CN110700823B - Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method - Google Patents
Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method Download PDFInfo
- Publication number
- CN110700823B CN110700823B CN201911141506.3A CN201911141506A CN110700823B CN 110700823 B CN110700823 B CN 110700823B CN 201911141506 A CN201911141506 A CN 201911141506A CN 110700823 B CN110700823 B CN 110700823B
- Authority
- CN
- China
- Prior art keywords
- test piece
- permeability
- backing plate
- test
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 212
- 230000035699 permeability Effects 0.000 title claims abstract description 136
- 238000002474 experimental method Methods 0.000 title claims abstract description 54
- 238000012512 characterization method Methods 0.000 title claims abstract description 12
- 238000004088 simulation Methods 0.000 title claims abstract description 10
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 7
- 238000009423 ventilation Methods 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000010998 test method Methods 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000011161 development Methods 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 7
- 238000007789 sealing Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000011065 in-situ storage Methods 0.000 description 12
- 239000011435 rock Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/0806—Details, e.g. sample holders, mounting samples for testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Geophysics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明涉及岩体力学与工程技术领域,具体是一种真三轴裂缝扩展模拟和渗透率同步实验的加载体和渗透率测试表征方法。The invention relates to the technical field of rock mass mechanics and engineering, in particular to a loading body and a permeability test and characterization method for true triaxial crack propagation simulation and permeability synchronous experiment.
背景技术Background technique
非常规油气资源的勘探开发利用已成为油气能源发展的重点领域,其中水力压裂技术是这类资源取得经济高效开发的关键技术之一。水力压裂技术改造效果直接关系到这类资源的开发利用价值,准确地评价水力压裂技术改造储层效果就显得至关重要。模拟地下环境进行研究储层的裂缝扩展实验和渗透率测试是评价其改造效果的主要手段。当前,国内外受制于裂缝扩展模拟实验设备条件和方法限制,在原实验应力条件下,无法同时准确地的进行裂缝扩展实验或渗透率测试;或者能进行部分测试,但试件尺寸和模拟的地应力大小受限以及渗透率测试和表征方法不准确。The exploration, development and utilization of unconventional oil and gas resources has become a key area of oil and gas energy development, and hydraulic fracturing technology is one of the key technologies for economical and efficient development of such resources. The effect of hydraulic fracturing technology is directly related to the development and utilization value of such resources, and it is very important to accurately evaluate the effect of hydraulic fracturing technology to transform reservoirs. Fracture propagation experiments and permeability testing of reservoirs to simulate underground environment are the main means to evaluate the effect of stimulation. At present, due to the limitations of equipment conditions and methods for crack propagation simulation experiments at home and abroad, under the original experimental stress conditions, it is impossible to accurately conduct crack propagation experiments or permeability tests at the same time; Limited stress magnitude and inaccurate permeability testing and characterization methods.
专利CN109975140A公布了一种超临界二氧化碳脉冲致裂与渗透率测试一体化的实验装置及方法,包括各项数据采集模块、动力模块和原位环境模拟系统。能实现超临界二氧化碳脉冲压裂实验和压裂前后渗透率测试。但模拟的试件尺寸较小,应力环境为假三轴应力环境。专利CN1041328880B公布了三轴条件下水力压裂前后储层岩心渗透率测试实验方法,包括移动小车和压力室等,能对三轴应力条件下储层水力压裂前后的渗透率进行原位测定,无需对试件卸压,但所需试件较小,不能满足裂缝扩展实验需求,无渗透率具体表征方法。专利CN108663298A公布了一种真三轴裂缝扩展模拟和渗透率测试一体化的实验装置和方法,其包括真三轴加载系统、压裂系统、声发射检测系统和渗透率测试系统,能够实现岩石压裂与渗透率测试一体化测试。但真三轴加载框体不详,压裂前渗透率表征不全面。Patent CN109975140A discloses an experimental device and method integrating supercritical carbon dioxide pulse cracking and permeability testing, including various data acquisition modules, power modules and an in-situ environment simulation system. It can realize supercritical carbon dioxide pulse fracturing experiment and permeability test before and after fracturing. However, the size of the simulated specimen is small, and the stress environment is a pseudo-triaxial stress environment. Patent CN1041328880B discloses an experimental method for testing the permeability of reservoir cores before and after hydraulic fracturing under triaxial conditions, including mobile trolleys and pressure chambers, etc., which can measure the permeability of reservoirs before and after hydraulic fracturing under triaxial stress conditions in situ. There is no need to decompress the specimen, but the required specimen is small, which cannot meet the requirements of the crack propagation experiment, and there is no specific characterization method for permeability. Patent CN108663298A discloses an experimental device and method integrating true triaxial fracture propagation simulation and permeability testing, which includes true triaxial loading system, fracturing system, acoustic emission detection system and permeability testing system, which can realize rock pressure Integrated test of crack and permeability test. However, the true triaxial loading frame is unknown, and the permeability characterization before fracturing is incomplete.
因此,为了实现原位地应力环境下的裂缝扩展和渗透率测试实验,研发一种真三轴裂缝扩展和渗透率同步实验加载体和渗透率测试表征方法是十分必要的。Therefore, in order to realize the fracture propagation and permeability testing experiments under in-situ in-situ stress environment, it is necessary to develop a true triaxial fracture propagation and permeability simultaneous experimental loading and permeability testing characterization method.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供了一种真三轴裂缝扩展模拟和渗透率同步实验的加载体和渗透率测试表征方法,以实现岩石压裂与渗透率的一体化测试,可有效表征压裂实验前后的渗透率大小,评估压裂改造效果。The purpose of the present invention is to provide a loading body and permeability test characterization method for true triaxial fracture propagation simulation and permeability synchronous experiment, so as to realize the integrated test of rock fracturing and permeability, which can effectively characterize the fracturing experiment before and after The permeability of the scale is used to evaluate the effect of fracturing.
本发明的技术方案为:The technical scheme of the present invention is:
本发明提供了一种真三轴裂缝扩展模拟和渗透率同步实验的加载体,包括:The invention provides a loading body for true triaxial fracture propagation simulation and permeability synchronous experiment, including:
加载框体,所述加载框体内放置有整体呈立方体的试件;a loading frame, in which a test piece that is a cube as a whole is placed;
所述加载框体的前端面一侧设置有送入装置,所述试件通过所述送入装置送入至所述加载框体的内部;A feeding device is provided on one side of the front end surface of the loading frame, and the test piece is fed into the interior of the loading frame through the feeding device;
用于分别从所述加载框体的X方向、Y方向和Z方向对所述试件进行加载的多组活塞,多组活塞分别从各个方向与所述加载框体之间形成密封、固定与加压;Multiple groups of pistons are used to load the specimen from the X, Y and Z directions of the loading frame, respectively, and the multiple groups of pistons form sealing, fixing and pressurized;
所述试件的前表面上设有钻孔,所述钻孔内安装有用于向所述试件内通入渗透率测试气体或压裂液的井筒;The front surface of the test piece is provided with a borehole, and a wellbore for introducing permeability test gas or fracturing fluid into the test piece is installed in the borehole;
所述试件上除所述前表面之外的剩余五个表面上贴附有垫板,所述垫板上设置有用于将所述试件进行渗透率实验时流动至所述试件外表面的渗透率测试气体进行汇聚的通气结构;所述垫板上安装有用于将由所述通气结构所汇聚的渗透率测试气体进行收集的汇气管线。A backing plate is attached to the remaining five surfaces of the test piece except the front surface, and a backing plate is arranged on the backing plate for flowing the test piece to the outer surface of the test piece when the test piece is subjected to the permeability test. A ventilation structure for collecting the permeability test gas; a gas collecting line for collecting the permeability test gas collected by the ventilation structure is installed on the backing plate.
优选地,所述垫板包括:Preferably, the backing plate includes:
多个内垫板,分别贴附在所述试件上除所述前表面之外的剩余五个表面上,每一所述内垫板上均设置有用于将从所述试件内部流动至所述试件外端面的渗透率测试气体进行传输的多个通气道;A plurality of inner backing plates are respectively attached to the remaining five surfaces of the test piece except the front surface, and each of the inner backing plates is provided with a plurality of air passages for transmission of the permeability test gas on the outer end face of the test piece;
每一所述内垫板上均贴附有一个外垫板,所述外垫板上设置有相连通的导线槽和汇气孔;Each of the inner pads is attached with an outer pad, and the outer pad is provided with a conducting wire groove and an air collecting hole that communicate with each other;
所述汇气管线的一端连通外部管汇,另一端从所述导线槽伸入至所述汇气孔内,多个所述通气道传输的渗透率测试气体汇聚至所述汇气孔中,再通过所述汇气管线流出至外部管汇;One end of the gas collecting line is connected to the external manifold, and the other end extends into the gas collecting hole from the wire groove, and the permeability test gas transmitted by the plurality of air passages is collected in the gas collecting hole, and then passes through the gas collecting hole. The gas collecting line flows out to the external manifold;
所述通气结构包括所述通气道和所述汇气孔。The ventilation structure includes the ventilation channel and the air collecting hole.
优选地,所述内垫板上设置的多个通气道包括:Preferably, the plurality of air passages provided on the inner backing plate include:
多条沿第一方向布置的第一通气槽以及多条沿第二方向布置的第二通气槽,所述第一方向和所述第二方向垂直;a plurality of first ventilation grooves arranged along a first direction and a plurality of second ventilation grooves arranged along a second direction, the first direction and the second direction being perpendicular;
所述第一通气槽和所述第二通气槽的交汇处设置有通气孔;A ventilation hole is provided at the intersection of the first ventilation groove and the second ventilation groove;
所述第一通气槽和所述第二通气槽均未连通至所述内垫板的侧端面;Neither the first ventilation groove nor the second ventilation groove is communicated with the side end surface of the inner backing plate;
所述外垫板上设置的汇气孔包括:The air collecting holes provided on the outer backing plate include:
在所述外垫板朝向所述内垫板的端面上开设的第一汇气孔,以及在所述外垫板远离所述内垫板的端面上开设的第二汇气孔;所述第一汇气孔和所述第二汇气孔连通;A first air collecting hole is opened on the end surface of the outer backing plate facing the inner backing plate, and a second air collecting hole is opened on the end surface of the outer backing plate away from the inner backing plate; the first air collecting hole the air hole communicates with the second air collecting hole;
所述第一汇气孔的内径小于所述第二汇气孔的内径,所述第二汇气孔内设置有和所述汇气管线螺接的内螺纹;The inner diameter of the first air-collecting hole is smaller than the inner diameter of the second air-collecting hole, and the second air-collecting hole is provided with an inner thread screwed with the air-collecting pipeline;
所述外垫板上设置的导线槽包括:The wire grooves provided on the outer backing plate include:
在所述外垫板远离所述内垫板的端面上设置的第一导向槽,以及在所述外垫板的侧端面上设置的第二导向槽,所述第一导向槽的一端连通所述第二导向槽,另一端连通所述第二汇气孔。A first guide groove is provided on the end surface of the outer backing plate away from the inner backing plate, and a second guide groove is provided on the side end surface of the outer backing plate, one end of the first guiding groove is connected to the The second guide groove is connected with the second air collecting hole at the other end.
优选地,在所述试件的下表面一侧设置的外垫板上开设有多条平行布置的试件送入槽。Preferably, a plurality of parallel-arranged test-piece feeding slots are provided on the outer backing plate provided on one side of the lower surface of the test piece.
优选地,所述井筒包括:相连的第一井筒段和第二井筒段;Preferably, the wellbore comprises: a first wellbore section and a second wellbore section that are connected;
所述第一井筒段和所述第二井筒段的外圆周上均开设有多条均匀布置的环形槽;A plurality of uniformly arranged annular grooves are provided on the outer circumferences of the first wellbore section and the second wellbore section;
所述第一井筒段的外径大于所述第二井筒段的外径;The outer diameter of the first wellbore section is greater than the outer diameter of the second wellbore section;
所述第二井筒段的外径小于所述试件内的钻孔的孔眼直径,且所述第二井筒段的外径和所述试件内的钻孔的孔眼直径之间的差值为1mm至3mm之间。The outer diameter of the second wellbore section is smaller than the hole diameter of the borehole in the test piece, and the difference between the outer diameter of the second wellbore section and the hole diameter of the borehole in the test piece is Between 1mm and 3mm.
优选地,所述试件呈方形;Preferably, the test piece is square;
所述井筒和所述试件的钻孔之间的环空间隙采用环形树脂进行密封;The annular gap between the wellbore and the borehole of the test piece is sealed with annular resin;
所述试件的十二条边采用为整体结构的橡胶模具进行密封,所述内垫板对所述橡胶模具形成支撑,所述外垫板压覆于所述内垫板和所述橡胶模具上。The twelve sides of the test piece are sealed by a rubber mold with an integral structure, the inner backing plate forms a support for the rubber mold, and the outer backing plate is pressed on the inner backing plate and the rubber mold. superior.
优选地,所述加载体还包括:Preferably, the loading body further comprises:
安装在所述加载框体下侧的框体支撑架;a frame support frame installed on the lower side of the loading frame;
安装在所述加载框体的前端面一侧的滑轨;a slide rail installed on one side of the front end face of the loading frame;
贴附在所述试件下表面的垫板放置在所述送入装置上,所述送入装置安装在所述滑轨上,以将所述试件送入至所述加载框体的内部;The backing plate attached to the lower surface of the test piece is placed on the feeding device, and the feeding device is installed on the sliding rail to send the test piece into the interior of the loading frame ;
在所述试件被送入至所述加载框体的内部后,所述送入装置和所述加载框体螺接固定,且所述送入装置与所述加载框体的第一侧端面形成密封。After the specimen is fed into the loading frame, the feeding device and the loading frame are screwed and fixed, and the feeding device is connected to the first side end face of the loading frame. form a seal.
本发明还提供一种如上述的加载体的渗透率测试表征方法,包括:The present invention also provides a permeability test characterization method of the above-mentioned loading body, comprising:
1)试件准备:按照实验要求制作实验所需的整体呈立方体的试件;1) Specimen preparation: according to the experimental requirements, make the test specimens that are required for the experiment as a whole in a cubic shape;
2)三轴应力加载:按照实验所需三轴应力条件,通过液压驱动分别控制X、Y和Z三个方向的活塞达到所需三轴应力大小;2) Triaxial stress loading: According to the triaxial stress conditions required by the experiment, the pistons in the three directions of X, Y and Z are controlled by hydraulic drive to achieve the required triaxial stress;
3)裂缝扩展实验前的渗透率测试:采用脉冲渗透率测试方法对试件进行整体渗透率测试,所述试件的整体渗透率表征为:3) Permeability test before the crack propagation experiment: The overall permeability test of the test piece is carried out by using the pulse permeability test method, and the overall permeability of the test piece is characterized as:
在整体渗透率测试完毕后,对所述试件进行单面渗透率测试;其中,所述试件上与前表面相邻的上表面、下表面、左表面和右表面中的任意一个表面的渗透率表征为:After the overall permeability test is completed, a single-sided permeability test is performed on the test piece; wherein, any one of the upper surface, the lower surface, the left surface and the right surface on the test piece adjacent to the front surface has a The permeability is characterized as:
所述试件上与所述前表面相对的后表面的渗透率表征为:The permeability of the rear surface opposite the front surface on the test piece is characterized by:
其中,上述三组公式中:K为渗透率,β为气体压缩系数,α为拟合值,μ为气体粘度,re为试件外接圆半径,rw井筒外径,h2为射孔长度或裸眼井段长度,t为测试时间,Pu,0为上游腔室内的初始压力,Pd,0下游腔室内的初始压力,Pu为上游腔室内的实验结束压力, Pd下游腔室内的实验结束压力;Among them, in the above three groups of formulas: K is the permeability, β is the gas compressibility coefficient, α is the fitting value, μ is the gas viscosity, r e is the circumscribed circle radius of the specimen, r w is the outer diameter of the wellbore, and h 2 is the perforation length or open hole length, t is the test time, P u,0 is the initial pressure in the upstream chamber, P d,0 is the initial pressure in the downstream chamber, P u is the end pressure of the experiment in the upstream chamber, P d is the downstream chamber Indoor experiment end pressure;
4)进行裂缝扩展实验:按照预先计划的泵注程序,通过井筒向试件内泵注压裂液,直到试件完全致裂后停止泵注压裂液;4) Fracture propagation experiment: According to the pre-planned pumping procedure, pump fracturing fluid into the specimen through the wellbore, and stop pumping fracturing fluid until the specimen is completely fractured;
5)裂缝扩展实验后渗透率测试:采用常规渗透率测试方法对被致裂的试件进行整体渗透率测试,所述试件的整体渗透率表征为:5) Permeability test after the crack propagation experiment: The overall permeability test of the cracked specimen is carried out by using the conventional permeability test method, and the overall permeability of the specimen is characterized as:
在整体渗透率测试完毕后,对被致裂的试件进行单面渗透率测试;其中,所述试件上与前表面相邻的上表面、下表面、左表面和右表面中的任意一个表面的渗透率表征为:After the overall permeability test is completed, a single-sided permeability test is performed on the cracked specimen; wherein any one of the upper surface, the lower surface, the left surface and the right surface adjacent to the front surface of the specimen is The permeability of the surface is characterized as:
所述试件上与所述前表面相对的后表面的渗透率表征为:The permeability of the rear surface opposite the front surface on the test piece is characterized by:
其中,上述三组公式中:K为渗透率,ΔP为试件中心到所测渗透率端面的压力差,ρ为气体密度,ε为试件孔隙特征参数,μ为气体粘度,Q为流体流量,H为立方体试件宽度,h1为井筒段长度,h2为射孔长度或裸眼井段长度,re为试件外接圆半径,rw井筒外径。Among them, in the above three groups of formulas: K is the permeability, ΔP is the pressure difference between the center of the specimen and the end face of the measured permeability, ρ is the gas density, ε is the pore characteristic parameter of the specimen, μ is the gas viscosity, and Q is the fluid flow rate , H is the width of the cube specimen, h1 is the length of the wellbore section, h2 is the length of the perforation or the length of the open hole section, r e is the radius of the circumscribed circle of the specimen, and rw is the outer diameter of the wellbore.
6)裂缝扩展实验结果观测:卸载三轴应力,从实验加载体中取出试件,并按照预定要求描述进行裂缝扩展实验的试件裂缝发展情况;6) Observation of the results of the crack propagation experiment: unload the triaxial stress, take out the specimen from the experimental loading body, and describe the crack development of the specimen for the crack propagation experiment according to the predetermined requirements;
7)实验结束:上述实验内容完成,按照预定程序把实验设备调至实验前状态。7) The end of the experiment: the above experiment content is completed, and the experimental equipment is adjusted to the pre-experiment state according to the predetermined procedure.
本发明是有益效果为:The present invention has beneficial effects as follows:
能够实现原位地应力条件下压裂裂缝扩展实验前后渗透率测试与定量化表征,解决了大尺寸试件在原位地应力条件下渗透率测试难,测试气体汇集复杂,不能很好的测试裂缝扩展前后渗透率的问题。同时解决了裂缝扩展实验前常规测试方法无法完成大型致密试件渗透率测试的难题。本发明成果为定量化评价不同条件下的裂缝扩展实验效果提供了有力手段。It can realize the permeability test and quantitative characterization before and after the fracturing fracture expansion experiment under in-situ in-situ stress conditions, which solves the difficulty of permeability testing of large-sized specimens under in-situ in-situ stress conditions, and the collection of test gas is complicated and cannot be well tested. The problem of permeability before and after fracture propagation. At the same time, it solves the problem that the conventional test method cannot complete the permeability test of large dense specimens before the crack propagation test. The achievement of the invention provides a powerful means for quantitatively evaluating the experimental effect of crack propagation under different conditions.
附图说明Description of drawings
图1为本发明的加载体的示意图;Fig. 1 is the schematic diagram of the loading body of the present invention;
图2为本发明的活塞的示意图;Fig. 2 is the schematic diagram of the piston of the present invention;
图3为本发明的活塞的示意图;Fig. 3 is the schematic diagram of the piston of the present invention;
图4为图3的A-A剖面示意图;Fig. 4 is the A-A sectional schematic diagram of Fig. 3;
图5为图3的B-B的剖面示意图;Fig. 5 is the cross-sectional schematic diagram of B-B of Fig. 3;
图6为下侧的外垫板的结构示意图;Fig. 6 is the structural representation of the outer backing plate of the lower side;
图7为送入装置、下侧的下垫板和试件配合的示意图;FIG. 7 is a schematic diagram of the cooperation of the feeding device, the lower backing plate on the lower side and the test piece;
图8为左侧、右侧、后侧和上侧的外垫板的结构示意图;8 is a schematic structural diagram of the outer pads on the left side, the right side, the rear side and the upper side;
图9内垫板的结构示意图;Figure 9 is a schematic structural diagram of the inner backing plate;
图10为井筒的结构示意图;Figure 10 is a schematic structural diagram of a wellbore;
图11为试件的结构示意图;Figure 11 is a schematic diagram of the structure of the test piece;
图12为本发明的加载体的结构示意图;Figure 12 is a schematic structural diagram of a loading body of the present invention;
图13为本发明的加载体的结构示意图;13 is a schematic structural diagram of a loading body of the present invention;
附图标记说明:1—Z方向活塞,101—螺栓孔,102—活塞推杆,103—活塞腔体,104—活塞内腔,2—加载框体,3—X方向活塞,4—Y方向活塞,5—框体支撑架,6—滑轨, 7—送入装置,8—第一导向槽,9—第二导线槽,10—试件送入槽,11—第一汇气孔,12 —第二汇气孔,13—外垫板;14—试件,15—前台体,16—螺栓,17—第一通气槽,18—第二通气槽,19—通气孔,20—第一井筒段,21—第二井筒段,22—气体进入通道,23—裸眼段或射孔段,24—井筒段;25、内垫板。Description of reference numerals: 1—Z direction piston, 101—bolt hole, 102—piston push rod, 103—piston cavity, 104—piston inner cavity, 2—loading frame, 3—X direction piston, 4—Y direction Piston, 5—frame support frame, 6—slide rail, 7—feeding device, 8—first guide groove, 9—second wire groove, 10—test piece feeding groove, 11—first air collecting hole, 12 - the second air collecting hole, 13 - the outer backing plate; 14 - the test piece, 15 - the front body, 16 - the bolt, 17 - the first ventilation groove, 18 - the second ventilation groove, 19 - the ventilation hole, 20 - the first wellbore Section, 21-second wellbore section, 22-gas inlet channel, 23-open hole section or perforation section, 24-wellbore section; 25, inner backing plate.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present invention are shown in the drawings, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present invention will be more thoroughly understood, and will fully convey the scope of the present invention to those skilled in the art.
参照图1至图13,本发明提供了一种真三轴裂缝扩展模拟和渗透率同步实验的加载体,包括:加载框体2,所述加载框体2内放置有整体呈立方体的试件14;所述加载框体2的前端面一侧设置有送入装置7,所述试件14通过所述送入装置7送入至所述加载框体2的内部;用于分别从所述加载框体2的X方向、Y方向和Z方向对所述试件14进行加载的多组活塞,多组活塞分别从各个方向与所述加载框体2之间形成密封、固定与加压;所述试件14朝向所述前端面的前表面上设有钻孔,所述钻孔内安装有用于向所述试件14内通入渗透率测试气体或压裂液的井筒;在所述试件14上除所述前表面之外的剩余五个表面上贴附有垫板,所述垫板上设置有用于将所述试件14进行渗透率实验时流动至所述试件14 外表面的渗透率测试气体进行汇聚的通气结构;所述垫板上安装有用于将由所述通气结构所汇聚的渗透率测试气体进行收集的汇气管线。Referring to FIGS. 1 to 13 , the present invention provides a loading body for true triaxial fracture propagation simulation and permeability synchronous experiment, including: a loading frame body 2 , in which a cube-shaped test piece is placed in the loading frame body 2 14; A feeding device 7 is provided on one side of the front end face of the loading frame 2, and the
如图1所示,多组活塞包括:沿该加载框体2的X方向设置的X方向活塞3,沿加载框体2的Y方向设置的Y方向活塞4,沿加载框体2的Z方向设置的Z方向活塞1。各组活塞的工作压力可达60MPa,X,Y和Z三个方向的轴向应力可达40MPa三组活塞共同实现对试件14在三轴方向上加载不同大小的应力,三组活塞采用液压驱动。各组活塞的活塞杆和后文中的外垫板13远离内垫板25一侧的端面相连,通过外垫板13实现对试件14的刚性加载。As shown in FIG. 1 , the multiple groups of pistons include:
试件14通过真三轴加载系统对其加载不同应力,该真三轴加载系统具体包括压力室、 X轴液压缸、Y轴液压缸、Z轴液压缸、与X轴液压缸连接的X轴液压控制组件、与Y轴液压缸连接的Y轴液压控制组件和与Z轴液压缸连接的Z轴液压控制组件,X轴液压控制组件、Y轴液压控制组件和Z轴液压控制组件具体为液压泵。X轴液压缸输出端和X方向活塞3的活塞杆连接,Y轴液压缸输出端和Y方向活塞4的活塞杆连接,Z轴液压缸输出端和Z方向活塞1的活塞杆连接。
通过调节X、Y、Z三个方向的液压控制组件,实现对试件14的真三轴围压,具体来说,如图2至4,各个方向的液压控制组件通过对其对应的活塞内腔104内的液压值进行调节,实现对该方向的轴向压力的大小调节。X方向活塞3、Y方向活塞4和Z方向活塞1 通过螺纹与加载框体22连接与密封,加载活塞上均匀布置有螺栓孔101,活塞通过螺栓穿过螺栓孔101和螺母配合实现和加载框体2之间的螺接。活塞内腔104内装满液压油,依靠液压控制组件(液压泵)压缩活塞内腔104内的液压油驱动活塞推杆102前行和后退,提供试件14加载和卸载所需应力,活塞腔体103和活塞推杆102采用圆柱形结构。By adjusting the hydraulic control components in the three directions of X, Y, and Z, the true triaxial confining pressure on the
如图7,对于送入装置7来说送入装置7上布置多个螺栓16,用于密封和固定。送入装置7朝向加载框体2的前端布置有前台体15,前台体15用于实现固定螺栓16和试件14 以及密封加载框体2。As shown in FIG. 7, for the feeding device 7, a plurality of
参照图6至图9,所述垫板包括:多个内垫板25,其为立方体板件,分别贴附在所述试件14上除所述前表面之外的剩余五个表面上,每一所述内垫板25上均设置有用于将从所述试件14内部流动至所述试件14外端面的渗透率测试气体进行传输的多个通气道(具体地,通气道由图9中的通气槽和通气孔19构成);每一所述内垫板25上均贴附有一个外垫板13,所述外垫板13上设置有相连通的导线槽和汇气孔;所述汇气管线的一端连通外部管汇,另一端从所述导线槽伸入至所述汇气孔内,多个所述通气道传输的渗透率测试气体汇聚至所述汇气孔中,再通过所述汇气管线流出至外部管汇;所述通气结构包括所述通气道和所述汇气孔。Referring to FIGS. 6 to 9 , the backing plate includes: a plurality of
具体地,如图9所示,所述内垫板25上设置的多个通气道包括:多条沿第一方向布置的第一通气槽17以及多条沿第二方向布置的第二通气槽18,所述第一方向和所述第二方向垂直;所述第一通气槽17和所述第二通气槽18的交汇处设置有通气孔19;所述第一通气槽17和所述第二通气槽18均未连通至所述内垫板25的侧端面,从图9中可以看出,第一通气槽17、第二通气槽18和通气孔19均匀布置在该内垫板25上,使从试件14端面各个位置处的渗透率测试气体均能够被汇聚到第一汇气孔11处。在进行渗透率测试时,渗透率测试气体从井筒内输入,通过试件14各端面的渗透率测试气体通过内垫板25上的第一通气槽17、第二通气槽18和通气孔19汇聚于第一汇气孔11处。内垫板25为钢合金材质薄垫板,第一通气槽17、第二通气槽18和通气孔19对称分布于内垫板25的两个相对端面,内垫板25的厚度为1-3mm,其能承受60MPa以上的轴向压力和一定大小的剪切应力。Specifically, as shown in FIG. 9 , the plurality of ventilation channels provided on the
参照图6至图8,外垫板13为立方体板件,其包括两种,一种为图6和图7中所示的外垫板13,该种形状的外垫板13主要设置在试件14的下侧处;一种为图8所示的外垫板 13,该种形状的外垫板13主要设置在试件14的上、左、右和后侧处;不同之处在于,图 6所示的外垫板13相对于图8的外垫板13增加了试件送入槽10,多条平行布置的试件送入槽10设置在试件14的下表面一侧的外垫板13上。试件送入槽10用于插入外部工具,协助试件14和内垫板25形成的整体放置在外垫板13上。具体的,如图6至8,所述外垫板13上设置的汇气孔包括:在所述外垫板13朝向所述内垫板25的端面上开设的第一汇气孔11,以及在所述外垫板13远离所述内垫板25的端面上开设的第二汇气孔12;所述第一汇气孔11和所述第二汇气孔12连通;所述第一汇气孔11的内径小于所述第二汇气孔12 的内径,所述第二汇气孔12内设置有和所述汇气管线螺接的内螺纹;所述外垫板13上设置的导线槽包括:在所述外垫板13远离所述内垫板25的端面上设置的第一导向槽8,以及在所述外垫板13的侧端面上设置的第二导向槽,所述第一导向槽的一端连通所述第二导向槽,另一端连通所述第二汇气孔12。渗透率测试气体通过上游的压力腔室(对该腔室中的压力检测获得Pμ,0和Pμ)输入到井筒中,穿过试件14壁的部分渗透率测试气体通过内垫板25上的第一通气槽17、第二通气槽18或通气孔19汇聚到该第一汇气孔11处,在通过汇气管线输出到外部管汇连接的压力腔室内,该压力腔室即为后文公式中的下游腔室,通过对该压力腔室中的压力进行测量获得后文的Pd,0和Pd。Referring to FIGS. 6 to 8 , the
参照图10,井筒为圆柱形状,井筒内设置有气体进入通道22,渗透率测试气体以及压裂液通过该气体进入通道22注入到试件14内,所述井筒包括:相连的第一井筒段20和第二井筒段21;所述第一井筒段20和所述第二井筒段21的外圆周上均开设有多条均匀布置的环形槽;所述第一井筒段20的外径大于所述第二井筒段21的外径;所述第二井筒段21 的外径小于所述试件14内的钻孔的孔眼直径,且所述第二井筒段21的外径和所述试件14 内的钻孔的孔眼直径之间的差值为1mm至3mm之间。第一井筒段20的外径接近于试件 14内的钻孔的孔眼直径。井筒可以在试件14浇筑时提前埋置,也可以在试件14浇筑完成后钻孔来安装井筒。Referring to FIG. 10 , the wellbore is cylindrical in shape, and a gas inlet channel 22 is arranged in the wellbore, and the permeability test gas and fracturing fluid are injected into the
如图7,所述试件14呈方形;所述井筒和所述试件14的钻孔之间的环空间隙采用环形树脂进行密封;所述试件14的十二条边采用为整体结构的橡胶模具进行密封,所述内垫板25对所述橡胶模具形成支撑,所述外垫板13压覆于所述内垫板25和所述橡胶模具上。As shown in FIG. 7 , the
如图1所示,所述加载体还包括:安装在所述加载框体2下侧的框体支撑架5,框体支撑架5为梯形结构,其主要起到对加载框体2的支撑作用,支撑加载框体2高于地面,便于试件14的装载;安装在所述加载框体2的前端面一侧的滑轨6;贴附在所述试件14 下表面的垫板放置在所述送入装置7上,所述送入装置7安装在所述滑轨6上,以将所述试件14送入至所述加载框体2的内部,送入装置7采用加厚钢体制作,通过多个螺栓与加载框体2固定与密封;在所述试件14被送入至所述加载框体2的内部后,所述送入装置7 和所述加载框体2螺接固定,且所述送入装置7与所述加载框体2的第一侧端面形成密封。As shown in FIG. 1 , the loading body further includes: a frame
本实施例中的上述加载体,通过开关第一导向槽8和第二导线槽9内的汇气管线,能够实现试件14的整体渗透率测试和试件14在上、下、左、右和后五个表面的渗透率测试。具体来说,在裂缝扩展前试件14的渗透率低,采用脉冲衰减法原理进行渗透率测试;裂缝扩展实验后,试件14存在人工缝网,渗透率大幅度提高,采用常规渗透率测试方法原理进行测试。其中,常规渗透率测试方法原理是指按照公开号为“CN108663298A”的专利申请中的方式进行渗透率测试。The above-mentioned loading body in this embodiment can realize the overall permeability test of the
具体来说,本申请的上述加载体,在进行试验时,主要包括以下步骤:Specifically, the above-mentioned loading body of the present application mainly includes the following steps during the test:
1)试件准备:按照实验要求制作实验所需的整体呈立方体的试件14,具体为:选取天然或人造岩石,将岩石加工成30×30×30cm的试件14,然后在试件14的一端面中心位置处加工钻取直径为2cm、深度为20cm的钻孔,在中心孔内埋置井筒,在井筒上预制多条均匀布置的环形槽,配合环形树脂对井筒和钻孔的间隙进行密封,再用为整体结构的橡胶模具封装试件14,采用粘合胶把橡胶模具与试件14的十二条边和八个角粘贴在一起;橡胶模具的棱边宽为25mm,厚度1-3mm,八个角采用圆锥形结构,起到全包裹试件14八个角的作用;1) Specimen preparation: According to the experimental requirements, the overall
2)三轴应力加载:按照实验所需三轴应力条件,通过液压驱动分别控制X、Y和Z三个方向的活塞达到所需三轴应力大小,具体为:在真三轴加载系统的压力室内X、Y和Z 三个方向各布置一个外垫板13,然后将封装好的试件14通过送入装置7送入加载框体2 内部,并保证井筒的管口保持在外面,在试件14的X、Y、Z三个方向各施加0~0.5MPa 的轴压,以固定试件14和保持橡胶模具对试件14各边、角的密封性;然后根据需要加载的试件14三轴应力大小、试件14端面面积与岩心压板面积折算出液压腔油压,调节液压控制组件把X、Y、Z三个方向液压腔油压提升到折算值,使得试件14三个方向达到所需轴向应力;2) Triaxial stress loading: According to the triaxial stress conditions required by the experiment, the pistons in the three directions of X, Y and Z are controlled by hydraulic drive to achieve the required triaxial stress, specifically: the pressure in the true triaxial loading system An
3)进行裂缝扩展实验前的渗透率测试:将渗透率测试系统的气体输入单元通过管路与井筒连通,渗透率测试系统的气体输出单元通过管路与外垫板13上的第一汇气孔11连通,压裂管的管口所在的端面无法设置出气阀,因此还能够对试件14剩下的五个表面(上下左右后共5个表面)进行渗透率测试。启动渗透率测试系统,若需要测定试件14的单面渗透率,先关闭其它四个端面的出气阀,开启一个端面的渗透率测试面,采用脉冲衰减法原理通过气体输入单元输入气体,记录下测试过程中气体出入口的压力和流量,通过公式计算得到试件14压裂前的单面渗透率;若需要测定试件14的整体渗透率,则采用脉冲渗透率测试方法对试件14进行整体渗透率测试,打开五个端面的出气阀,再记录测试过程中气体出入口的压力和流量,通过公式计算得到试件14压裂前的整体渗透率;3) Permeability test before the fracture propagation experiment: connect the gas input unit of the permeability test system to the wellbore through the pipeline, and the gas output unit of the permeability test system to the first gas collection hole on the
4)进行裂缝扩展实验:按照预先计划的泵注程序,通过井筒向试件14内泵注压裂液,直到试件14完全致裂后停止泵注压裂液,具体为:对试件14进行压裂,断开渗透率测试系统的连通管路,再将压裂系统的注入泵通过压裂管线与井筒连通,声发射传感器固定于外垫板13中的汇气孔内,对压裂系统和声发射检测系统进行调试,调试完成后泵注压裂液,压裂试件14;4) Carry out the fracture propagation experiment: According to the pre-planned pump injection procedure, pump the fracturing fluid into the
5)进行裂缝扩展实验后的渗透率测试:采用常规渗透率测试方法对被致裂的试件14进行整体渗透率测试,具体为:断开压裂系统与压裂管的连通管路,重复步骤3),此时,输入气体是通过常规的渗透率测试方法原理进行输入的,再通过相关公式计算得到试件14压裂后的单面渗透率和整体渗透率;5) Permeability test after the crack propagation experiment: use the conventional permeability test method to test the overall permeability of the fractured
其中,在进行裂缝扩展实验前,即在步骤3中,所述试件14的整体渗透率表征为:Wherein, before the crack propagation experiment is performed, that is, in
所述试件14上与所述前表面相邻的上表面、下表面、左表面和右表面中的任意一个表面的渗透率表征为:The permeability of any one of the upper surface, lower surface, left surface and right surface adjacent to the front surface on the
所述试件14上与所述前表面相对的后表面的渗透率表征为:The permeability of the rear surface opposite to the front surface on the
其中,上述三组公式中:K为渗透率,为气体压缩系数,为拟合值,μ为气体粘度, re为所述试件14的外接圆半径,rw为所述井筒的外径h1为井筒段24长度,h2为射孔段或裸眼段23的长度,t为渗透率测试的时间,Pμ,0为上游腔室内的初始压力,Pd,0为下游腔室内的初始压力,Pμ为上游腔室内的实验结束压力,Pd为下游腔室内的实验结束压力。Among them, in the above three sets of formulas: K is the permeability, is the gas compressibility coefficient, is the fitting value, μ is the gas viscosity, r e is the circumscribed circle radius of the
另外,在进行裂缝扩展实验后,即在步骤5中,所述试件14的整体渗透率表征为:In addition, after the crack propagation experiment is performed, that is, in
所述试件14上与所述前表面相邻的上表面、下表面、左表面和右表面中的任意一个表面的渗透率表征为:The permeability of any one of the upper surface, lower surface, left surface and right surface adjacent to the front surface on the
所述试件14上与所述前表面相对的后表面的渗透率表征为:The permeability of the rear surface opposite to the front surface on the
其中,上述三组公式中:K为渗透率,ΔP为试件中心到所测渗透率端面的压力差,ρ为气体密度,ε为试件孔隙特征参数,μ为气体粘度,Q为流体流量,H为立方体试件宽度,h1为井筒段长度,h2为射孔长度或裸眼井段长度,re为试件(14)外接圆半径,rw井筒外径。Among them, in the above three groups of formulas: K is the permeability, ΔP is the pressure difference between the center of the specimen and the end face of the measured permeability, ρ is the gas density, ε is the pore characteristic parameter of the specimen, μ is the gas viscosity, and Q is the fluid flow rate , H is the width of the cube specimen, h1 is the length of the wellbore section, h2 is the length of the perforation or the length of the open hole section, r e is the radius of the circumscribed circle of the specimen (14), and rw is the outer diameter of the wellbore.
6)裂缝扩展实验结果观测:卸载三轴应力,将压裂后的试件14取出,拍照记录试件14的裂缝扩展情况,然后剖开试件14,拍照记录试件14内部裂缝扩展情况,试验结束。6) Observation of the results of the crack propagation experiment: unload the triaxial stress, take out the
7)实验结束:上述实验内容完成,按照预定程序把实验设备调至实验前状态。7) The end of the experiment: the above experiment content is completed, and the experimental equipment is adjusted to the pre-experiment state according to the predetermined procedure.
本发明上述加载体,能够实现原位地应力条件下压裂裂缝扩展实验前后渗透率测试与定量化表征,解决了大尺寸试件在原位地应力条件下渗透率测试难,测试气体汇集复杂,不能很好的测试裂缝扩展前后渗透率的问题。同时解决了裂缝扩展实验前常规测试方法无法完成大型致密试件渗透率测试的难题。本发明成果为定量化评价不同条件下的裂缝扩展实验效果提供了有力手段。The loading body of the present invention can realize the permeability test and quantitative characterization before and after the fracturing crack expansion experiment under the condition of in-situ in-situ stress, and solves the difficulty in the permeability test of large-size specimens under the condition of in-situ in-situ stress and the complicated collection of test gas. , the permeability problem before and after crack propagation cannot be well tested. At the same time, it solves the problem that the conventional test method cannot complete the permeability test of large dense specimens before the crack propagation test. The achievement of the invention provides a powerful means for quantitatively evaluating the experimental effect of crack propagation under different conditions.
上述实施例只对其中一些本发明的一个或多个实施例进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。The above-described embodiments describe only one or more embodiments of some of the present invention, but those skilled in the art will appreciate that the present invention may be embodied in many other forms without departing from the spirit and scope thereof. Accordingly, the examples and embodiments shown are to be regarded as illustrative and not restrictive, and various modifications are possible within the present invention without departing from the spirit and scope of the invention as defined by the appended claims. with replacement.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911141506.3A CN110700823B (en) | 2019-11-20 | 2019-11-20 | Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911141506.3A CN110700823B (en) | 2019-11-20 | 2019-11-20 | Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110700823A CN110700823A (en) | 2020-01-17 |
CN110700823B true CN110700823B (en) | 2022-10-14 |
Family
ID=69207469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911141506.3A Active CN110700823B (en) | 2019-11-20 | 2019-11-20 | Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110700823B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272633B (en) * | 2020-03-09 | 2022-04-08 | 山东科技大学 | Test method for the effect of borehole deformation on permeability and wetting effect of coal seams |
CN112065350B (en) * | 2020-08-05 | 2022-10-25 | 河南理工大学 | Hydraulic fracturing fracture propagation mechanism and fracturing after-effect test system and method |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005283224A (en) * | 2004-03-29 | 2005-10-13 | Sanko Techno Co Ltd | Shear testing machine for anchor |
CN103485759A (en) * | 2013-09-10 | 2014-01-01 | 中国石油大学(北京) | Oil-gas well hydraulically-created-fracture expansion visualization experiment method and oil-gas well hydraulically-created-fracture expansion visualization experiment device |
CN104832169A (en) * | 2015-05-30 | 2015-08-12 | 重庆地质矿产研究院 | Indoor experimental shaft device and method for horizontal well two-well synchronous or asynchronous multi-section clustering fracturing |
CN105352811A (en) * | 2015-12-03 | 2016-02-24 | 西安石油大学 | Pressurizing device and method for small-sized hydrofracture three-axis assessment and test |
CN105547849A (en) * | 2016-03-01 | 2016-05-04 | 安徽理工大学 | True triaxial loading and unloading test device for large-size bedded pressure-bearing rock and testing method |
CN105890998A (en) * | 2016-04-22 | 2016-08-24 | 中国科学院武汉岩土力学研究所 | Rock fracturing simulation test specimen with crack, preparation method for rock fracturing simulation test specimen, simulation test apparatus and simulation test method |
CN106018105A (en) * | 2016-05-17 | 2016-10-12 | 重庆大学 | Multifunctional physical simulation test system for coal engineering and coal model test method |
CN107893652A (en) * | 2017-09-30 | 2018-04-10 | 中国石油大学(华东) | The hydraulic fracturing analogue experiment installation and method of the enhanced geothermal system of hot dry rock |
CN107905778A (en) * | 2017-10-19 | 2018-04-13 | 中国石油大学(华东) | Supercritical CO2The enhanced geothermal system experimental provision of fluid fracturing and method |
CN108663298A (en) * | 2018-03-27 | 2018-10-16 | 西南石油大学 | True triaxial crack propagation simulation and permeability test integrated experimental device and method |
CN109540688A (en) * | 2019-01-10 | 2019-03-29 | 辽宁工程技术大学 | A kind of large scale true triaxial hydraulic fracturing simulation test device and test method |
CN110082220A (en) * | 2019-05-31 | 2019-08-02 | 重庆大学 | A kind of porous guiding fracturing experiments device of true triaxial |
CN110439544A (en) * | 2019-07-31 | 2019-11-12 | 中国石油大学(北京) | A kind of indoor experimental apparatus and acid fracturing analogy method based on true triaxial acid fracturing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8874376B2 (en) * | 2006-10-06 | 2014-10-28 | Halliburton Energy Services, Inc. | Methods and systems for well stimulation using multiple angled fracturing |
CN101871876B (en) * | 2010-06-09 | 2011-08-31 | 中国矿业大学 | Visible multifunctional fracture seepage simulation test bench |
CN104614497B (en) * | 2015-03-09 | 2016-04-20 | 中国矿业大学 | Integrated experimental system for true triaxial flow fracturing, slotting, seepage and gas driving |
CN105628507B (en) * | 2016-02-05 | 2018-07-03 | 四川大学 | The device of realization hydraulic fracturing experiments and rock sample and method in conventional rock mechanics experiment machine |
US11365626B2 (en) * | 2017-03-01 | 2022-06-21 | Proptester, Inc. | Fluid flow testing apparatus and methods |
-
2019
- 2019-11-20 CN CN201911141506.3A patent/CN110700823B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005283224A (en) * | 2004-03-29 | 2005-10-13 | Sanko Techno Co Ltd | Shear testing machine for anchor |
CN103485759A (en) * | 2013-09-10 | 2014-01-01 | 中国石油大学(北京) | Oil-gas well hydraulically-created-fracture expansion visualization experiment method and oil-gas well hydraulically-created-fracture expansion visualization experiment device |
CN104832169A (en) * | 2015-05-30 | 2015-08-12 | 重庆地质矿产研究院 | Indoor experimental shaft device and method for horizontal well two-well synchronous or asynchronous multi-section clustering fracturing |
CN105352811A (en) * | 2015-12-03 | 2016-02-24 | 西安石油大学 | Pressurizing device and method for small-sized hydrofracture three-axis assessment and test |
CN105547849A (en) * | 2016-03-01 | 2016-05-04 | 安徽理工大学 | True triaxial loading and unloading test device for large-size bedded pressure-bearing rock and testing method |
CN105890998A (en) * | 2016-04-22 | 2016-08-24 | 中国科学院武汉岩土力学研究所 | Rock fracturing simulation test specimen with crack, preparation method for rock fracturing simulation test specimen, simulation test apparatus and simulation test method |
CN106018105A (en) * | 2016-05-17 | 2016-10-12 | 重庆大学 | Multifunctional physical simulation test system for coal engineering and coal model test method |
CN107893652A (en) * | 2017-09-30 | 2018-04-10 | 中国石油大学(华东) | The hydraulic fracturing analogue experiment installation and method of the enhanced geothermal system of hot dry rock |
CN107905778A (en) * | 2017-10-19 | 2018-04-13 | 中国石油大学(华东) | Supercritical CO2The enhanced geothermal system experimental provision of fluid fracturing and method |
CN108663298A (en) * | 2018-03-27 | 2018-10-16 | 西南石油大学 | True triaxial crack propagation simulation and permeability test integrated experimental device and method |
CN109540688A (en) * | 2019-01-10 | 2019-03-29 | 辽宁工程技术大学 | A kind of large scale true triaxial hydraulic fracturing simulation test device and test method |
CN110082220A (en) * | 2019-05-31 | 2019-08-02 | 重庆大学 | A kind of porous guiding fracturing experiments device of true triaxial |
CN110439544A (en) * | 2019-07-31 | 2019-11-12 | 中国石油大学(北京) | A kind of indoor experimental apparatus and acid fracturing analogy method based on true triaxial acid fracturing |
Non-Patent Citations (2)
Title |
---|
裂缝充填模拟试验装置的研制;郭天魁等;《石油机械》;20120810(第08期);全文 * |
页岩气藏缝网压裂物理模拟的声发射监测初探;侯冰等;《中国石油大学学报(自然科学版)》;20150220(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110700823A (en) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108386177B (en) | Real-time monitoring experiment system and method for three-dimensional multilayer multi-well fracturing support crack | |
US11313775B2 (en) | Device and method for evaluating fracture initiation and propagation, and stress sensitivity of propped fracture | |
CN110487697B (en) | Supercritical carbon dioxide injection coal rock mechanical property test and fracturing experiment device | |
CN104614497B (en) | Integrated experimental system for true triaxial flow fracturing, slotting, seepage and gas driving | |
CN103196762B (en) | Experimental device and method for reforming shale gas reservoir through pulse hydraulic fracturing | |
CN108663298A (en) | True triaxial crack propagation simulation and permeability test integrated experimental device and method | |
CN108801799B (en) | Rock fracturing physical simulation system and test method | |
CN107905778A (en) | Supercritical CO2The enhanced geothermal system experimental provision of fluid fracturing and method | |
CN110426286A (en) | A kind of true triaxial pressure break seepage flow follow-on test system and method | |
CN111220452B (en) | True triaxial pressure chamber for coal rock simulation test and test method thereof | |
CN111272576A (en) | A new true triaxial fracturing seepage test device and method | |
CN109975140B (en) | Supercritical carbon dioxide pulse fracturing and permeability testing integrated experimental device and method | |
CN110056335B (en) | Triaxial multi-crack hydraulic fracturing experimental device and experimental method | |
CN106353197A (en) | High-pressure multiphase-flow coupling rock true-triaxial test system and method | |
CN108072573A (en) | A kind of experimental system and method for measuring Modulus of Elasticity of Rock Mass in situ and shearing strength | |
CN111119831B (en) | A horizontal well staged fracturing indoor simulation test device and its operating method | |
CN110700823B (en) | Loading body for true triaxial crack propagation simulation and permeability synchronous experiment and permeability test characterization method | |
CN104535727B (en) | A kind of waterpower sandfrac system | |
CN107255700B (en) | Coal bed gas well discharge and production process pulverized coal output simulation test device and test method thereof | |
CN207164042U (en) | Coal bed gas well mining process coal dust output simulating test device | |
CN106370524B (en) | A method and verification device for determining the ultimate injection pressure of channeling along the second cemented surface of an interlayer | |
CN107288605A (en) | A kind of mud shale fracturing analogue means and detection method | |
CN115219350A (en) | A multi-phase rock triaxial compression shear seepage test system and test method | |
CN116411959A (en) | Oil-gas well fracturing test device and method for simulating real stratum environment | |
CN209838386U (en) | Hydraulic fracturing physical simulation experiment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |