行驶的航行轨迹,预测船舶前行的方向。当如图1所示,一段航线中没有分叉的时候,整个航线上只做一个航路节点的标志,即只画一条横跨航线的线段;当航线中有分叉的时候,在分叉点前的主航线上标记一个航路节点,分叉点之后每个支航线上再分别对每个航线做标记,以此类推。船舶在航数据中有船舶的mmsi,船舶的经纬度、航速、航向以及时间等信息。
数据中相邻两个时间点对应的经纬度坐标形成线段,依次判断连续两个时间点船舶经纬度形成的线段和航路节点的标记线段是否互相跨立确定船舶是否经过航路节点,主要分为两个步骤:
(1)快速排斥实验
船舶连续两个时间点对应的位置设为Pl,P2,以经度作为横坐标,维度作为纵坐标,确定船舶连续两个时间点对应位置形成的线段用P1(lon1,lat1)、P2(lon2,lat2)表示,轨迹上航路节点标记线段采用Q1(lon3,lat3),Q2(lon4,lat4)表示。设以线段P1P2为对角线的矩形为R,设以线段Q1Q2为对角线的矩形为T,若R、T不相交,则两线段不相交。
具体算法为:矩形R的x坐标的最小边界线为minRlon=min(lon1,lon2),
最大边界为maxRlon=max(lon1,lon2),以此类推得到minRlat与maxRlat,
将矩形R表示为R=(minRlon,minRlat,maxRlon,maxRlat),
同理将矩形T表示为T=(minTlon,minTlat,maxTlon,maxTlat)的形式。若矩形R与矩形T相交,则相交的部分构成一个新的矩形F=(minFlon,minFlat,maxFlon,maxFlat),如图2所示,可以得到矩形F的四个点分别为
minFlon=max(minRlon,minTlon)
minFlat=max(minRlat,minTlat)
maxFlon=min(maxRlon,maxTlon)
maxFlat=min(maxRlat,maxTlat),在得到F的各个点值之后,判断矩形F是否成立即可得知矩形R和矩形T是否有相交,若minFlon>maxFlon或者minFlat>maxFlat,则矩形F无法形成,矩形R和矩形T不相交,否则相交。
(2)跨立实验
如果两个线段相交,则两线段的两端互相跨立对方线段,若P1P2跨立Q1Q2,则矢量
Figure BDA0002171788260000101
Figure BDA0002171788260000102
位于矢量
Figure BDA0002171788260000103
的两侧,即
Figure BDA0002171788260000104
根据向量叉积的性质:
Figure BDA0002171788260000105
式(4-3)可以改为
Figure BDA0002171788260000106
Figure BDA0002171788260000107
时,说明
Figure BDA0002171788260000108
Figure BDA0002171788260000109
共线,由于已经通过快速排斥实验,所以P1一定在线段Q1Q2上,同理
Figure BDA00021717882600001010
说明P2一定在线段Q1Q2上,依然满足线段相交的条件。所以判断P1P2跨立Q1Q2的依据是
Figure BDA00021717882600001011
同理判断Q1Q2跨立P1P2的依据是:
Figure BDA00021717882600001012
假设船舶有N个频繁到访港,可能途径M航路节点,则船舶频繁到访港与航路节点的关系如表2所示。
表2:船舶频繁到访港与航路节点关系
o<sub>1</sub> o<sub>2</sub> o<sub>k</sub> o<sub>M</sub>
s<sub>1</sub> y<sub>11</sub> y<sub>12</sub> y<sub>1k</sub> y<sub>1M</sub>
s<sub>2</sub> y<sub>21</sub> y<sub>22</sub> y<sub>2k</sub> y<sub>2M</sub>
s<sub>j</sub> y<sub>j1</sub> y<sub>j2</sub> y<sub>jk</sub> x<sub>jM</sub>
s<sub>N</sub> y<sub>N1</sub> y<sub>N2</sub> y<sub>Nk</sub> y<sub>NM</sub>
表2中yjk表示船舶航行目的港是sj,航行中途径航路节点ok的次数。因此船舶的频繁到访港sj输出航路节点ok的概率为
Figure BDA0002171788260000111
船舶航行中输出矩阵为
Figure BDA0002171788260000112
3、建立船舶目的港预测模型:隐马尔可夫模型中输出概率指隐状态sj输出可见状态ok的概率。船舶航行中,隐状态为船舶本次航行的目的港,可见状态为船舶航行中经过的航路节点。假设船舶有N个频繁到访港,M个航路节点,则隐状态的种类有S={s1,s2,...,sN},可见状态的种类有O={o1,o2,...,oM}。
船舶航行中输出概率矩阵为B={bjk},bjk=p(ok|sj)1≤j≤N,1≤k≤M,船舶航行中输出概率为船舶本次航行的目的港是sj,经过航路节点ok的概率。根据Viterbi算法思想并对其进行相应的改进建立航行中船舶目的港预测模型。假设船舶有N个频繁到访目的港{s1,s2,...,sN},途径M个航路节点{L1,L2,...,LM}。船舶一次航行从港口si出发,将其初始值设为δ0(i)=1,当船舶途径一个航路节点Lk的时候,根据一步转移概率矩阵和输出矩阵可以求得δ1(j)=δ0(i)pijbjk 1≤j≤N;当船舶在一次航行中依次经过航路节点Lk,Lm,…,Ln时得到δ12,...,δn,将其相加得
Zj=δ12+…+δn
=δ0(i)pijbjk0(i)pijbjm+…+δ0(i)pijbjn
=δ0(i)pij(bjk+bjm+…+bjn)
其中:δ0(i)=1所以Zj改为:Zj=pij(bjk+bjm+…+bjn)1≤j≤N;依次计算j=1,2,...,N得到Z1,Z2,…,ZN,将最大值Zj=max(Z1,Z2,…,ZN)所对应的频繁到访港口sj预测为船舶本次航行的目的港。

Claims (3)

1.一种船舶挂靠港预测技术,其特征是,包括以下步骤:
步骤1:定义船舶在两年的时间内仅挂靠一次的港口为船舶偶尔挂靠港口,对船舶历史航迹进行分析,在船舶历史挂靠港口集合中剔除船舶偶尔挂靠港口后形成挂靠港集合P={{P1},{P2},...,{Pi},...,{Pm}},其中,{Pi}为i船型船舶挂靠港集合;
步骤2:对步骤1中的挂靠港集合按照l港口i船型的重要度Iil进行专业港划分,将所述挂靠港集合划分为各船型对应的专业港Pi={pil,lonil,latil,nil,dil,Iil|Iil>I1l∧Iil>I2l∧...∧Iil>Inl};其中,定义研究时间内挂靠港口l的i船型船舶艘次nil和总载重吨dil;pil为i船型船舶挂靠港l名称,lonil为i船型船舶挂靠港l经度,latil为i船型船舶挂靠港l纬度;Iil为l港口i船型的重要度;
步骤3:对步骤1中的挂靠港集合按照l港口i船型j尺度船舶的重要度Iijl进行专业港尺度划分,将所述挂靠港集合划分为相应尺度船舶挂靠的专业港;
Pij={pijl,lonijl,latijl,nijl,dijl,Iijl|Iijl>Ii1l∧Iijl>Ii2l∧...∧Iijl>Iinl};其中,研究时间内挂靠港口l的i船型j尺度船舶艘次nijl和总载重吨dijl;pijl为i船型j尺度船舶挂靠港l名称,lonijl为i船型j尺度船舶挂靠港l经度,latijl为i船型j尺度船舶挂靠港l纬度;Iijl为l港口i船型j尺度船舶的重要度;
步骤4:结合步骤1至步骤3定义i船型j尺度挂靠l港口的频繁度
Figure FDA0003489907370000011
定义thfij为i船型j尺度船舶挂靠港频繁度的阈值,通过Pijf={pijl,lonijl,latijl,nijl,dijl,fijl|fijl>thfij}扫描步骤1中的挂靠港集合P,得到频繁挂靠港集合S;
步骤5:利用步骤4中的频繁挂靠港集合S建立转移概率矩阵P,计算船舶自当前挂靠港si转移到下一挂靠港sj的概率
Figure FDA0003489907370000012
定义Si到Sj的频繁到访港间转移次数为Xij
步骤6:绘制船舶的历史航行轨迹图,在历史航行轨迹图中标注船舶的历史航行轨迹Si、船舶经过某一段航线的航路节点Lj以及船舶航向分叉节点Dk
步骤7:分析船舶的MMSI所记录的船舶的经纬度、航速、航向以及时间信息,对连续两个时间点船舶经纬度形成的线段和步骤6中航路节点的标记线段进行跨立实验,若两者相互跨立,则判断船舶经过步骤6中的航路节点;
步骤8:结合步骤5定义航行过程中途径航路节点ok的次数为yjk,船舶的下一挂靠港sj输出航路节点ok的概率为
Figure FDA0003489907370000021
步骤9:根据步骤8定义船舶航行中输出概率矩阵为B={bjk},bjk=p(ok|sj)1≤j≤N,1≤k≤M,结合步骤4至步骤6确定船舶下一挂靠港集合{s1,s2,...,sN}以及航路节点集合{L1,L2,...,LM};船舶自港口si出发,当船舶途径航路节点Lk时,根据所述的输出概率矩阵和步骤5中所述的转移概率矩阵求得δ1(j)=δ0(i)pijbjk 1≤j≤N,其中初始值设为δ0(i)=1;δ1(j)对应的是当前停靠港为Si时,下一站经过航路节点k的概率;δ0(i)对应的就是出发港口是Si时的概率;将船舶在一次航行中依次经过航路节点Lk,Lm,…,Ln时得到的δ12,...,δn相加求得Zj=pij(bjk+bjm+…+bjn)1≤j≤N,Zj代表从港口i出发到到港口j,经过两个港口之间的各个航路节点概率之和;Zj=max(Z1,Z2,...,ZN)所对应的挂靠港sj即为通过所述船舶挂靠港预测技术预测到的船舶下一挂靠港。
2.根据权利要求1所述的一种船舶挂靠港预测技术,其特征在于,步骤2中
Figure FDA0003489907370000022
其中,
Figure FDA0003489907370000023
为挂靠l港口i船型船舶总载重吨占比,
Figure FDA0003489907370000024
为挂靠所有港口i船型船舶总载重吨占比。
3.根据权利要求1所述的一种船舶挂靠港预测技术,其特征在于,步骤3中
Figure FDA0003489907370000025
其中,
Figure FDA0003489907370000026
为挂靠l港口i船型j尺度船舶总载重吨占比,
Figure FDA0003489907370000027
为挂靠所有港口i船型j尺度船舶总载重吨占比。
CN201910765474.8A 2019-08-19 2019-08-19 一种船舶挂靠港预测技术 Active CN110706518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910765474.8A CN110706518B (zh) 2019-08-19 2019-08-19 一种船舶挂靠港预测技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910765474.8A CN110706518B (zh) 2019-08-19 2019-08-19 一种船舶挂靠港预测技术

Publications (2)

Publication Number Publication Date
CN110706518A CN110706518A (zh) 2020-01-17
CN110706518B true CN110706518B (zh) 2022-04-22

Family

ID=69193432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910765474.8A Active CN110706518B (zh) 2019-08-19 2019-08-19 一种船舶挂靠港预测技术

Country Status (1)

Country Link
CN (1) CN110706518B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639891B (zh) * 2020-05-14 2023-11-24 亿海蓝(北京)数据技术股份公司 基于马尔可夫过程的货种航次识别方法及装置
CN112085286B (zh) * 2020-09-15 2022-04-15 周远鹏 一种船舶行为预测模型建立方法及系统
CN112562415B (zh) * 2020-11-26 2022-05-20 中远海运科技股份有限公司 船舶航线推荐方法
CN113221449B (zh) * 2021-04-27 2024-03-15 中国科学院国家空间科学中心 一种基于最优策略学习的船舶航迹实时预测方法及系统
CN113918619B (zh) * 2021-10-09 2022-09-09 上海船舶运输科学研究所有限公司 一种船舶预抵港口识别方法及系统
CN116805172B (zh) * 2023-05-06 2023-12-12 中国交通通信信息中心 一种ais数据驱动的原油船舶目的港预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814235A (zh) * 2010-01-22 2010-08-25 天津市市政工程设计研究院 预约集港模式下的港区交通疏导配流方法
CN103714718A (zh) * 2013-12-31 2014-04-09 武汉理工大学 一种内河桥区船舶安全航行预控系统
CN108281043A (zh) * 2018-03-23 2018-07-13 上海海事大学 一种船舶碰撞风险预警系统及预警方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120063769A (ko) * 2010-12-08 2012-06-18 한국전자통신연구원 선박 관제 제어 장치 및 그 방법과 선박 관제 장치 및 그 방법
CN103176451B (zh) * 2013-02-04 2015-01-21 广州中国科学院工业技术研究院 一种舰船辅助航行及编队指挥的方法
CN103531043B (zh) * 2013-09-27 2016-02-10 重庆大学 基于航线匹配的船舶点到点航行时间估算方法
CN104010167B (zh) * 2014-06-16 2017-04-26 交通运输部天津水运工程科学研究所 一种实时ais数据虚拟船舶视频化显示方法
CN104091470B (zh) * 2014-07-15 2016-05-11 南京大学 一种基于多数据融合的航道交通信息预测方法及应用
CN106205213A (zh) * 2014-12-30 2016-12-07 江苏理工学院 一种船舶轨迹预测方法
CN107248321B (zh) * 2017-07-21 2020-09-01 武汉理工大学 一种船舶到港等待时间预测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814235A (zh) * 2010-01-22 2010-08-25 天津市市政工程设计研究院 预约集港模式下的港区交通疏导配流方法
CN103714718A (zh) * 2013-12-31 2014-04-09 武汉理工大学 一种内河桥区船舶安全航行预控系统
CN108281043A (zh) * 2018-03-23 2018-07-13 上海海事大学 一种船舶碰撞风险预警系统及预警方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Maritime Traffic Monitoring Based on Vessel Detection,Tracking, State Estimation, and Trajectory Prediction;Perera L P, Oliveira P, Soares C G;《IEEE Transactions on Intelligent Transportation Systems》;20121231;全文 *

Also Published As

Publication number Publication date
CN110706518A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110706518B (zh) 一种船舶挂靠港预测技术
CN109191849B (zh) 一种基于多源数据特征提取的交通拥堵持续时间预测方法
Xin et al. A simulation model for ship navigation in the “Xiazhimen” waterway based on statistical analysis of AIS data
CN112966332B (zh) 基于多船运动不确定性的冲突侦测方法、存储器及处理器
Wu et al. Estimate travel time of ships in narrow channel based on AIS data
KR20190117070A (ko) 딥 러닝 알고리즘 기반의 항만 데이터를 이용한 선박 목적지 예측 방법 및 장치
CN106558219A (zh) 车辆轨迹预测方法及装置
CN115331486A (zh) 一种船舶碰撞风险评估与预测方法及装置
CN115545266A (zh) 用于估计车辆系统的到达时间的系统和方法
Neumann Method of path selection in the graph-case study
CN114545951A (zh) 一种路径规划方法和装置
CN101604477B (zh) 智能化动态路线诱导系统
CN107255826A (zh) 基于大数据下的物流货车修正gps定位分析方法
Blokus-Roszkowska et al. Maritime traffic flow simulation in the intelligent transportation systems theme
Blokus-Roszkowska et al. Application of simulation methods for evaluating the sea waterways traffic organisation
Kwun et al. Prediction of vessel arrival time using auto identification system data
Asborno et al. Inland waterway network mapping of AIS data for freight transportation planning
CN114005271A (zh) 一种智能网联环境下交叉口碰撞风险量化方法
Ni et al. Research on Port truck trajectory completion based on Long Short-Term Memory model and Speed distribution characteristics
CN102063530B (zh) 基于0-1整数规划的船舶定线制系统警戒区优化方法
Kajalić et al. VEHICLE PLATOON MEMBERSHIP DEFINITION FOR UNSATURATED CONDITIONS.
CN114283574B (zh) 一种基于卷积策略的车辆调度评价方法
US20220377500A1 (en) Electronic device and a method for determining a transportation parameter of a wireless device
US20220349722A1 (en) Vehicle control system
Chang et al. Development of distributed real-time decision support system for traffic management centers using microscopic CA model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant