CN110692258A - 声-振换能器 - Google Patents

声-振换能器 Download PDF

Info

Publication number
CN110692258A
CN110692258A CN201880035431.8A CN201880035431A CN110692258A CN 110692258 A CN110692258 A CN 110692258A CN 201880035431 A CN201880035431 A CN 201880035431A CN 110692258 A CN110692258 A CN 110692258A
Authority
CN
China
Prior art keywords
diaphragm
sensor device
coil
magnet
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880035431.8A
Other languages
English (en)
Inventor
G·博伊德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coleridge Design Co Ltd
Original Assignee
Coleridge Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coleridge Design Co Ltd filed Critical Coleridge Design Co Ltd
Publication of CN110692258A publication Critical patent/CN110692258A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Fluid Pressure (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

在各种实施例中,根据本发明的声‑振换能器装置被优化用于感测和转换在患者体内出现的声现象,并且以0.001Hz至10kHz的频率在皮肤表面显现它们自身。有效耦合至皮肤的策略包括正确地不匹配机械阻抗,使用阻抗匹配的凝胶或液体,设计形状的(例如圆顶的)拾音器,材料选择和/或允许内部部分和外周膜片部分之间的相对运动的外周板簧装置。可以选择性地选择板簧的弹簧刚度或弹簧柔度,以优化传感器的频率响应。

Description

声-振换能器
相关申请
本申请要求2017年3月28日提交的美国专利申请序列号15/471,812的权益和优先权。
技术领域
本发明总体上涉及机电声-振设备,尤其涉及利用与生物组织的外表面耦合的电动换能器的系统,例如用于无创地记录、存储、分析和回放由活体生物产生的体内声音。
背景技术
听诊器是RenéLaennec于1816年在法国发明的,用于听诊,即听取体内产生的声音,主要是为了评估器官和血管(包括心脏、肺、主动脉和肠道)的状况。在怀孕期间,还可以通过专用听诊器听诊来监测胎儿的心音。血管中的血流也可以听诊。无辅助地用耳朵进行的听诊称为直接听诊,而使用听诊器时称为间接听诊。
电子听诊器是Laennec概念的更新版本,其中,皮肤接触隔膜形成了声学腔,在该腔中,空气中的声音被转换为电信号。这些信号被放大、滤波或以其他方式处理,并通过例如扬声器或耳机播放。大量的身体声音信息处于0.001Hz到100Hz的频带中,并且由于可听性阈值急剧上升到100Hz以下,因此,如果听不清,电信号的放大会使其可听变得困难。很少有电流系统,甚至是电子听诊器系统,设计用于在此范围内进行准确有效的放大。
发明内容
在各种实施例中,根据本发明的声-振换能器装置被优化用于感测和转换在患者体内出现的声现象,并且以0.001Hz至10kHz的频率在皮肤表面显现它们自身。有效耦合至皮肤的策略包括正确地不匹配机械阻抗,使用阻抗匹配的凝胶或液体,有形状的(例如圆顶的)拾音器,材料选择和/或允许内部部分和外周膜片部分之间的相对运动的外周板簧装置。可以选择性地选择板簧的弹簧刚度或弹簧柔度,以优化传感器的频率响应。
因此,在第一方面,本发明涉及一种传感器设备。在各种实施例中,所述传感器设备包括具有外周部分和内部部分的膜片,内部可动部分通过多个板簧附接到外部部分,限制了内部部分和外周部分之间的相对运动;线圈,设置在膜片的至少一侧上;以及至少一个磁体,其相对于线圈可操作地设置,以通过可动部分和外周部分之间的相对运动使电流流过线圈。
在一些实施例中,内部部分是固定的,外周部分是相对于其可动的;在其他实施例中,外部部分是固定的,内周部分相对于其是可动的。例如,在特定实施例中,膜片的外部固定部分具有一定形状,并且内部可动部分限定在穿过膜片的多个狭缝内并且成串联布置。所述串联限定了与外部固定部分同心并具有外部固定部分的形状的闭合序列,并且每对狭缝是平行的并且具有重叠部分和不重叠部分,所述重叠部分限定与其中一个板簧相对应的插入条。在某些情况下,狭缝填充有触变性材料。在一些实施例中,所述线圈和至少一个磁体是圆形的,而在其他实施例中,一个或二者具有不同的形状。
在一些实施例中,磁体为设置在膜片的相对侧的一对磁体组件,每个组件包括至少两个同心磁体。每个磁铁具有角度为45°±5°的等腰梯形横截面。在各种实施例中,线圈占据膜片面积的50%至75%。
所述传感器设备可以包括从所述膜片延伸以与生物组织表面接触的拾音结构。所述膜片可以具有模态贡献,所述模态贡献具有零平均体积速度,以隔离所述膜片对于在垂直于所述膜片的方向上产生的电压的活塞响应。在一些实施例中,所述膜片为复合夹心面板,包括芯和在所述芯的每一侧上的整体式面板。例如,面板可以是覆铜箔的柔性印刷电路聚合物膜。可以蚀刻所述铜以确保所述膜片的最短平面尺寸的10%或更小的各向同性的机械阻抗。在一些实施例中,面板由石墨烯复合结构制成,并且可以蚀刻石墨烯以确保所述膜片的最短平面尺寸的10%或更小的各向同性的机械阻抗。
在一些实施例中,膜片在非通电状态下被不对称地偏置。偏置可以例如在0.1mm至3mm的范围内。拾音结构可以是圆顶形的,并且可以具有或可以不具有表面特征。如果具有,则表面可以是有突起的、浅凹的和/或波纹的。拾音结构可具有相对于目标表面不匹配的机械阻抗。
另一方面,本发明涉及一种声换能器。在各种实施例中,声换能器包括膜片,所述膜片包括外周部分和中央圆顶拾音部分;保持构件,其围绕膜片并构造成保持膜片,且在将声能施加到圆顶拾音部分时允许至少一部分运动;换能器,其用于将其至少一部分的运动转换成电信号。
外周部分可以是平坦的,或者在一些实施例中,可以是圆顶的延伸部分或外周边缘。在各种实施例中,所述换能器包括至少一个附接到所述膜片的线圈和至少一个与所述膜片分离但是磁耦合到所述线圈的磁体。在其他实施例中,所述膜片是电容性的。所述拾音部分可具有相对于目标表面不匹配的机械阻抗。
在某些实施例中,传感器耦合到Pinard喇叭——一种锥形胎儿镜,可放大胎儿心跳或新生儿心跳的声音,并被描述为一种“耳喇叭”(因此,较长的圆锥(长达30”),信号会变得不清楚,但会更好地拾取微弱的心音)。具有双耳式胎儿镜的实施例允许用户通过两只耳朵听到心跳,或者可以被记录下来以立体声再现。在一个实施例中,换能器连接至锥形装置,所述锥形装置的较大直径端配置为放置在胸壁上。
如本文所使用的,术语“约”、“大约”和“基本上”是指±10%,在一些实施例中为±5%。说明书中提及的“一个示例”、“示例”、“一个实施例”或“一实施例”表示与描述该实例有关的特定特征、结构或特性包括在本技术的至少一个实例中。因此,本说明书中在各个地方出现的短语“在一个示例中”、“在示例中”、“一个实施例”或“实施例”不一定都指代相同的示例。此外,特定特征、结构、程序、步骤或特性可以以任何合适的方式组合在本技术的一个或多个示例中。本文提供的标题仅是为了方便,并不旨在限制或解释所要求保护的技术的范围或含义。
附图说明
通过以下结合附图对本发明的详细描述,将更容易理解前述内容,其中:
图1A示出了根据本发明的实施例的声-振传感器的分解图。
图1B和1C分别为图1A所示的传感器的透视图和截面正视图。
图2A为图1A-1C所示的膜片的内部的俯视图。
图2B为图1A-1C所示的膜片的内部的仰视图。
图2C为示出图1A-1C所示的膜片的板簧的操作的透视图。
图3A和3B分别示出了根据本发明的一个实施例的顶部磁体组件的仰视图和俯视图。
图3C更详细地示出了顶部磁体组件的一部分。
图3D为根据本发明的一个实施例的顶部和底部磁体组件的截面透视图。
图4A为图1的传感器的另一截面正视图,示出了由顶部磁体组件和底部磁体组件产生的磁场线。
图4B为图1的传感器的另一截面正视图,其具有矩形而不是梯形磁体。
图4C描绘了根据本发明的一个实施例的模拟,其显示了切向气隙通量密度作为半径的函数。
图4D描绘了磁通密度作为距膜片中心的高度的函数。
图5A-5F是替代膜片形状的俯视图。
图6A和图6B分别是包括铁磁流体的传感器实施例的截面正视图和分解图。
图6C是图6A和图6B的传感器的另一截面正视图,示出了由磁体产生的磁场线。
具体实施方式
在图1A中以100示出了根据本发明的声-振传感器。传感器100包括具有集成拾音器104(例如,圆顶)的膜片102,相对于膜片102可操作地设置的顶部磁体组件106a和底部磁体组件106b。顶部壳体部分108设置在顶部磁体组件106a上方,底部壳体部分112设置在底部磁体组件106b下方且包括中央开口114。如图1B所示,当组装传感器100时,拾音器104的中央部分突出穿过底部壳体部分112的中央开口114。
参照图2A-2D,在一个实施例中,膜片102为具有圆顶的平面基板。尽管膜片102为单个机械固定物,但是在功能上它具有带有周边安装孔的固定的周边(这里是环形)部分202和相对于所述固定的周边部分可动的中央部分204。在一些实施例中,周边部分202可相对于中央部分204移动。在所示的实施例中,固定部分202和可动部分204之间的可移动性由周向重叠的狭缝(代表性地以206表示)的闭合形状(在此为圆形)序列赋予。这些可以例如通过激光切割形成。“重叠”是指每对平行的狭缝具有对应的部分,所述对应的部分彼此直接相对并且其余部分在长度方向上延伸超过该对狭缝的另一个。线圈208设置在膜片102的可动部分204上方。线圈208和磁体之间的相对运动引起通过线圈的电流,该电流与膜片的位移程度相关,通常成线性关系。替代实施例包括具有各种非平面曲率和/或波纹的膜片102。此外,如果膜片102具有如下所述的非圆形形状,则狭缝206的序列将符合该形状。
由每对狭缝206之间的重叠限定的插入材料条218在操作期间用作板簧。该板簧相对于可动部分204的振动运动(进入和离开页面)提供了机械柔性。柔性的程度由狭缝206的宽度、其数量、其长度以及重叠部分218的长度和宽度确定。弹簧刚度或弹簧柔性可以在一定频率范围内选择性地选择,以优化传感器的频率响应。对于一英寸(25mm)的膜片102,狭缝宽度的典型工作范围是0.1mm至1mm,对于更大或更小直径的膜片,其近似线性缩放。
狭缝还有利于减少膜片102的总材料含量,从而增大其对从拾音器104传递的振动的响应性。膜片不需要通过空气或其他介质传播声波,且因此不需要使膜片102上的狭缝的表面积最小化或在膜片的前部和后部之间产生离散的间隔。在一些实施例中,狭缝填充有触变材料,例如高真空硅脂,其随着振动频率的增大而变软。目的是允许足够的膜片位移以及膜片边缘处的粘弹性阻尼。
参照图2A,可动膜片部分204的中央区域215向上(向页面外)形成圆顶,如图1B所示,而在图2B中,中央部分215延伸到页面中。线圈208耦合(即,附接)至膜片并且可以覆盖膜片的面积的50%至75%。线圈208可以采用同心环形区域或“子线圈”的形式,在图2A中以220a、220b、220c代表性地表示。在一个实例中,线圈208包括多个子线圈220,设置在图2A所示的膜片102的底部部分224和图2B所示的膜片102的底部部分224的相应区域。例如,子线圈220a、220b、220c可以具有如图2B所示的对应部分220d、220e、220f。多个连接器垫片226设置在膜片102的顶部部分222上,以促进与线圈208的电连接。
在所示的实施例中,子线圈220a-220f串联连接。整个线圈208的每一端都连接到连接器垫片226的其中一个。例如,线圈208的导体的一部分可以在板簧206的其中一个的主体部分214上方进入和离开膜片102的可动部分204。无载导体(dummy conductor)228设置在其余的狭缝对之间,以便在板簧之间保持基本相似的柔性。
在一个实施例中,设置在顶部部分222上的子线圈220均分别与设置在膜片102的底部部分224上的相应子线圈220基本物理对准,形成子线圈对。例如,子线圈220a可以与子线圈220f物理对准以形成子线圈对220a-220f。类似地,子线圈220b可以与子线圈220e物理对准,以形成另一个子线圈对220b-200e。最后,子线圈220c可以与子线圈220d物理对准,以形成又一个子线圈对220c-220d。子线圈对的导体的缠绕方向为使得在子线圈对的每个元件中流动的电流将沿相同方向流动。例如,流过子线圈对220a-200f的电流的方向将是相同的。类似地,流过子线圈对220b-200e的电流的方向将是相同的,且流过子线圈对220c-200d的电流的方向将是相同的。可以选择子线圈导体的长度以在子线圈上产生基本均匀的力。例如,每个子线圈对中的导体的长度可以不同,以便在子线圈上产生基本均匀的力。
在一个实例中,铜包的柔性(例如,聚酰亚胺)印刷电路板(PCB)可用于制造线圈208。例如,通过选择性地蚀刻PCB上的铜层,可以在其上制造各种子线圈。在一个实例中,可以将选择性地蚀刻的铜包的柔性PCB用于膜片102和线圈208。在一些实施例中,加强件230可以选择性地设置在可动部分204的内部部分,以便为膜片102的可动部分204保持基本恒定的机械阻抗。加强件230和/或无载导体228也可以通过选择性地蚀刻PCB上的铜层来形成。如上所述,狭缝206可以通过激光切割形成。
在另一种方法中,将导电油墨选择性地印刷(例如,通过沉积或其他添加技术)在基板上以在其上形成线圈208。在又一种方法中,可将化学镀镍浸金(ENIG)选择性地沉积在基板上以在基板上形成线圈208的轮廓,用作籽晶层。在ENIG籽晶层上,可以在水性电解质中用铜电镀线圈,以获得所需厚度的线圈。再次,基板用作膜片102。可以使用本领域中已知的替代方法,包括但不限于微机电系统(MEMS)技术,例如传统沉积和蚀刻工艺,且形成的线圈可以根据所制造的传感器的尺寸来机械地缠绕。
应当注意,在一些实施方式中,使用移动的磁体而不是移动的线圈。这可以通过将磁体放置在膜片102的可动部分204上并将线圈放置在膜片的固定部分202上或在平行的相邻层上来实现。
板簧的操作最佳如图2C中所示。随着可动部分204相对于固定部分206上升(在线圈208的作用下,在图2C中未示出),板簧218以如上所述建立的柔性程度允许但限制该运动。可动部分204可以相对于固定部分206偏置,从而在其正常(静止)状态下,驻留在固定部分的平面之上或之下。仅当向膜片102施加压力时,例如通过目标组织与连接的拾音器104接触,可动部分204才与固定部分206达到共面。膜片102的操作状态根据目标组织接触的参考方向和程度可以是共面状态,也可以是偏置状态。对于膜片直径在5毫米至50毫米之间的传感器,最佳偏置通常在正常状态的0.1-3毫米范围内。在某些实施例中,膜片102和/或附接的拾音器具有相邻的结构以限制偏转的幅度(例如,限制在正常状态下±5毫米、正常状态下±3毫米或其他位移的位移范围内),以防止对膜片102造成不可逆转的损坏。相邻的结构可以降低或完全阻止膜片产生信号,例如,从而表明在结构与拾音器104之间的接触处需要附加的或较小的压力。传感器100可以包括压力传感器(例如,邻近拾音器104设置)以测量施加到拾音器104的压力。合适的压力传感器包括压电、压阻、电容和光学传感器。
图3A-3D示出了顶部磁体组件106a和底部磁体组件106b的各种特征。顶部磁体组件106a包括间隔开的外环磁体302和内环磁体304,且保持在保持器306内。外环磁体302和内环磁体304可以是具有大致相同宽度、具有约45°±5°的等腰梯形横截面的压缩结合的钕环磁体。保持器306可以由例如具有高电感的软磁材料(例如,AISI 1018低碳钢)制成。如图3C所示,外环磁体302和内环磁体304的侧表面308代表梯形横截面的倾斜表面。底部磁体106b具有类似的构造。图3D示出了可操作地设置为与膜片102接触的顶部和底部磁体组件106a、106b。
图4A示出了如先前参考图1所描述的传感器100的又一截面图。顶部磁体组件106a保持在顶部壳体108(图4A中未示出)内。例如,顶部磁体组件104可以用环氧树脂与顶部壳体粘合,并且类似地,底部磁体组件106可以用环氧树脂与底部壳体112(在图4A中也未示出)粘合。膜片102设置在顶部磁体组件106a和底部磁体组件106b之间,以便相对于顶部磁体组件104和底部磁体组件106可操作地布置子线圈。图4A还示出了顶部磁体组件106a、底部磁体组件106b与设置在膜片102上的线圈208的子线圈对之间的电磁相互作用。在此实例中,顶部和底部磁体组件106a、106b的外环磁体302被磁化,以便彼此相反,如箭头406、408所示。顶部和底部磁体组件106a、106b的内环磁体304被磁化,以便彼此吸引,如箭头410、412所示。顶部和底部磁体组件106a、106b之间的间隔限定气隙414。线圈208的子线圈对设置在气隙414中,并经受由磁体组件106a、106b的外环磁体302和内环磁体304产生的磁场。换句话说,磁体组件基本上在膜片102的平面中并且垂直于通过线圈208的子线圈对的电流流动产生磁场。更具体地说,子线圈对208c-208d在箭头416所示的方向上受到磁场的作用;子线圈对208b-208e在箭头418所示的方向上受到磁场的作用;子线圈对208a-208f在箭头420所示的方向上受到磁场的作用。选择平面磁体子组件的平均半径以对应于膜片102的弯曲振动的基本模式的平均节点半径。稀疏模态系统(如下所述)在节点而不是腹点(anti-node)处被最佳地驱动,因为在第一谐振频率上需要的位移较小。
图4B示出了磁体组件内的磁场,具有四个磁体,这些磁体具有矩形而不是梯形的横截面,但是使用与图4A中相同的材料量。各种其他实施例可以使用不同的磁体形状或放置,只要保持与子线圈对的相互作用即可。在某些实施例中,子线圈对以三对、四对、五对等形式存在。
在图4C中,曲线430示出了由顶部和底部磁体组件从膜片的中心产生的磁场强度。特别地,x轴表示距膜片中心的距离,y轴表示沿膜片的半径在膜片的各个位置处的磁场强度。曲线430的部分432(在x轴下方)示出了在子线圈对208c-208d附近施加的磁场强度,部分434(在x轴上方)示出了在子线圈208b-208e附近施加的磁场强度,部分436(在x轴下方)示出了在子线圈208a-208f附近施加的磁场强度。可以将子线圈选择性地放置在膜片上,以使施加在子线圈上的磁场强度高于阈值。例如,如果选择的磁场强度阈值超过±0.2特斯拉,将子线圈208c-208d放置在距膜片中心D1和D2的距离之间,将子线圈208b-208e放置在距膜片中心D3和D4的距离之间,将子线圈208a-208f放置在距膜片中心D5和D6的距离之间。
如本领域技术人员将理解的,当电流流过线圈208的子线圈对时,所产生的力的大小取决于子线圈的长度和子线圈所经受的磁场强度。在所示的实施例中,子线圈对208b-208e所经受的磁场强度比子线圈对208c-208d和208a-208f所经受的更高。当然,可以选择子线圈的缠绕长度以在所有子线圈上产生基本均匀的力,这通常是有益的。通过将力均匀分布在整个子线圈上,进而分布在整个膜片上,当声音在单个平面中传播时,回声(或失真)更少。减少失真(尤其是在低频时)可提高传感器捕获的信号的信噪比。此外,均匀的力将有益地使膜片102中的弯曲力矩最小化,这在如下所述的多层结构的情况下是特别有利的。
在一个实施例中,选择流过子线圈对的电流的方向,以使膜片102的可动部分沿单个方向移动。在该实例中,子线圈对208b-208e在箭头418所示的方向上受到磁场作用,而子线圈对208a-208f和208c-208d在箭头416、420所示的方向上受到磁场作用,箭头416、420所示的方向与箭头418所示的方向相反。为了沿相同方向移动膜片102的可动部分,子线圈对208b-208e中的电流的流动方向将与子线圈对208a-208f和208c-208d中的电流的流动方向相反。
图4D描绘了磁体结构的有限元分析(FEA)模拟,其示出了对于BNP10和Nd37磁体材料,在1mm和2mm磁极间距下,轴对称切向气隙磁通密度B·t(r)对半径r(mm)的函数。图4E描绘了对于BNP10磁体材料,磁通密度B·n(z)/特斯拉(Tesla)作为距位于磁体结构中心r=23.0mm处的膜片中心高度z(mm)的函数。
在前述实例中,传感器100的形状是大致圆形的。但是,可以使用其他形状,例如具有高轴向对称性的形状。例如,图5A示出了六边形的膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。图5B示出了椭圆形的膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。图5C示出了正方形的膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。图5D示出了具有五边形形状的示例性膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。图5E示出了矩形的膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。图5F示出了三角形的膜片102,其具有多个板簧206,将固定部分202和可动部分204分开。
根据本发明,膜片102可以采取各种形式。理想地是各向同性的,并且在一些实施例中,线圈被集成在复合夹心板系统内,以形成膜片102。这使得膜片在其整个膜片区域上基本上是机械各向同性的(即,膜片的机械阻抗在某些最小比例上保持恒定),从而能实现稀疏模态行为,即,在接近和/或高于目标频带(在典型应用中约为1Hz至10kHz)发生第一振动模式。为了增强与皮肤的接触,特别是覆盖有毛发的皮肤,或者在动物对象的情况下,长有毛的皮肤,在某些实施例中,膜片102(尤其是拾音器104)可以设置有表面特征,例如突起、浅凹或波纹。
适用于此用途的膜片换能器构造还包括带有传统电容(而不是基于线圈)膜片的更传统的活塞式麦克风布置。通过安装拾音器,当它们到达皮肤表面时,它们在耦合身体内部产生的纵向压力波时非常有效,同时可以消除皮肤表面的横向和弯曲波。拾波器通过机械消除不想要的噪声而使信噪比理想地得到最大化。例如,直接从体内器官发出的纵向声音(例如心脏杂音、肠运动或肩部肌腱咔嗒声)是到达拾音器的第一振动,而系统会机械地消除无关的声音信号,例如反射、皮肤运动或来自周围组织的声音。如下所述,半球形的刚性拾音器可以进一步增强来自目标器官的活塞换能器的第一振动模式测量值。
所述膜片可以由例如复合夹心板结构形成,所述复合夹心板结构包括铜包的聚酰亚胺的顶层和底层(或“表皮”),夹有一芯,例如刚性闭孔聚合物泡沫,例如ROHACELL31IG聚甲基丙烯酰亚胺(PMI),或由以上所述组成。芯和/或一个或两个表皮可以是整体式面板(例如,与厚度更大的夹心复合面板或两个或更多个结合在一起的部分相比,在为例如厚度1.5mm的丙烯酸面板的情况下是各向同性的),其在声学上具有零厚度。可以蚀刻铜包层以确保膜片的最短平面尺寸(例如,直径)的10%或更小的各向同性的机械阻抗。
夹心面板表皮可以使用标准的柔性印刷电路(FPC)制造技术制成,使用可商购获得的高性能铜包聚酰亚胺,例如松下的FELIOS R-F775(在12.7μm至25.4μm的聚酰亚胺基底上的8.7μm至17.4μm铜箔)材料,也可以使用铝(5μm至10μm)包层的PET/聚酯薄膜(5μm至25μm)的标准RFID天线制造技术制成。可以使用标准FPC铜包层压板PEEK(例如,来自Rogers公司的XT/duroid 8000和XT/duroid 8100)和来自Rogers公司的LCP(例如ULTRALAM 3000(3850/3850HT)来制造具有局部加强的面板,通过热成型单个中央圆顶或多个圆顶或波纹来加固中央区域和/或为传感器创建接触点。制造圆顶104可以不是用于进一步增强以提高第一模式,而是提供与生物组织(例如,探针)的接触点,从而消除非第一模式的振动(相对运动、弯曲波等),从而使膜片的模态贡献具有零平均体积速度,从而仅隔离膜片的活塞(pistonic)响应。同时,可以通过由例如一个或多个刚性碳或硼纤维复合材料板制成的非常高刚度的胶粘圆顶形成用于聚焦拾音器的接触点。在适合于身体声音的换能器传感器的尺寸(例如10mm至30mm)下,弯曲刚度增大并且换能器的面板在目标频带中保持活塞式或非常稀疏的模型。圆顶104在抑制非活塞运动中起着关键作用,从而使系统能够从人体拾取声音而不受回声的干扰。
在替代实施例中,膜片可以是各向同性的石墨烯表皮复合夹心板,其可以使用激光切割或从机械压力机冲压来制造。这种结构为表肤提供了增加的刚度,为面板的机械性能提供了减小的面密度,以及为激光切割的平面音圈提供了增加的导电性。
膜片102,尤其是拾音器114的多种变化也是可能的,其可以被进一步优化以适应在目标活体组织中发现的各种粘弹性阻抗。最简单地,拾音器114在将到达表皮表面的组织的纵向压力波耦合到支撑横向弯曲波的膜片时,表现得像阻抗变换器。因此,拾音器114最佳地非常坚固且轻便。尽管可以针对特定的目标组织进行其他优化,但超薄碳纤维圆顶还是许多应用的理想选择。
在某些实施例中,拾音器114(例如,圆顶)被制造成优化与目标组织的结合的尺寸、形状、刚度和厚度参数。例如,目标组织区域可以主要分为肌肉、脂肪或骨骼(例如,上腹躯干的胸肌、肋骨下方的胃区域、肩骨)。与较大的拾音器圆顶相比,刚性、薄的拾音器圆顶将有利地与脂肪组织接触,而较大的拾音器圆顶将更有利地与骨组织接触。圆顶的功能是将到达组织表面的身体中的纵向压力波传递到面板的横向弯曲波,尽管是在膜片的第一振动模式开始之前。所谓的基本模式频率通常取决于材料的弹性刚度(杨氏模量,E/GPa)的平方根除以其质量密度(ρ,kg/m3)。在图4F中模拟了这种依赖性,包括有限元分析模拟,以比较相同尺寸的平盘和圆顶以及材料的影响。特别地,在图4G中以图形方式描绘了依赖性,将碳纤维增强塑料(CFRP)拾音器与其他材料(例如不锈钢、玻璃纤维增强塑料、聚甲基丙烯酸甲酯(丙烯酸、Plexiglas有机玻璃、Perspex有机玻璃、Lucite透明合成树脂)PMMA,以及聚碳酸酯进行了比较,说明了更硬、更轻的材料(例如CFRP)的性能优势,具有很高的屈服强度。应当注意,尽管拾音器的最低质量是期望的,但是实际上由于由屈服或屈曲引起的圆顶塌陷而设定的面板厚度存在下限。
因此,可以针对例如特定目标组织的触觉再现来优化拾音器114的精确特性。另外,应当注意,线圈220可以如上所述是平面的,或者可以具有更常规的螺旋设计,并且垂直于膜片附接。在另一个实施例中,三脚架状的组件可以用于将换能器附接到不均匀的表面上,同时保持“位移止动件”,该“位移止动件”防止对拾音器表面施加太大的压力。
替代地或另外地,可以在应用传感器之前将有利地与各种组织的机械阻抗阻抗匹配的各种凝胶施加到拾音器或目标组织。(因此,尽管拾音器圆顶114具有与表皮的机械阻抗不匹配的机械阻抗,但是放置在表皮与拾取器圆顶114之间的凝胶和/或覆盖物有利地与生物组织阻抗匹配(或非常薄),以允许压力波以最小的吸收率通过。)由于组织表面和拾音器表面曲率之间的差异,具有相似或匹配阻抗的非常薄的凝胶层增强了接触并允许来自组织的压力波以最小的吸收和潜在损失传播至拾音器114。通过包括或施加不同的凝胶、软凝胶附件或与皮肤相似的材料(例如硅橡胶、纯硅胶、液体悬浮液、胶状物质、弹性体、环氧树脂、金属、纺织品,以及纳米填充剂和微米级填充剂可以整合到皮肤模型中,以调整其物理特性以保持良好的接触,从而最大程度地收集纯净的音调数据,而失真最小),可以优化传感器以获得最佳阻抗。可以采用多种常规制造技术中的任何一种来制造如本文所述的声-振传感器。缩放到小型化是有利的,因为拾音器114和膜片102的质量通过三次方缩放,而大多数其他电气和机械传感器部件线性缩放。这可以减小大多数组件的尺寸,特别有利于拾音器114和膜片102,可以制得更轻、更硬,可以采用不同的形状,并且可以由具有成本效益的材料而非可能需要更大尺寸的超轻质材料制成。尽管在小型化方面存在局限性,例如线圈尺寸减小对信噪比的影响,但可以直接将它们与获得的收益进行平衡。
在又一个实施例中,拾音器114小型化以在施加最小力的情况下提供膜片的最大偏转。拾音器的形状可以是狭窄的圆顶、圆环、一系列环,或波纹状结构;例如,圆顶可以省略,而将平坦或接近平坦的表面与凝胶或与皮肤阻抗匹配的其他流体结合使用。可以在小型拾音器的表面上设置浅凹、小凸起、波纹或其他特征。此外,拾音器可以偏移特定角度(1°到45°),或者通过更改悬臂式悬架或通过放置垫片来制造具有特定偏移的膜片。对于要求将传感器放置在非平面阵列中的实施例而言,提高传感器对不垂直于膜片的力的灵敏度是有益的。在另一个实施例中,传感器拾音系统可以连接到各种方位的传感器系统,以便围绕诸如膝盖或肩膀之类的身体部位,所述身体部位是由各种材料系统组成的封闭隔室,包括肌腱、粘弹性界面、骨骼和流体。
在另一替代方案中,用与磁体结合的一种或多种磁性流体(例如,铁磁流体、超顺磁性流体、铁磁体等)代替刚性拾音器114以去除气隙。一个实施例如图6A-6C所示,其中具有中心穿孔的膜片602(例如,直径为4.0mm)的声-振传感器600悬挂在包含在密封环境中的铁磁流体604中。众所周知,铁磁流体是胶体液体,其包括悬浮在载液(通常是有机溶剂或水)中的纳米级铁磁或亚铁磁颗粒,并在磁场的作用下被强磁化。膜片602可具有如上所述的开槽的多叶悬臂悬架,且所示实施例包括四个具有正方形横截面的圆形磁体,并且被组织成两组608、610,每组具有两个同心磁体。铁磁流体604和磁体608、610密封在配合的壳体构件612、614内;壳体构件614可以成形用于声音拾取,并且可以由与生物组织阻抗匹配的凝胶表面构件620覆盖。图6C示出了组件600内的磁场。
本文使用的术语和表达用作描述的术语而非限制,并且在使用这些术语和表达时,无意排除所示和所述特征的任何等同物或其部分。另外,已经描述了本发明的某些实施例,对于本领域普通技术人员显而易见的是,在不脱离本发明的精神和范围的情况下,可以使用包含本文公开的概念的其他实施例。因此,所描述的实施例在所有方面都应视为仅是说明性的而非限制性的。

Claims (26)

1.一种传感器设备,包括:
膜片,其具有外周部分和内部部分,所述内部部分通过多个板簧连接到外部部分,所述板簧限制可动部分和外周部分之间的相对运动;
线圈,其设置在膜片的至少一侧上;和
至少一个磁体,其相对于线圈可操作地设置,以通过可动部分和外周部分之间的相对运动使电流流过线圈。
2.根据权利要求1所述的传感器设备,其中,所述内部部分是固定的,所述外周部分相对于所述内部部分是可动的。
3.根据权利要求1所述的传感器设备,其中,所述外部部分是固定的,所述内部部分相对于所述外部部分是可动的。
4.根据权利要求3所述的传感器设备,其中,所述膜片的外部固定部分具有一形状,且内部可动部分限定在穿过膜片的多个狭缝内并且以串联方式布置,其中(i)该串联限定了与外部固定部分同心并具有外部固定部分的形状的闭合序列,以及(ii)每对狭缝是平行的,且具有重叠部分和非重叠部分,所述重叠部分限定了与板簧之一相对应的插入条。
5.根据权利要求4所述的传感器设备,其中所述狭缝填充有触变性材料。
6.根据权利要求1所述的传感器设备,其中,所述线圈和所述至少一个磁体是圆形的。
7.根据权利要求1所述的传感器设备,其中,所述至少一个磁体是设置在所述膜片的相对侧上的一对磁体组件,所述组件中的每个包括至少两个同心磁体。
8.根据权利要求7所述的传感器设备,其中,每个磁体都具有角度为45o±5o的等腰梯形横截面。
9.根据权利要求1所述的传感器设备,其中,所述线圈占据所述膜片面积的50%至75%。
10.根据权利要求1所述的传感器设备,还包括从所述膜片延伸以与生物组织表面接触的拾音结构。
11.根据权利要求10所述的传感器设备,其中,所述膜片具有模态贡献,所述模态贡献具有零平均体积速度,以隔离所述膜片对于在垂直于所述膜片的方向上产生的电压的活塞响应。
12.根据权利要求1所述的传感器设备,其中,所述膜片为复合夹心面板,包括芯和在所述芯的每一侧上的整体式面板。
13.根据权利要求12所述的传感器设备,其中,所述面板为覆铜箔的柔性印刷电路聚合物膜。
14.根据权利要求13所述的传感器设备,其中,蚀刻所述铜以确保所述膜片的最短平面尺寸的10%或更小具有各向同性的机械阻抗。
15.根据权利要求12所述的传感器设备,其中,所述面板由石墨烯复合结构制成。
16.根据权利要求15所述的传感器设备,其中,蚀刻所述石墨烯以确保所述膜片的最短平面尺寸的10%或更小具有各向同性的机械阻抗。
17.根据权利要求1所述的传感器设备,其中,所述膜片在非通电状态下被不对称地偏置。
18.根据权利要求17所述的传感器设备,其中,所述偏置在0.1mm至3mm的范围内。
19.根据权利要求8所述的传感器设备,其中,所述拾音结构为圆顶。
20.根据权利要求16所述的传感器设备,其中,所述圆顶具有表面特征。
21.根据权利要求17所述的传感器设备,其中,所述表面是有突起的、浅凹的或波纹状的。
22.根据权利要求19所述的传感器设备,其中,所述拾音结构具有相对于目标表面不匹配的机械阻抗。
23.一种声换能器,包括:
膜片,其包括外周部分和中央圆顶拾音部分;
保持构件,其围绕膜片并构造成保持膜片,且在将声能施加到圆顶拾音部分时允许至少一部分运动;以及
换能器,用于将其至少一部分的运动转换成电信号。
24.根据权利要求23所述的声换能器,其中,所述换能器包括至少一个附接到所述膜片的线圈和至少一个与所述膜片分离但是磁耦合到所述线圈的磁体。
25.根据权利要求23所述的声换能器,其中,所述拾音结构具有相对于目标表面不匹配的机械阻抗。
26.根据权利要求23所述的声换能器,其中,所述膜片为电容性的。
CN201880035431.8A 2017-03-28 2018-03-26 声-振换能器 Pending CN110692258A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/471,812 US10123764B2 (en) 2017-03-28 2017-03-28 Vibro-acoustic transducer
US15/471,812 2017-03-28
PCT/US2018/024277 WO2018183162A1 (en) 2017-03-28 2018-03-26 Vibro-acoustic transducer

Publications (1)

Publication Number Publication Date
CN110692258A true CN110692258A (zh) 2020-01-14

Family

ID=63672391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880035431.8A Pending CN110692258A (zh) 2017-03-28 2018-03-26 声-振换能器

Country Status (4)

Country Link
US (2) US10123764B2 (zh)
EP (1) EP3603109A4 (zh)
CN (1) CN110692258A (zh)
WO (1) WO2018183162A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587113A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种用于心率检测的装置
CN112587115A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种适用于心脏的听诊装置及其听诊方法
CN112587114A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种心率检测手环及其检测方法
CN112587117A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种用于实时监控心率的检测装置及其检测方法
CN114679670A (zh) * 2022-03-21 2022-06-28 汉得利(常州)电子股份有限公司 一种音圈磁路结构、布置方法及发声装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123764B2 (en) * 2017-03-28 2018-11-13 Coleridge Design Associates Llc Vibro-acoustic transducer
US11240579B2 (en) * 2020-05-08 2022-02-01 Level 42 Ai Sensor systems and methods for characterizing health conditions
CN115606197A (zh) * 2020-05-26 2023-01-13 构造音频实验室有限公司(Us) 变曲率膜片平衡模态辐射器
JP2024500594A (ja) * 2020-09-04 2024-01-10 レベル・フォーティツー・エーアイ・インコーポレイテッド 非接触センサーシステムおよび方法
CN113949973B (zh) * 2021-09-30 2023-10-10 昆山海菲曼科技集团股份有限公司 一种振动特性优化平板耳机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160708A (en) * 1961-07-13 1964-12-08 Texas Instruments Inc Electronic stethoscope
US4258229A (en) * 1978-10-24 1981-03-24 Robert Bosch Gmbh Body vibration pickup
FR2488765A1 (fr) * 1980-08-13 1982-02-19 Telephonie Ind Commerciale Transducteur electrodynamique
US4544806A (en) * 1983-03-08 1985-10-01 U.S. Philips Corporation Ribbon-type transducer with a multi-layer diaphragm
US5003610A (en) * 1988-04-14 1991-03-26 Fostex Corporation Whole surface driven speaker
CN1500365A (zh) * 2001-01-26 2004-05-26 美国技术公司 具有副磁性结构的平板永磁扬声器
CN101940000A (zh) * 2008-02-08 2011-01-05 株式会社坦姆科日本 振动拾取传声器
CN102948170A (zh) * 2010-01-19 2013-02-27 缅因大学 具有mems技术的电动式扬声器结构

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922502A (en) 1975-01-02 1975-11-25 Foster Electric Co Ltd Diaphragm for electroacoustic transducer
US4903794A (en) * 1988-03-23 1990-02-27 Klippert Don H Acoustical amplifying stethoscope
US5365937A (en) * 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
US7192284B2 (en) 2000-08-17 2007-03-20 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US8275140B2 (en) * 1999-10-28 2012-09-25 Clive Leonard Smith Transducer for sensing actual or simulated body sounds
US6661897B2 (en) * 1999-10-28 2003-12-09 Clive Smith Transducer for sensing body sounds
US6726635B1 (en) * 2000-05-12 2004-04-27 Lasala Anthony F. Cardiac impulse detector
US20040260193A1 (en) 2000-05-12 2004-12-23 Lasala Anthony F. Cardiac impulse detector
KR100339987B1 (ko) 2000-05-13 2002-06-10 김재남 청진기 마우스
US7291780B2 (en) * 2002-02-26 2007-11-06 Taylor-Listug, Inc. Transducer for converting between mechanical vibration and electrical signal
US7035684B2 (en) 2003-02-26 2006-04-25 Medtronic, Inc. Method and apparatus for monitoring heart function in a subcutaneously implanted device
US6869404B2 (en) 2003-02-26 2005-03-22 Medtronic, Inc. Apparatus and method for chronically monitoring heart sounds for deriving estimated blood pressure
GB0408464D0 (en) 2004-04-16 2004-05-19 New Transducers Ltd Loudspeakers
EP1736030B1 (en) * 2004-04-16 2013-10-23 New Transducers Limited Acoustic device & method of making acoustic device
US7976480B2 (en) * 2004-12-09 2011-07-12 Motorola Solutions, Inc. Wearable auscultation system and method
US8139803B2 (en) 2005-08-15 2012-03-20 Immerz, Inc. Systems and methods for haptic sound
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
WO2007055271A1 (ja) * 2005-11-11 2007-05-18 Matsushita Electric Industrial Co., Ltd. 電気音響変換器および電子機器
US8085969B2 (en) 2006-09-15 2011-12-27 Hpv Technologies, Inc. Full range planar magnetic microphone and arrays thereof
EP1931173B1 (en) * 2006-12-06 2011-07-20 Electronics and Telecommunications Research Institute Condenser microphone having flexure hinge diaphragm and method of manufacturing the same
US8396228B2 (en) * 2008-02-27 2013-03-12 Stethoscope Technologies, Inc. Floating ballast mass active stethoscope or sound pickup device
WO2009155593A2 (en) 2008-06-20 2009-12-23 Leonard Eisenfeld Electronic stethoscope system
KR101338856B1 (ko) * 2010-10-22 2013-12-06 한국전자통신연구원 음향 센서 및 그 제조방법
WO2012099850A2 (en) 2011-01-18 2012-07-26 Bayer Materialscience Ag Flexure apparatus, system, and method
WO2012111349A1 (ja) 2011-02-18 2012-08-23 京セラ株式会社 電子機器
DE102011114535A1 (de) 2011-09-29 2013-04-04 Eads Deutschland Gmbh Datenhandschuh mit taktiler Rückinformation und Verfahren
KR102024006B1 (ko) 2012-02-10 2019-09-24 삼성전자주식회사 진동 장치간 진동 전달을 제어하는 장치 및 방법
US9462994B2 (en) 2012-05-11 2016-10-11 3M Innovative Properties Company Bioacoustic sensor with active noise correction
WO2014143986A1 (en) * 2013-03-15 2014-09-18 Naimco, Inc. Attachable adaptor with cavity for ultrasound device
US9293015B2 (en) 2013-09-09 2016-03-22 Immersion Corporation Electrical stimulation haptic feedback interface
CA2931274A1 (en) 2014-01-21 2015-07-30 California Institute Of Technology Portable electronic hemodynamic sensor systems
CA2962502A1 (en) 2014-10-14 2016-04-21 Arsil Nayyar Hussain Systems, devices, and methods for capturing and outputting data regarding a bodily characteristic
WO2016061381A1 (en) 2014-10-15 2016-04-21 Atlasense Biomed Ltd. Remote physiological monitor
US9466188B2 (en) 2014-12-24 2016-10-11 Immersion Corporation Systems and methods for haptically-enabled alarms
US10937407B2 (en) 2015-10-26 2021-03-02 Staton Techiya, Llc Biometric, physiological or environmental monitoring using a closed chamber
US10321235B2 (en) * 2016-09-23 2019-06-11 Apple Inc. Transducer having a conductive suspension member
WO2018167538A1 (en) * 2017-03-15 2018-09-20 Wing Acoustics Limited Improvements in or relating to audio systems
US10123764B2 (en) * 2017-03-28 2018-11-13 Coleridge Design Associates Llc Vibro-acoustic transducer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160708A (en) * 1961-07-13 1964-12-08 Texas Instruments Inc Electronic stethoscope
US4258229A (en) * 1978-10-24 1981-03-24 Robert Bosch Gmbh Body vibration pickup
FR2488765A1 (fr) * 1980-08-13 1982-02-19 Telephonie Ind Commerciale Transducteur electrodynamique
US4544806A (en) * 1983-03-08 1985-10-01 U.S. Philips Corporation Ribbon-type transducer with a multi-layer diaphragm
US5003610A (en) * 1988-04-14 1991-03-26 Fostex Corporation Whole surface driven speaker
CN1500365A (zh) * 2001-01-26 2004-05-26 美国技术公司 具有副磁性结构的平板永磁扬声器
CN101940000A (zh) * 2008-02-08 2011-01-05 株式会社坦姆科日本 振动拾取传声器
CN102948170A (zh) * 2010-01-19 2013-02-27 缅因大学 具有mems技术的电动式扬声器结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587113A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种用于心率检测的装置
CN112587115A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种适用于心脏的听诊装置及其听诊方法
CN112587114A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种心率检测手环及其检测方法
CN112587117A (zh) * 2020-12-25 2021-04-02 苏州益舒缘科技有限公司 一种用于实时监控心率的检测装置及其检测方法
CN114679670A (zh) * 2022-03-21 2022-06-28 汉得利(常州)电子股份有限公司 一种音圈磁路结构、布置方法及发声装置
CN114679670B (zh) * 2022-03-21 2024-03-12 汉得利(常州)电子股份有限公司 一种音圈磁路结构、布置方法及发声装置

Also Published As

Publication number Publication date
EP3603109A1 (en) 2020-02-05
EP3603109A4 (en) 2020-04-15
US20180279987A1 (en) 2018-10-04
US20190223827A1 (en) 2019-07-25
WO2018183162A1 (en) 2018-10-04
US10123764B2 (en) 2018-11-13
US11006922B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US11006922B2 (en) Vibro-acoustic transducer
US10653367B2 (en) Haptic feedback and interface systems for reproducing internal body sounds
KR101327694B1 (ko) 캔틸레버식 생체 음향 센서 및 이의 사용 방법
KR101327603B1 (ko) 가중 생체 음향 센서 및 이를 사용하는 방법
JP2017528026A (ja) マルチセル・トランスデューサー
JP2012152377A (ja) 体内音取得装置、及び、それを備えた電子聴診器
JP4571311B2 (ja) 音ピックアップセンサ
JP2011019799A (ja) 電子聴診器
US20060283656A1 (en) Bell side structure for stethoscope head
US20060029249A1 (en) Loudspeaker with hair leather diaphragm
US20070030995A1 (en) Loudspeaker with natural hair leather diaphragm
WO2020041232A1 (en) Stethoscope testing device and method of use
JP2011083372A (ja) 電子聴診器
JPH0621605U (ja) 電気聴診器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200114

WD01 Invention patent application deemed withdrawn after publication