CN110703703A - 一种火电发电机组的高加给水旁路控制方法 - Google Patents

一种火电发电机组的高加给水旁路控制方法 Download PDF

Info

Publication number
CN110703703A
CN110703703A CN201910880147.7A CN201910880147A CN110703703A CN 110703703 A CN110703703 A CN 110703703A CN 201910880147 A CN201910880147 A CN 201910880147A CN 110703703 A CN110703703 A CN 110703703A
Authority
CN
China
Prior art keywords
load
feed water
bypass
water bypass
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910880147.7A
Other languages
English (en)
Other versions
CN110703703B (zh
Inventor
王玮
刘吉臻
曾德良
牛玉广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910880147.7A priority Critical patent/CN110703703B/zh
Publication of CN110703703A publication Critical patent/CN110703703A/zh
Application granted granted Critical
Publication of CN110703703B publication Critical patent/CN110703703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明公开了一种火电发电机组的高加给水旁路控制方法。将高加给水旁路控制与传统协调控制相结合,发挥高加给水旁路负荷响应快的特征,改善机组的变负荷性能,同时可以做到尽快恢复高加给水,避免对机组的安全、经济运行产生影响。

Description

一种火电发电机组的高加给水旁路控制方法
技术领域
本发明属于发电机组控制领域,特别涉及一种火电发电机组的高加给水旁路控制方法。
背景技术
并网运行的机组需要快速响应电网的负荷指令来满足电网一次调频的要求,我国电网公司要求并网机组具备一定的负荷跟随能力并予以考核。面对我国能源电力转型发展的大形势,提升火电机组的快速变负荷运行能力,已成为火电厂经济效益扩大化、新能源电力高渗透率化的重要支撑。
目前,火电机组一般采用机炉协调控制方法实现变负荷控制,但受限于锅炉侧的大迟延大惯性,变负荷速率一般仅维持在额定负荷的1%-2%/min。挖掘机组热力系统中的蓄热并加以充分利用,为锅炉侧响应争取时间,是从根本上改善火电机组变负荷性能的有效途径。
高加给水旁路可以通过快速改变汽轮机通流量,实现机组负荷的快速变化,是解决锅炉侧响应慢的有效手段。但考虑到机组长期运行在此模式下,会显著降低机组效率,如何实现高加给水旁路与机炉协调策略的联合运行,仍亟待解决。
发明内容
本发明的目的是提供一种火电发电机组的高加给水旁路控制方法,该方法将高加给水旁路控制与传统协调控制相结合,发挥高加给水旁路负荷响应快的特征,改善机组的变负荷性能,同时可以做到尽快恢复高加给水,避免对机组的安全、经济运行产生影响。
本发明公开了一种火电发电机组的高加给水旁路控制方法,所述火电发电机组是一个“三进三出”的发电系统,包括设有汽机控制器的汽轮机、设有锅炉控制器的锅炉、设有高加给水旁路控制器的高加给水旁路,所述控制方法包括控制汽轮机的过程、控制高加给水旁路的过程、控制锅炉燃料量的过程,其中:
控制汽轮机的过程是用汽机控制器产生控制指令,控制汽轮机主蒸汽调门开度来控制主蒸汽压力,减小主蒸汽压力的波动;
控制高加给水旁路的过程是用高加给水旁路控制器产生控制指令,控制高加给水旁路调节阀开度来调整高加给水流量,改变发电机组的发电负荷的同时不影响主蒸汽压力,按照指令需要随时调节发电负荷,提升发电机组的负荷响应速率;
控制锅炉燃料量的过程是用锅炉控制器产生控制指令,控制燃料量,为发电机组变负荷提供所需的能量,当机组进入稳态运行时,变负荷所需能量来源于燃料量,高加给水流量恢复至给定值;随着不断增加燃料量为变负荷提供能量时,发电机组所需的负荷偏差不断缩小直至所提供的能量超过变负荷所需能量时,则高加给水旁路反调高加给水流量,使高加给水流量逐渐恢复至初始值,同时,机组负荷将稳定至所给指令。
优选地,所述为发电机组变负荷提供所需的能量被构造为“有效能量”信号,其表达式为:
Ptotal=P-△PHPfw
其中,P为机组负荷,ΔPHPfw为高加给水旁路引起的负荷增量。
“有效能量”信号指机组当时升降负荷所需的绝对能量值,指火电发电机组不依赖蓄热时的发电负荷输出,即当高加给水旁路为0,旁路高加蓄热所提供的负荷增量为0时,“有效能量”信号的设定值等于火电发电机组的负荷设定值。
优选地,所述高加给水旁路引起的负荷增量ΔPHPfw,由高加给水旁路流量△mHPfw和高加给水流量特性模型G(s)共同决定,即:
△PHPfw=△mHPfwG(s)
高加给水旁路特性模型G(s)描述为:
比例系数K1、K2,时间常数T1、T2可通过扰动试验拟合获得,比例系数K1、K2也可通过热平衡计算获得。时间常数T1、T2一般变化不大,T1约为30-50s,T2一般大于20000s,时间常数T1、T2的小幅变化不会对控制产生实质性影响。
所述高加给水旁路快速变负荷与自恢复控制方法的工作流程包括以下步骤:
(1)当发电机组发电负荷指令变化时,所需负荷偏差将直接作用于高加给水旁路阀门开度,通过改变高加给水流量调整发电负荷,提升机组负荷的瞬时响应速率;
(2)执行步骤1的同时,锅炉控制器将接收到所构造的“有效能量”信号偏差,按照“有效能量”信号偏差的需要,输出相应的燃料量指令以提供相应的能量值,保证机组负荷处于稳态,所述能量值为绝对能量值;
(3)随着步骤(2)所提供的能量值逐渐响应发挥作用,高加给水旁路作用将逐渐削弱,直至高加给水流量恢复至设定值,此时,则不再需要高加水旁路提供负荷支撑,发电机组负荷稳定至设定值。
本发明的有益效果是利用汽轮机高加给水旁路蓄热显著提升了机组的变负荷性能。
附图说明
图1为本发明火电发电机组的高加给水旁路控制方法的示意图。
图2为发电负荷响应曲线
图3为供热抽汽流量变化曲线
具体实施方式
本发明提出火电发电机组的高加给水旁路控制方法,下面结合附图和具体实施例对本发明作详细说明。
图1所示为高加给水旁路控制方法的示意图,控制流程可描述为:
1、汽机控制器的输入为主蒸汽压力指令与实际主蒸汽压力的偏差。
2、高加给水旁路控制器的输入为发电负荷指令与实际发电负荷的偏差。
3、锅炉控制器的输入为构造的“有效能量”信号偏差,“有效能量”信号为机组实际负荷扣除高加给水旁路导致的负荷增量。高加给水旁路导致的负荷增量可由其特性模型决定。
4、当机组负荷指令发生变化时,其与实际负荷之间的负荷偏差,首先造成反应速度快的高加给水旁路控制回路发挥作用,执行器执行控制指令,导致高加给水流量及机组负荷发生变化;高加给水流量的变化,经过高加给水旁路特性模型计算出其负荷增量,其相反数与实际负荷求和,可得机组当前实际的“有效能量”信号,其相反数与机组负荷指令求和,可得机组变负荷所需的“有效能量”,该信号送入锅炉控制器,控制机组燃料量输出;随着机组变负荷所需的“有效能量”(与机组燃料量相对应)的逐渐响应,高加给水旁路控制回路将对高加给水流量产生回调作用,并使高加给水流量逐渐恢复至设计值;在整个控制过程中,高加给水旁路不会对机组主蒸汽压力产生影响,但燃料量调节会产生影响,主蒸汽压力的偏差将送入汽机控制器,通过调节主蒸汽调门开度,维持主蒸汽压力的动态平衡。
实施例
以某300MW机组为例,其机炉协调非线性控制模型为:
Figure BDA0002205627270000051
公式中,NE为纯凝工况下的机组负荷输出,PT为主蒸汽压力,μB为燃料量,μT为主蒸汽调门开度。
其高加给水旁路特性模型通过试验曲线辨识为:
Figure BDA0002205627270000052
搭建图1所示的仿真实例,当发电机组负荷指令发生变化时,形成负荷偏差并送入高加给水旁路控制器,控制器产生控制指令给高加给水旁路调节阀,通过改变高加给水流量直接改变机组负荷,达到快速调节的目的;当高加给水流量发生变化后,作用于“有效能量”信号偏差,送入燃料量控制器,控制器产生控制指令给给煤蝶阀,改变给煤量,进而改变机组负荷并不断缩小高加给水流量与额定值之间的偏差,直至消除高加给水流量偏差,同时机组负荷达到设定值。图2为某300MW机组利用传统机炉协调控制方法与本发明控制方法对比所得到的变负荷响应曲线图,可以看出本发明控制方法的超调量、调节时间等控制性能指标均显著优于传统的协调控制方法。

Claims (5)

1.一种火电发电机组的高加给水旁路控制方法,其特征在于,所述火电发电机组是一个“三进三出”的发电系统,包括设有汽机控制器的汽轮机、设有锅炉控制器的锅炉、设有高加给水旁路控制器的高加给水旁路,所述控制方法包括控制汽轮机的过程、控制高加给水旁路的过程、控制锅炉燃料量的过程,其中:
控制汽轮机的过程是用汽机控制器产生控制指令,控制汽轮机主蒸汽调门开度来控制主蒸汽压力,减小主蒸汽压力的波动;
控制高加给水旁路的过程是用高加给水旁路控制器产生控制指令,控制高加给水旁路调节阀开度来调整高加给水流量,改变发电机组的发电负荷的同时不影响主蒸汽压力,按照指令需要随时调节发电负荷,提升发电机组的负荷响应速率;
控制锅炉燃料量的过程是用锅炉控制器产生控制指令,控制燃料量,为发电机组变负荷提供所需的能量,当机组进入稳态运行时,变负荷所需能量来源于燃料量,高加给水流量恢复至给定值;随着不断增加燃料量为变负荷提供能量时,发电机组所需的负荷偏差不断缩小直至所提供的能量超过变负荷所需能量时,则高加给水旁路反调高加给水流量,使高加给水流量逐渐恢复至初始值,同时,机组负荷将稳定至所给指令。
2.根据权利要求1所述一种火电发电机组的高加给水旁路控制方法,其特征在于,所述为发电机组变负荷提供所需的能量被构造为“有效能量”信号,用Ptotal表示,其表达式为:
Ptotal=P-ΔPHPfw
其中,P为机组负荷,ΔPHPfw为高加给水旁路引起的负荷增量;
“有效能量”信号指机组当时升降负荷所需的绝对能量值,指火电发电机组不依赖蓄热时的发电负荷输出,即当高加给水旁路为0,旁路高加蓄热所提供的负荷增量为0时,“有效能量”信号的设定值等于火电发电机组的负荷设定值。
3.根据权利要求2所述的一种火电发电机组的高加给水旁路控制方法;其特征在于,高加给水旁路引起的负荷增量ΔPHPfw,由高加给水旁路流量ΔmHPfw和高加给水流量特性模型G(s)共同决定,即:
ΔPHPfw=ΔmHPfwG(s)
高加给水旁路特性模型G(s)描述为:
其中,比例系数K1、K2,时间常数T1、T2通过扰动试验拟合获得;T1为30-50s,T2大于20000s。
4.根据权利要求3所述的一种火电发电机组的高加给水旁路控制方法,其特征在于,比例系数K1、K2替换为通过热平衡计算获得。
5.根据权利要求3或4所述的一种火电发电机组的高加给水旁路控制方法,包括以下步骤:
(1)当发电机组发电负荷指令变化时,所需负荷偏差将直接作用于高加给水旁路阀门开度,通过改变高加给水流量调整发电负荷,提升机组负荷的瞬时响应速率;
(2)执行步骤1的同时,锅炉控制器将接收到所构造的“有效能量”信号偏差,按照“有效能量”信号偏差的需要,输出相应的燃料量指令以提供相应的能量值,保证发电机组负荷处于稳态,所述能量值为绝对能量值;
(3)随着步骤(2)所提供的能量值逐渐响应发挥作用,高加给水旁路作用将逐渐削弱,直至高加给水流量恢复至设定值,此时,则不再需要高加水旁路提供负荷支撑,发电机组负荷稳定至设定值。
CN201910880147.7A 2019-09-18 2019-09-18 一种火力发电机组的高加给水旁路控制方法 Active CN110703703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910880147.7A CN110703703B (zh) 2019-09-18 2019-09-18 一种火力发电机组的高加给水旁路控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910880147.7A CN110703703B (zh) 2019-09-18 2019-09-18 一种火力发电机组的高加给水旁路控制方法

Publications (2)

Publication Number Publication Date
CN110703703A true CN110703703A (zh) 2020-01-17
CN110703703B CN110703703B (zh) 2021-08-13

Family

ID=69195375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910880147.7A Active CN110703703B (zh) 2019-09-18 2019-09-18 一种火力发电机组的高加给水旁路控制方法

Country Status (1)

Country Link
CN (1) CN110703703B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150000449A (ko) * 2012-03-30 2015-01-02 미우라고교 가부시키카이샤 급수 가온 시스템
CN108730954A (zh) * 2017-04-20 2018-11-02 中国电力工程顾问集团华东电力设计院有限公司 采用给水节流的一次调频控制系统及其控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150000449A (ko) * 2012-03-30 2015-01-02 미우라고교 가부시키카이샤 급수 가온 시스템
CN108730954A (zh) * 2017-04-20 2018-11-02 中国电力工程顾问集团华东电力设计院有限公司 采用给水节流的一次调频控制系统及其控制方法

Also Published As

Publication number Publication date
CN110703703B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN108708775B (zh) 基于热电负荷转换模型的热电联产机组快速变负荷控制方法
CN102611124B (zh) 适应智能电网的火力发电机组一次调频控制方法
CN110347201B (zh) 一种单向精确控制的凝结水辅助调频控制方法及系统
CN109638861B (zh) 一种超临界机组参与一次调频的控制方法及控制系统模型
WO2022062145A1 (zh) 一种适用于深调峰运行的火电机组柔性协调控制方法
CN111780089B (zh) 一种直流蒸汽发生器给水控制方法及系统
CN104089270A (zh) 一种发电机组锅炉负荷控制优化调整试验方法
CN108549231B (zh) 一种融合供热抽汽调节的热电联产机组的协调控制方法
CN111255530B (zh) 一种带有低压缸蝶阀辅助的火电机组负荷调节系统及方法
CN105275509A (zh) 火电机组的汽轮机调门开度控制方法及系统
CN104932566A (zh) 一种提高单元发电机组锅炉快速调整能力的控制系统及方法
CN109378833B (zh) 一种通过控制汽轮机抽汽量实现机组快速调频的方法
CN110792481A (zh) 一种热电联产发电系统及其控制方法
CN110716425B (zh) 一种热电联产机组电热协调控制方法
CN110703703B (zh) 一种火力发电机组的高加给水旁路控制方法
JP2013181679A (ja) 発電システム及びその蒸気温度制御方法
CN211777610U (zh) 一种带有低压缸蝶阀辅助的火电机组负荷调节系统
JP4183653B2 (ja) 火力発電プラントおよび運転方法
CN208073572U (zh) 一种基于调频旁路的电网调频系统
Chen et al. Fuzzy Adaptive PID Control of Biomass Circulating Fluidized Bed Boiler
KR102432715B1 (ko) 500mw 발전기 예비력 대체를 위한 ess 연계 순 변압운전 시스템
CN116202352B (zh) 一种熔盐储热与火电机组耦合调峰系统
CN111472852B (zh) 一种发电机组基于中间点焓值调频逻辑优化方法
CN210889050U (zh) 一种超超临界二次再热机组参与电网一次调频的控制系统
CN114200823B (zh) 同步机组无惯性功率一次调频控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant