CN110684346B - Polyamide 6/polyphenyl ether composition and preparation method thereof - Google Patents

Polyamide 6/polyphenyl ether composition and preparation method thereof Download PDF

Info

Publication number
CN110684346B
CN110684346B CN201911040314.3A CN201911040314A CN110684346B CN 110684346 B CN110684346 B CN 110684346B CN 201911040314 A CN201911040314 A CN 201911040314A CN 110684346 B CN110684346 B CN 110684346B
Authority
CN
China
Prior art keywords
temperature
zone
viscosity
polyamide
polyphenylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911040314.3A
Other languages
Chinese (zh)
Other versions
CN110684346A (en
Inventor
王忠强
蓝承东
卢健体
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Aldex New Material Co Ltd
Original Assignee
Guangdong Aldex New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Aldex New Material Co Ltd filed Critical Guangdong Aldex New Material Co Ltd
Priority to CN201911040314.3A priority Critical patent/CN110684346B/en
Publication of CN110684346A publication Critical patent/CN110684346A/en
Application granted granted Critical
Publication of CN110684346B publication Critical patent/CN110684346B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a polyamide 6/polyphenyl ether composition and a preparation method thereof, wherein the polyamide 6/polyphenyl ether composition is prepared from the following raw materials: the low-viscosity polyamide 6 resin, the high-viscosity polyphenylene oxide resin, the low-viscosity polyphenylene oxide resin, the styrene-glycidyl methacrylate copolymer, toluene diisocyanate, hydrogenated styrene-isoprene copolymer grafted maleic anhydride, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc. The polyamide 6/polyphenyl ether composition has excellent mechanical property and processing property, and can be applied to manufacturing automobiles, electronic and electric appliance components, medical supplies, office equipment and the like.

Description

Polyamide 6/polyphenyl ether composition and preparation method thereof
Technical Field
The invention relates to the field of materials, in particular to a polyamide 6/polyphenyl ether composition and a preparation method thereof.
Background
Polyamide 6(PA6) is a crystalline resin and is excellent in chemical resistance and processability, but has a large water absorption to cause a decrease in mechanical properties and a poor dimensional stability, while polyphenylene oxide (PPO) is an amorphous resin and has good mechanical properties and heat resistance but is poor in processability, chemical resistance and impact resistance. The polyamide 6/polyphenyl ether composition prepared from the polyamide 6 and the polyphenyl ether can overcome the defects of the polyamide 6 and the polyphenyl ether, and has the characteristics of high rigidity, small creep, high heat deformation temperature, good impact resistance and oil resistance and the like. From the microstructure, the polyamide 6/polyphenylene ether composition forms a sea-island structure, the polyamide 6 contributes to the composition having good solvent resistance, paintability and molding processability, and the polyphenylene ether contributes to the composition having good heat resistance, rigidity and dimensional stability. However, since crystalline PA6 and amorphous PPO are thermodynamically incompatible, resulting in too large a domain size of the dispersed phase of the blend and weak interfacial force, resulting in insufficient strength and toughness of the material, the key to the preparation of polyamide 6/polyphenylene ether compositions is the compatibilization technique.
Currently, some studies on toughening compatibilization of PA6/PPO systems are made in the prior art, such as: chinese patent CN106084763A discloses a fatigue-resistant low-warpage PA6/PPO alloy material, wherein a compatibilizer SEBS-g-MAH and a toughener SBS are added into a PA6 and PPO system; chinese patent CN107083055A discloses a conductive PA6/PPO alloy material and a preparation method thereof, wherein the conductive PA6/PPO alloy material comprises, by mass, 35-60 parts of nylon 6, 40-65 parts of modified polyphenyl ether, 2-8 parts of a toughening agent, 0.5-5 parts of carbon nanotubes, 1-10 parts of conductive carbon black, 0.1-5 parts of a compatilizer and 0.1-3.0 parts of an antioxidant, wherein the toughening agent is one or two of maleic anhydride grafted ethylene-1-octene copolymer or methacrylic acid-butadiene-styrene copolymer, and the compatilizer is one or two of epoxy resin or modified epoxy resin with the molecular weight of 100-120 and the epoxy equivalent of 30-550 g/eq; chinese patent CN102417711A discloses a permanent antistatic master batch and a preparation method thereof, wherein the antistatic master batch comprises the following components in percentage by weight: 1-15% of alkali metal salt, 0.5-2% of antioxidant, 0.5-2% of heat stabilizer, 0-10% of auxiliary antistatic agent and 71-95% of high polymer material containing polyether block, wherein the high polymer material containing polyether block is a compound of polyoxyethylene and polyether ester amide in a weight ratio of 5: 1; chinese patent CN102732003A discloses a flame-retardant glass fiber reinforced PA6/PPO alloy composition and a preparation method thereof, wherein the composition comprises the following components in percentage by weight: PA 620-41%, PPO 20-41%, compatilizer 0-10%, compound flame-retardant master batch 0-15%, glass fiber 20-40%, antioxidant 0.1-1%, lubricating dispersant 0.1-1%; chinese patent CN103146176A discloses a PPO/PA alloy modified compatibilizer and a PPO/PA alloy, wherein the compatibilizer is a graft copolymer of polyphenyl ether, glycidyl methacrylate and styrene, and the PPO/PA alloy using the compatibilizer comprises the following components in parts by weight: 50-59.5% of polyphenyl ether, 31.5-40.4% of nylon, 0.1-18% of compatibilizer and 0.1-0.5% of antioxidant; chinese patent CN108587108A discloses a high impact PPO/PA alloy material and a preparation method thereof, wherein the PPO/PA alloy material is composed of PPO resin, PA resin, a compatilizer, a flexibilizer and an antioxidant, and specifically comprises the following raw materials in parts by weight: 30-70 parts of PPO resin, 30-70 parts of PA resin, 3-10 parts of compatilizer, 5-15 parts of toughening agent and 0.1-1 part of antioxidant, wherein the compatilizer is PPO-g-MAH, and the toughening agent is SEBS-g-MAH; chinese patent CN108276758A discloses a high-filling PPO/PA alloy material with a good surface and a preparation method thereof, wherein the high-filling PPO/PA alloy material is composed of eight components of PPO resin, PA resin, PS resin, carbon fiber, a compatilizer, a toughening agent, a flow modifier and an antioxidant; according to the weight ratio: 10-50 parts of PPO resin, 10-60 parts of PA resin, 5-20 parts of PS resin, 20-40 parts of carbon fiber, 3-10 parts of compatilizer, 5-15 parts of toughening agent, 0.2-2 parts of flow modifier and 0.1-1 part of antioxidant, wherein the compatilizer is PPO-g-MAH, and the toughening agent is one or more of SEBS, SEBS-g-MAH and POE-g-MAH.
Disclosure of Invention
Based on the above, the invention aims to provide a polyamide 6/polyphenyl ether composition with excellent mechanical property and processability, which can be applied to the manufacture of automobiles, electronic and electric elements, medical supplies, office equipment and the like.
In order to achieve the purpose, the invention adopts the following scheme:
the polyamide 6/polyphenyl ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000021
Figure BDA0002252653500000031
the intrinsic viscosity of the low-viscosity polyamide 6 resin is 1.01-1.33 dL/g; the intrinsic viscosity of the high-viscosity polyphenyl ether resin is 0.45-0.51 dL/g; the intrinsic viscosity of the low-viscosity polyphenylene ether resin is 0.33-0.37 dL/g.
In some of the examples, the polyamide 6/polyphenylene ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000032
in some of the examples, the polyamide 6/polyphenylene ether composition is further preferably prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000041
in some embodiments, the mass fraction of the glycidyl methacrylate in the copolymer of styrene and glycidyl methacrylate is 2 to 4 wt%.
In some of the embodiments, the maleic anhydride grafting ratio of the hydrogenated styrene-isoprene copolymer grafted maleic anhydride is 0.8 to 1.5 wt%.
Another object of the present invention is to provide a process for the preparation of polyamide 6/polyphenylene ether compositions.
The preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 110-140 ℃ for 4-8 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 80-110 ℃ for 4-8 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the high-viscosity polyphenylene ether resin, the low-viscosity polyphenylene ether resin, the N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a stirrer for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another stirrer for mixing;
(3) adding the mixed material obtained in the step (1) into a parallel double-screw extruder through a feeder, adding the mixed material obtained in the step (2) into the parallel double-screw extruder (totally eight zones) (for example, a fourth zone) in the lateral direction (for example, the fourth zone) for melt extrusion and granulation, wherein the process parameters comprise: the temperature of the first zone is 240-260 ℃, the temperature of the second zone is 245-265 ℃, the temperature of the third zone is 245-265 ℃, the temperature of the fourth zone is 250-270 ℃, the temperature of the fifth zone is 250-270 ℃, the temperature of the sixth zone is 245-265 ℃, the temperature of the seventh zone is 245-265 ℃, the temperature of the eighth zone is 245-265 ℃, the temperature of the die head is 245-265 ℃ and the rotation speed of the screw is 200-600 rpm.
In some embodiments, in the step (1), the low-viscosity polyamide 6 resin is dried at a temperature of 120-130 ℃ for 4-6 hours, and the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin are dried at a temperature of 90-100 ℃ for 4-6 hours; the process parameters in the step (3) comprise: the temperature of the first zone is 245-255 ℃, the temperature of the second zone is 250-260 ℃, the temperature of the third zone is 250-260 ℃, the temperature of the fourth zone is 255-265 ℃, the temperature of the fifth zone is 255-265 ℃, the temperature of the sixth zone is 250-260 ℃, the temperature of the seventh zone is 250-260 ℃, the temperature of the eighth zone is 250-260 ℃, the temperature of the die head is 250-260 ℃, and the rotating speed of the screw is 300-500 rpm.
In some of these embodiments, the screw shape of the parallel twin screw extruder is a single thread; the ratio L/D of the length L of the screw to the diameter D of the screw is 35 to 50; the screw is provided with more than 1 (including 1) meshing block area and more than 1 (including 1) reverse thread area.
In some of these embodiments, the ratio L/D of the length L of the screw to the diameter D of the screw is 35 to 45; and 2 meshing block areas and 1 reverse thread area are arranged on the screw rod.
In some embodiments, in step (1) and/or step (2), the stirrer is a high-speed stirrer with a rotation speed of 500-.
The principle of the polyamide 6/polyphenylene ether composition of the invention is as follows:
in order to solve the defect of poor compatibility and processability of PA6 and PPO in a polyamide 6/polyphenylene oxide composition, the compatibility between PA6 and PPO is improved by adding a styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride, the notch impact strength of the PA6/PPO composition can be improved by adding the hydrogenated styrene-isoprene copolymer grafted maleic anhydride, the mechanical property of the PA6/PPO composition is ensured by adding high-viscosity polyphenylene oxide resin, and the processability of the PA6/PPO composition is ensured by adding low-viscosity polyphenylene oxide resin and low-viscosity polyamide 6 resin.
The styrene-glycidyl methacrylate copolymer, the toluene diisocyanate and the hydrogenated styrene-isoprene copolymer grafted maleic anhydride adopted by the invention can effectively improve the interfacial adhesion between PA6 and PPO and improve the compatibility between the PA6 and the PPO. The styrene structural unit in the copolymer of styrene and glycidyl methacrylate has good compatibility with PPO, and the epoxy group of glycidyl methacrylate can react with the terminal amino group of PA6 and the terminal hydroxyl group of PPO, so that the compatibility between PA6 and PPO is improved; the isocyanate group of the toluene diisocyanate can react with the terminal amino group and the terminal carboxyl group of PA6 and the terminal hydroxyl group of PPO, so that the compatibility between PA6 and PPO is improved; the styrene structural unit in the hydrogenated styrene-isoprene copolymer grafted maleic anhydride has good compatibility with PPO, and the anhydride group of the maleic anhydride can react with the terminal amino group of PA6 and the terminal hydroxyl group of PPO, so that the compatibility between PA6 and PPO is improved.
The melting point of N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide adopted by the invention is 272 ℃, the boiling point is more than 360 ℃, the thermal stability in the blending process of PA6 and PPO is better, the amide group can react with the end group of PA6 resin to improve the compatibility, and the hindered piperidyl can provide the antioxidation and improve the dyeing property of the copolymer.
The melting point of the bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate adopted by the invention is 239 ℃, and the thermal decomposition temperature isThe degree of more than 350 ℃, has good heat resistance and hydrolysis resistance, can provide excellent color stability and melt stability for the blending process of PA6 and PPO, can prevent thermal degradation of PA6 and PPO in a high-temperature process, inhibits thermal oxidative discoloration caused by a long time, and provides a flame retardant for Nitrogen Oxide (NO)x) Color stability in gas environment, and prevention of discoloration of fumigant.
The pentaerythritol zinc adopted by the invention has the functions of lubrication and thermal stabilization, and simultaneously, when the pentaerythritol zinc is used as a thermal stabilizer alone, compared with a common zinc-containing compound (such as zinc oxide), the zinc-containing compound can effectively reduce the occurrence probability of zinc burning in the blending process.
Compared with the prior art, the invention has the following beneficial effects:
aiming at the defect of poor compatibility and processability of PA6 and PPO in the conventional polyamide 6/polyphenyl ether composition, the compatibility between PA6 and PPO is improved by adding a copolymer of styrene and glycidyl methacrylate, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride, the toughness of the polyamide 6/polyphenyl ether composition is improved by grafting the hydrogenated styrene-isoprene copolymer grafted maleic anhydride, the mechanical property and the processability of the polyamide 6/polyphenyl ether composition are ensured by compounding high-viscosity and low-viscosity polyphenyl ether resin and low-viscosity polyamide 6 resin, and N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-phthalic diamide, PPO and the like, Bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphates and pentaerythritol zinc improve yellowing phenomenon and thermal stability of the polyamide 6/polyphenyl ether composition in the blending processing process, and the prepared polyamide 6/polyphenyl ether composition has excellent mechanical property and processing property due to the mutual matching of the raw material components, and can be applied to manufacturing automobiles, electronic and electric appliance elements, medical supplies, office equipment and the like.
The preparation method of the polyamide 6/polyphenyl ether composition provided by the invention has the advantages of simple process, easiness in control and low requirement on equipment, and the used equipment is general polymer processing equipment, so that the investment is low, and the industrial production is facilitated.
Drawings
FIG. 1 is a flow chart of a process for preparing a polyamide 6/polyphenylene ether composition according to one embodiment of the invention.
Detailed Description
In order to further understand the features and technical means of the present invention and achieve the specific objects and functions, the advantages and spirit of the present invention are further illustrated by the following embodiments.
The reaction mechanism of the polyamide 6/polyphenylene ether composition of one embodiment of the present invention is as follows (see FIG. 1 for a flow chart of the preparation process):
Figure BDA0002252653500000081
mechanism of reaction
As can be seen from the reaction formula, the epoxy group of the copolymer of styrene and glycidyl methacrylate can chemically react with the terminal amino group of PA6 and the terminal hydroxyl group of PPO, so that the compatibility between PA6 and PPO is improved; the isocyanate group of the toluene diisocyanate can react with the terminal amino group and the terminal carboxyl group of PA6 and the terminal hydroxyl group of PPO, so that the compatibility between PA6 and PPO is improved; anhydride groups in the hydrogenated styrene-isoprene copolymer grafted maleic anhydride can react with terminal amino groups of PA6 and terminal hydroxyl groups of PPO, so that the compatibility between PA6 and PPO is improved.
The examples of the invention and the comparative examples used the following raw materials:
low-viscosity polyamide 6 resin with the intrinsic viscosity of 1.17dL/g, and is selected from Shanyang Ba Ling petrochemical company, Hunan;
low-viscosity polyamide 6 resin with the intrinsic viscosity of 1.05dL/g and selected from Hunan Yueyangba Ling petrochemical company Limited;
low-viscosity polyamide 6 resin with the intrinsic viscosity of 0.97dL/g, and is selected from Shanyang Ba Ling petrochemical company, Hunan;
high viscosity polyphenylene ether resin with intrinsic viscosity of 0.48dL/g, selected from Nantong star synthetic materials GmbH;
high viscosity polyphenylene ether resin with intrinsic viscosity of 0.46dL/g, selected from Nantong star synthetic materials GmbH;
high viscosity polyphenylene ether resin with intrinsic viscosity of 0.55dL/g, selected from Nantong star synthetic materials GmbH;
low viscosity polyphenylene ether resin with intrinsic viscosity of 0.35dL/g, selected from Nantong star synthetic materials GmbH;
low viscosity polyphenylene ether resin with intrinsic viscosity of 0.34dL/g, selected from Nantong star synthetic materials GmbH;
low viscosity polyphenylene ether resin with intrinsic viscosity of 0.28dL/g, selected from Nantong star synthetic materials GmbH;
a copolymer of styrene and glycidyl methacrylate, the mass fraction of Glycidyl Methacrylate (GMA) being 3% by weight, selected from sigma aldrich trade ltd;
toluene diisocyanate selected from the group consisting of national pharmaceutical group chemical agents;
the hydrogenated styrene-isoprene copolymer was grafted with maleic anhydride, the maleic anhydride grafting ratio was 1.2 wt%, and was selected from the group consisting of the company clony, japan;
n, N' -bis (2,2,6, 6-tetramethyl-4-piperidinyl) -1, 3-benzenedicarboxamide, selected from Toxongitai chemical Co., Ltd;
bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate selected from Shanghai Yaozao Fine chemical Co., Ltd;
pentaerythritol zinc selected from Zhaoqing Sendeli chemical industry Co., Ltd;
hydrogenated styrene-butadiene-styrene copolymer grafted maleic anhydride, selected from Shenyangtotong plastics Co.
The present invention will be described in detail with reference to specific examples.
Example 1:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000091
Figure BDA0002252653500000101
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 110 ℃ for 8 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 80 ℃ for 8 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 240 ℃, the temperature in the second zone was 245 ℃, the temperature in the third zone was 245 ℃, the temperature in the fourth zone was 250 ℃, the temperature in the fifth zone was 250 ℃, the temperature in the sixth zone was 245 ℃, the temperature in the seventh zone was 245 ℃, the temperature in the eighth zone was 245 ℃, the temperature in the die head was 245 ℃ and the screw speed was 200 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 35, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 2:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000111
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 140 ℃ for 4 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 110 ℃ for 4 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 260 ℃, the temperature in the second zone was 265 ℃, the temperature in the third zone was 265 ℃, the temperature in the fourth zone was 270 ℃, the temperature in the fifth zone was 270 ℃, the temperature in the sixth zone was 265 ℃, the temperature in the seventh zone was 265 ℃, the temperature in the eighth zone was 265 ℃, the temperature in the die head was 265 ℃ and the screw speed was 600 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 50, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 3:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000121
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 120 ℃ for 6 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 90 ℃ for 6 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 245 ℃, the temperature in the second zone was 250 ℃, the temperature in the third zone was 250 ℃, the temperature in the fourth zone was 255 ℃, the temperature in the fifth zone was 255 ℃, the temperature in the sixth zone was 250 ℃, the temperature in the seventh zone was 250 ℃, the temperature in the eighth zone was 250 ℃, the temperature of the die head was 250 ℃ and the rotation speed of the screw was 300 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 35, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 4:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000131
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 130 ℃ for 4 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 100 ℃ for 4 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 255 ℃, the temperature in the second zone was 260 ℃, the temperature in the third zone was 260 ℃, the temperature in the fourth zone was 265 ℃, the temperature in the fifth zone was 265 ℃, the temperature in the sixth zone was 260 ℃, the temperature in the seventh zone was 260 ℃, the temperature in the eighth zone was 260 ℃, the temperature in the die head was 260 ℃ and the screw speed was 500 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 45, and the screw is provided with 2 meshing block areas and 1 reverse-thread area.
Example 5:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000141
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 6:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000151
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 7:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000161
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Example 8:
the polyamide 6/polyphenylene ether composition of the embodiment is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000171
Figure BDA0002252653500000181
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The shape of a screw of the parallel double-screw extruder is double-thread, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Comparative example 1:
the polyamide 6/polyphenyl ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000182
Figure BDA0002252653500000191
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Comparative example 2:
the polyamide 6/polyphenyl ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000192
Figure BDA0002252653500000201
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 rpm) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Comparative example 3:
the polyamide 6/polyphenyl ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000211
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
Comparative example 4:
the polyamide 6/polyphenyl ether composition is prepared from the following raw materials in parts by weight:
Figure BDA0002252653500000212
Figure BDA0002252653500000221
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at 125 ℃ for 5 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at 95 ℃ for 5 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the cooled high-viscosity polyphenylene ether resin, the cooled low-viscosity polyphenylene ether resin, the cooled N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-butadiene-styrene copolymer grafted maleic anhydride into another high-speed stirrer (the rotating speed is 1000 revolutions per minute) for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the side direction (the fourth zone) of the parallel double-screw extruder (total eight zones) for melt extrusion and granulation, wherein the process parameters are as follows: the temperature in the first zone was 250 deg.C, the temperature in the second zone was 255 deg.C, the temperature in the third zone was 255 deg.C, the temperature in the fourth zone was 260 deg.C, the temperature in the fifth zone was 260 deg.C, the temperature in the sixth zone was 255 deg.C, the temperature in the seventh zone was 255 deg.C, the temperature in the eighth zone was 255 deg.C, the temperature in the die head was 255 deg.C, and the screw speed was 400 rpm.
The screw of the parallel double-screw extruder is in a single-thread shape, the ratio L/D of the length L and the diameter D of the screw is 40, and the screw is provided with 2 meshing block areas and 1 back-thread area.
The following is a list of raw material compositions of examples and comparative examples (table 1).
TABLE 1 summary of the composition parts by weight of the raw materials of the examples and comparative examples
Figure BDA0002252653500000231
Remarking: a, the intrinsic viscosity of the high-viscosity PPO is 0.55 dL/g; b, the intrinsic viscosity of the low-viscosity PA6 is 0.97dL/g, and the intrinsic viscosity of the low-viscosity PPO is 0.28 dL/g; c, replacing SEPS-g-MAH with SEBS-g-MAH; and d, changing the screw structure.
The amounts of N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc used in the above examples and comparative examples were 0.2 parts.
The polyamide 6/polyphenylene ether compositions prepared in the above examples and comparative examples were subjected to the following property tests:
tensile property: testing according to GB/T1040-2006 standard, wherein the stretching speed is 50 mm/min;
impact properties: according to the test of GB/T1843-2008 standard, the thickness of the sample strip is 4 mm;
melt index: testing according to GB/T3682-2000 standard, wherein the testing temperature is 280 ℃, and the load is 5 kg;
the results of the performance tests are shown in table 2.
TABLE 2 Properties of Polyamide 6/polyphenylene ether compositions of examples and comparative examples
Figure BDA0002252653500000241
In examples 1 to 7, the addition amounts of the low-viscosity polyamide 6 resin, the high-viscosity polyphenylene ether resin, the low-viscosity polyphenylene ether resin, SG, TDI, and SEPS-g-MAH were adjusted, and it can be seen from the table that as the addition amount of the low-viscosity polyamide 6 resin decreases (or the addition amount of the polyphenylene ether resin increases), the tensile strength and the melt index thereof decrease, and the notch impact strength increases, mainly because PA6 is a crystalline plastic, the substrate itself has high tensile strength and good fluidity, and PPO is an amorphous plastic, the substrate itself has low tensile strength, and the main chain has rigid benzene rings, and the fluidity is poor. Meanwhile, the addition amounts of SG, TDI and SEPS-g-MAH are increased, so that the compatibility between two phases of PA6 and PPO can be effectively improved, and the notch impact strength of PA6/PPO is improved, but the tensile strength of the PA6/PPO is influenced on the contrary by excessive addition of SG, TDI and SEPS-g-MAH. By comparison, the overall performance of example 7 is best.
Example 7 the screw shape of the parallel twin-screw extruder of example 8 was a twin screw and the screw shape of the parallel twin-screw extruder of example 7 was a single screw, as compared to example 8, and it was found by comparison that the tensile strength, notched impact strength and melt index of the polyamide 6/polyphenylene ether composition prepared using the screw parameters of the parallel twin-screw extruder described in example 7 were better.
Example 7 in comparison with comparative example 1, comparative example 1 used a high viscosity polyphenylene ether resin having an intrinsic viscosity of 0.55dL/g, whereas example 7 used a high viscosity polyphenylene ether resin having an intrinsic viscosity of 0.48dL/g, and the fluidity of the polyphenylene ether resin was greatly reduced as the intrinsic viscosity of the polyphenylene ether resin was increased, and the melt index of the polyamide 6/polyphenylene ether composition was only 19g/10min when the intrinsic viscosity of the polyphenylene ether resin was 0.55 dL/g; example 7 in comparison with comparative example 2, comparative example 2 used a low-tack polyamide 6 resin having an intrinsic viscosity of 0.97dL/g and a low-tack polyphenylene ether resin having an intrinsic viscosity of 0.28dL/g, while example 7 used a low-tack polyamide 6 resin having an intrinsic viscosity of 1.17dL/g and a low-tack polyphenylene ether resin having an intrinsic viscosity of 0.35dL/g, the tensile strength and the notched impact strength of the polyamide 6/polyphenylene ether composition prepared in comparative example 2 were lower than those of example 7 as the intrinsic viscosities of the polyamide 6 resin and the polyphenylene ether resin were lower; example 7 compared to comparative example 3, which had no addition of SG, TDI and SEPS-g-MAH, had poor compatibility of PA6 and PPO, and resulted in a polyamide 6/polyphenylene ether composition having much lower tensile strength and notched impact strength than example 7; example 7 in comparison to comparative example 4, which used SEBS-g-MAH in comparative example 4, and SEPS-g-MAH in example 7, the polyamide 6/polyphenylene ether composition prepared in example 7 had higher tensile strength and notched impact strength than those of comparative example 4.
The technical features of the embodiments described above may be arbitrarily combined, and for the sake of brevity, all possible combinations of the technical features in the embodiments described above are not described, but should be considered as being within the scope of the present specification as long as there is no contradiction between the combinations of the technical features.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.

Claims (10)

1. The polyamide 6/polyphenyl ether composition is characterized by being prepared from the following raw materials in parts by weight:
Figure FDA0003447830290000011
the intrinsic viscosity of the low-viscosity polyamide 6 resin is 1.01-1.33 dL/g; the intrinsic viscosity of the high-viscosity polyphenyl ether resin is 0.45-0.51 dL/g; the intrinsic viscosity of the low-viscosity polyphenyl ether resin is 0.33-0.37 dL/g;
the preparation method of the polyamide 6/polyphenyl ether composition comprises the following steps:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 110-140 ℃ for 4-8 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 80-110 ℃ for 4-8 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the high-viscosity polyphenylene ether resin, the low-viscosity polyphenylene ether resin, the N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a stirrer for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another stirrer for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the parallel double-screw extruder in the lateral direction, performing melt extrusion, and granulating, wherein the process parameters comprise: the temperature of the first zone is 240-260 ℃, the temperature of the second zone is 245-265 ℃, the temperature of the third zone is 245-265 ℃, the temperature of the fourth zone is 250-270 ℃, the temperature of the fifth zone is 250-270 ℃, the temperature of the sixth zone is 245-265 ℃, the temperature of the seventh zone is 245-265 ℃, the temperature of the eighth zone is 245-265 ℃, the temperature of the die head is 245-265 ℃ and the rotation speed of the screw is 200-600 rpm;
the screw shape of the parallel double-screw extruder is a single thread; the ratio L/D of the length L of the screw to the diameter D of the screw is 35-50 v, and more than 1 meshing block area and more than 1 reverse thread area are arranged on the screw.
2. The polyamide 6/polyphenylene ether composition according to claim 1, which is prepared from the following raw materials in parts by weight:
Figure FDA0003447830290000021
3. the polyamide 6/polyphenylene ether composition according to any one of claims 1-2, wherein the mass fraction of glycidyl methacrylate in the copolymer of styrene and glycidyl methacrylate is 2 to 4 wt%.
4. The polyamide 6/polyphenylene ether composition according to claim 3, wherein the mass fraction of glycidyl methacrylate in the copolymer of styrene and glycidyl methacrylate is 3 wt%.
5. The polyamide 6/polyphenylene ether composition according to any one of claims 1 to 2, wherein the maleic anhydride graft ratio in the hydrogenated styrene-isoprene copolymer grafted maleic anhydride is 0.8 to 1.5 wt%.
6. The polyamide 6/polyphenylene ether composition according to claim 5, wherein the maleic anhydride graft ratio in the hydrogenated styrene-isoprene copolymer-grafted maleic anhydride is 1.2 wt%.
7. A process for the preparation of a polyamide 6/polyphenylene ether composition according to any of claims 1 to 6, comprising the steps of:
(1) drying the low-viscosity polyamide 6 resin at the temperature of 110-140 ℃ for 4-8 hours, drying the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin at the temperature of 80-110 ℃ for 4-8 hours, cooling, and adding the cooled low-viscosity polyamide 6 resin, the high-viscosity polyphenylene ether resin, the low-viscosity polyphenylene ether resin, the N, N' -bis (2,2,6, 6-tetramethyl-4-piperidyl) -1, 3-benzenedicarboxamide, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphate and pentaerythritol zinc into a stirrer for mixing;
(2) adding the styrene-glycidyl methacrylate copolymer, toluene diisocyanate and hydrogenated styrene-isoprene copolymer grafted maleic anhydride into another stirrer for mixing;
(3) adding the mixture mixed in the step (1) into a parallel double-screw extruder through a feeder, adding the mixture mixed in the step (2) into the parallel double-screw extruder in the lateral direction, performing melt extrusion, and granulating, wherein the process parameters comprise: the temperature of the first zone is 240-260 ℃, the temperature of the second zone is 245-265 ℃, the temperature of the third zone is 245-265 ℃, the temperature of the fourth zone is 250-270 ℃, the temperature of the fifth zone is 250-270 ℃, the temperature of the sixth zone is 245-265 ℃, the temperature of the seventh zone is 245-265 ℃, the temperature of the eighth zone is 245-265 ℃, the temperature of the die head is 245-265 ℃ and the rotation speed of the screw is 200-600 rpm;
the screw shape of the parallel double-screw extruder is a single thread; the ratio L/D of the length L of the screw to the diameter D of the screw is 35 to 50; the screw is provided with more than 1 meshing block area and more than 1 reverse thread area.
8. The preparation method according to claim 7, wherein in the step (1), the low-viscosity polyamide 6 resin is dried at a temperature of 120 to 130 ℃ for 4 to 6 hours, and the high-viscosity polyphenylene ether resin and the low-viscosity polyphenylene ether resin are dried at a temperature of 90 to 100 ℃ for 4 to 6 hours; the process parameters in the step (3) comprise: the temperature of the first zone is 245-255 ℃, the temperature of the second zone is 250-260 ℃, the temperature of the third zone is 250-260 ℃, the temperature of the fourth zone is 255-265 ℃, the temperature of the fifth zone is 255-265 ℃, the temperature of the sixth zone is 250-260 ℃, the temperature of the seventh zone is 250-260 ℃, the temperature of the eighth zone is 250-260 ℃, the temperature of the die head is 250-260 ℃, and the rotating speed of the screw is 300-500 rpm.
9. The method according to claim 8, wherein the ratio L/D of the screw length L to the diameter D is 35 to 45; and 2 meshing block areas and 1 reverse thread area are arranged on the screw rod.
10. The method according to claim 7 or 8, wherein in step (1) and/or step (2), the stirrer is a high-speed stirrer with a rotation speed of 500 and 1500 rpm.
CN201911040314.3A 2019-10-29 2019-10-29 Polyamide 6/polyphenyl ether composition and preparation method thereof Active CN110684346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911040314.3A CN110684346B (en) 2019-10-29 2019-10-29 Polyamide 6/polyphenyl ether composition and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911040314.3A CN110684346B (en) 2019-10-29 2019-10-29 Polyamide 6/polyphenyl ether composition and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110684346A CN110684346A (en) 2020-01-14
CN110684346B true CN110684346B (en) 2022-03-25

Family

ID=69114672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911040314.3A Active CN110684346B (en) 2019-10-29 2019-10-29 Polyamide 6/polyphenyl ether composition and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110684346B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876002A (en) * 2011-07-11 2013-01-16 苍南县慧丰塑料有限公司 Rapid molding high heat-resistant polyamide-polyphenyl ether alloy and preparation method thereof
CN106519652A (en) * 2016-10-12 2017-03-22 广东中塑新材料有限公司 High-heat-resistance and high-fluidity polyamide composite material and preparation method thereof
CN106867245A (en) * 2015-12-09 2017-06-20 旭化成株式会社 The manufacture method of thermoplastic resin composition, products formed and products formed

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876002A (en) * 2011-07-11 2013-01-16 苍南县慧丰塑料有限公司 Rapid molding high heat-resistant polyamide-polyphenyl ether alloy and preparation method thereof
CN106867245A (en) * 2015-12-09 2017-06-20 旭化成株式会社 The manufacture method of thermoplastic resin composition, products formed and products formed
CN106519652A (en) * 2016-10-12 2017-03-22 广东中塑新材料有限公司 High-heat-resistance and high-fluidity polyamide composite material and preparation method thereof

Also Published As

Publication number Publication date
CN110684346A (en) 2020-01-14

Similar Documents

Publication Publication Date Title
CN102993709B (en) PA6 polyblend, its preparation method and application
CN102627851B (en) Compatible polyamide-polyphenyl ether composition and preparation method thereof
CN110698839B (en) High dielectric constant polyphenyl ether/high impact polystyrene composition and preparation method thereof
CN111117192A (en) Polycarbonate/polyester alloy with high CTI value, high glow wire and low hot ball indentation and preparation method thereof
CN110791049B (en) Flame-retardant reinforced polyphenyl ether/high impact polystyrene composition and preparation method thereof
CN110669332B (en) Flame-retardant polyamide 6/polyphenyl ether composition and preparation method thereof
CN112662143B (en) PBT composition with high elongation at break and preparation method thereof
CN110698852B (en) Flame-retardant reinforced polyamide 6/polyphenyl ether composition and preparation method thereof
CN102241885B (en) Composite material of polyphthalamide (PPA) and polyphenylene sulfide (PPS) and preparation method thereof
CN110776729B (en) Flame-retardant polyphenyl ether/high impact polystyrene composition and preparation method thereof
CN110643167B (en) Flame-retardant reinforced polyphenyl ether/polyamide 66 composition and preparation method thereof
CN110643175B (en) High dielectric constant polyamide 6/polyphenyl ether composition and preparation method thereof
CN110591332B (en) Polyphenylene ether/polyamide 66 composition and method for making same
CN110684346B (en) Polyamide 6/polyphenyl ether composition and preparation method thereof
CN110628202B (en) High dielectric constant polyphenylene ether/polyamide 66 composition and preparation method thereof
CN110684347B (en) Conductive polyamide 6/polyphenyl ether composition and preparation method thereof
CN110760177B (en) Conductive polyphenyl ether/high impact polystyrene composition and preparation method thereof
CN110655787B (en) Conductive polyphenylene ether/polyamide 66 composition and preparation method thereof
CN110724374B (en) Flame-retardant polyphenyl ether/polyamide 66 composition and preparation method thereof
CN110819095B (en) Polyphenyl ether/high impact polystyrene composition and preparation method thereof
CN109749015B (en) Polyphenylene sulfide polyamide resin composition and preparation method thereof
CN111825975B (en) Polyamide composition and preparation method thereof
CN106810856A (en) Bellows material and preparation method thereof
CN111944308A (en) Nylon 6 composite material with low linear expansion coefficient and preparation method thereof
CN114479463B (en) Extrusion-grade PPS composite material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant