CN110676377A - 一种铈掺杂二氧化钛忆阻器薄膜的制备方法 - Google Patents

一种铈掺杂二氧化钛忆阻器薄膜的制备方法 Download PDF

Info

Publication number
CN110676377A
CN110676377A CN201910933647.2A CN201910933647A CN110676377A CN 110676377 A CN110676377 A CN 110676377A CN 201910933647 A CN201910933647 A CN 201910933647A CN 110676377 A CN110676377 A CN 110676377A
Authority
CN
China
Prior art keywords
cerium
titanium dioxide
doped titanium
film
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910933647.2A
Other languages
English (en)
Inventor
李颖
张坤
武焱旻
赵高扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201910933647.2A priority Critical patent/CN110676377A/zh
Publication of CN110676377A publication Critical patent/CN110676377A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Abstract

本发明公开了一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:步骤1,制备铈金属氧化物溶胶;步骤2,制备二氧化钛溶胶;步骤3,将步骤1制备的铈金属氧化物溶胶和二氧化钛溶胶混合,待搅拌均匀后进行陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为(200‑2000):1;步骤4,采用浸渍‑提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,再进行热处理得到铈掺杂氧化钛薄膜。该铈掺杂二氧化钛忆阻器薄膜的制备方法具有制备成本低、工艺简单、容易控制等优点。

Description

一种铈掺杂二氧化钛忆阻器薄膜的制备方法
技术领域
本发明属于微电子材料阻变存储器薄膜制备技术领域,特别是涉及一种铈掺杂二氧化钛忆阻器薄膜的制备方法。
背景技术
作为下一代非易失性存储器,忆阻器薄膜材料由于结构简单、兼容性好、读写速度快、耐久性高、能耗低和成本低等优势正在被广泛研究。对于忆阻器薄膜器件来说,氧空位在氧化物中的迁移机制,为氧化物忆阻器薄膜的阻变机理研究提供新的思路,通过精确的引入杂质,可以调控氧空位的产生,进而提高忆阻器的性能,降低工作电压。而利用溶胶凝胶法可以实现分子水平的掺杂,以此为基础进行研究就能够不断提高开关比,提升忆阻器薄膜器件性能。
发明内容
本发明的目的在于提供了一种铈掺杂二氧化钛忆阻器薄膜的制备方法,用以提升忆阻器薄膜器件性能。
为了达到上述目的,本发明所采用的技术方案是,一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,制备铈金属氧化物溶胶;
步骤2,制备二氧化钛溶胶;
步骤3,将步骤1制备的铈金属氧化物溶胶和二氧化钛溶胶混合,待搅拌均匀后进行陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为(200-2000):1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,再进行热处理得到铈掺杂氧化钛薄膜。
本发明的技术方案,还具有以下特点,
在所述步骤1中,制备铈金属氧化物溶胶具体为:以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌6h~8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈稀溶胶。
在所述步骤2中,制备氧化钛溶胶具体为:以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为2~3,于室温下搅拌6h~8h后陈化24h得到二氧化钛溶胶。
在所述步骤3中,搅拌的时间为8h,陈化时间为24h。
在所述步骤3中,热处理在氩气或空气或氧气气氛下进行。
本发明的有益效果是:本发明的一种铈掺杂二氧化钛忆阻器薄膜的制备方法具有制备成本低、工艺简单、容易控制等优点,不仅提高了铈掺杂氧化钛忆阻器薄膜的制备效率,而且制备得到的铈掺杂氧化钛忆阻器薄膜还具有良好的电阻反转特性。
附图说明
图1是采用原子力显微镜(AFM)分别对实施例1制备得到的铈掺杂二氧化钛忆阻器薄膜进行微观形貌的观察图;
图2是采用原子力显微镜(AFM)分别对实施例2制备得到的铈掺杂二氧化钛忆阻器薄膜进行微观形貌的观察图;
图3是采用原子力显微镜(AFM)分别对实施例3制备得到的铈掺杂二氧化钛忆阻器薄膜进行微观形貌的观察图;
图4是采用原子力显微镜(AFM)分别对实施例4制备得到的铈掺杂二氧化钛忆阻器薄膜进行微观形貌的观察图;
图5是采用原子力显微镜(AFM)分别对实施例5制备得到的无铈掺杂二氧化钛忆阻器薄膜进行微观形貌的观察图;
图6是实施例1-5制备得到的产物的透过率光谱图;
图7是实施例1-5制备得到的产物的反射率光谱图;
图8是采用X射线光电子能谱分别对实施例1-4制备得到的铈掺杂二氧化钛忆阻器薄膜进行化学状态的分析图;
图9是实施例3的二氧化钛薄忆阻器薄膜的I-V曲线图。
图中:0表示实施例5制备得到的无铈掺杂二氧化钛忆阻器薄膜,200:1表示实施例1制备得到的铈掺杂二氧化钛忆阻器薄膜,800:1表示实施例2制备得到的铈掺杂二氧化钛忆阻器薄膜,1200:1表示实施例3制备得到的铈掺杂二氧化钛忆阻器薄膜,2000:1表示实施例4制备得到的铈掺杂二氧化钛忆阻器薄膜。
具体实施方式
下面结合附图说明和具体实施方式对本发明的技术方案作进一步的详细说明。
一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌6h~8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶;
步骤2,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为2~3,于室温下搅拌6h~8h后陈化24h得到二氧化钛溶胶;
步骤3,将步骤1制备的氧化铈溶胶和二氧化钛溶胶混合,待搅拌8h后进行24h陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为(200-2000):1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氩气或空气或氧气气氛下进行热处理得到铈掺杂二氧化钛薄膜。
实施例1
一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶;
步骤2,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为3,于室温下搅拌6h~8h后陈化24h得到氧化钛溶胶;
步骤3,将步骤1制备的氧化铈溶胶和氧化钛溶胶混合,待搅拌8h后进行24h陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为200:1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氧气气氛下进行热处理得到铈掺杂氧化钛薄膜。
实施例2
一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌6h~8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶;
步骤2,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为3,于室温下搅拌6h~8h后陈化24h得到氧化钛溶胶;
步骤3,将步骤1制备的氧化铈溶胶和氧化钛溶胶混合,待搅拌8h后进行24h陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为800:1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氧气气氛下进行热处理得到铈掺杂氧化钛薄膜。
实施例3
一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶;
步骤2,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为3,于室温下搅拌6h~8h后陈化24h得到氧化钛溶胶;
步骤3,将步骤1制备的氧化铈溶胶和氧化钛溶胶混合,待搅拌8h后进行24h陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为1200:1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氧气气氛下进行热处理得到铈掺杂氧化钛薄膜。
实施例4
一种铈掺杂二氧化钛忆阻器薄膜的制备方法,具体按照以下步骤实施:
步骤1,以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶;
步骤2,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为3,于室温下搅拌6h~8h后陈化24h得到氧化钛溶胶;
步骤3,将步骤1制备的氧化铈溶胶和氧化钛溶胶混合,待搅拌8h后进行24h陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为2000:1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氧气气氛下进行热处理得到铈掺杂氧化钛薄膜。
实施例5
实施例5作为对比实施例,未掺杂铈,制备方法如下:
步骤1,以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为3,于室温下搅拌8h后陈化24h得到氧化钛溶胶;
步骤2,将步骤1制备的氧化钛溶胶搅拌8h后进行24h陈化得到无铈掺杂二氧化钛溶胶;
步骤3,采用浸渍-提拉法,以无铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行无铈掺杂二氧化钛凝胶薄膜的提拉,无铈掺杂二氧化钛凝胶薄膜在室温下干燥后,在氧气气氛下进行热处理得到铈掺杂氧化钛薄膜。
采用原子力显微镜(AFM)分别对实施例1-5制备得到不同浓度铈掺杂的二氧化钛忆阻器薄膜进行微观形貌的观察。薄膜的测试扫描范围为1μm×1μm,扫描模式为接触式模式,从图1~5中可以看出,图1钛离子和铈离子的摩尔掺杂比分别为200:1的铈掺杂二氧化钛忆阻器薄膜面内起伏值为16.32nm;图2钛离子和铈离子的摩尔掺杂比800:1的铈掺杂二氧化钛忆阻器薄膜面内起伏值为11.92nm;图3钛离子和铈离子的摩尔掺杂比1200:1的铈掺杂二氧化钛忆阻器薄膜面内起伏值为9.24nm;图4钛离子和铈离子的摩尔掺杂比2000:1的铈掺杂二氧化钛忆阻器薄膜面内起伏值为15.54nm;图5无铈掺杂二氧化钛忆阻器薄膜的面内起伏值为7.57nm。通过观察微区的表面形貌可知四种不同铈浓度掺杂的铈掺杂二氧化钛薄膜以及无铈掺杂二氧化钛薄膜表面都比较均匀、致密平整,平均粗糙度也都较低。但是随着铈掺杂量浓度的增加,表面形成的颗粒越来越明显,并且随着铈掺杂量浓度的增加,面内起伏值是不断增大的。这是因为,并且随着铈掺杂量浓度的增加,铈取代Ti原子的数量在不断增加,由于铈原子半径为0.27nm大于Ti原子半径0.20nm,所以铈掺杂后会使得二氧化钛晶胞尺寸有所膨胀,表面颗粒变多、变大。
为了进一步研究铈掺杂后的对二氧化钛薄膜的禁带宽度的改变,使用紫外-可见光分光光度计对实施例1-5制备的产物进行光学性能的测试,即反射率(R)和透射率(T)的测试。表1为五种不同铈浓度掺杂的二氧化钛薄膜的光学禁带宽度,该禁带宽度可由反射率、膜厚和透过率计算得出,具体的计算公式为:
α=(1/d)×㏑[(1-R)/T] (1)
αhν=C(hν-Eg)1/2 (2)
式中:α—吸收常数;d—膜厚;R—反射率;T—透射率;hν—入射光能量;C—光速,3×108m/s。
表1
Figure BDA0002220907020000081
如图6为实施例1-5制备得到的产物的透过率光谱图,由图6可以看出,样品在350nm波长处有强烈的吸收边,铈掺杂二氧化钛忆阻器薄膜具有最高的透过率。
如图7为实施例1-5制备得到的产物的反射率光谱图,由图7可以看出,每个样品均有明显的光干涉现象,表明薄膜表面光滑并且均匀;光学禁带宽度如表1所示,图1是以(αhν)2对hν作图,对曲线进行线性外延后,与横轴(X轴)的交点就是样品的光学禁带宽度。五种铈不同掺杂浓度的二氧化钛薄膜的禁带宽度分别为3.3165eV、3.2562eV、3.2616eV、3.4.31和3.4462eV,随着掺杂浓度的增大,禁带宽度呈现先变小后变大的趋势。
采用X射线光电子能谱分别对实施例1-4制备得到的铈掺杂二氧化钛忆阻器薄膜进行化学状态的研究。从图8中可以看出,Ce3d的光电子峰对应的结合能值分别为898.1eV和903.6eV,使用X射线光电子能谱手册(Handbook of X-ray photoelectronspectroscopy)对其进行分析发现,它与Ce3d的标准峰值范围符合较好。由不同摩尔掺杂量的Ce3d谱可以看出,铈掺杂改变了薄膜中钛元素的化学态,当铈进行不同掺杂量的制备时,铈原子夺走了一部分氧原子。随着铈摩尔掺杂量的增加,Ce3d的光电子谱峰越来越明显。但当铈掺杂超过一定量时,即钛离子和铈离子的摩尔掺杂比2000:1的二氧化钛薄膜,其掺杂对薄膜电阻开关特性的影响就不明显。
在X射线光电子能谱探测深度范围内测得铈掺杂氧化钛薄膜中还含有Ti2p、O1s。
使用电学测试系统对制备好的铈掺杂二氧化钛忆阻器薄膜器件进行阻变特性的测试。图9为实施例3于500℃氧气气氛热处理钛离子和铈离子摩尔掺杂比1200:1的二氧化钛薄忆阻器薄膜的I-V曲线。该曲线具有完整的双极性电阻转变特性。可以看到忆阻器在电压为0.83V的位置时电阻有个明显突变的情况,器件从高阻态变为低阻态,即发生SET过程,并且在后续的测试中稳定地保持着低阻态。当施加反向电压,在电压为-1.76V时电阻从低阻态转变为高阻态,即发生复位RESET过程,并且在后续的测试中保持了高阻态的性能。
氧化物组成的忆阻器薄膜发生电阻转变的现象,主要是由于氧空位细丝的形成和断裂,在正向电压下,薄膜中大量的氧空位迁移到Pt底电极,由于引入了铈原子进行有效地掺杂,薄膜中产生了更多的氧空位,使得氧空位的迁移几率增大。氧空位随电场方向移动的阻力较小,致使器件的SET电压和RESET电压均较小,呈现低功耗性,显示出较好的电阻转变特性。

Claims (5)

1.一种铈掺杂二氧化钛忆阻器薄膜的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,制备铈金属氧化物溶胶;
步骤2,制备氧化钛溶胶;
步骤3,将步骤1制备的铈金属氧化物溶胶和氧化钛溶胶混合,待搅拌均匀后进行陈化得到铈掺杂二氧化钛溶胶,其中钛离子与铈离子的摩尔比为(200-2000):1;
步骤4,采用浸渍-提拉法,以铈掺杂二氧化钛溶胶为原料在室温下使用提拉机在Pt铂金电极基板上进行铈掺杂二氧化钛凝胶薄膜的提拉,铈掺杂二氧化钛凝胶薄膜在室温下干燥后,再进行热处理得到铈掺杂氧化钛薄膜。
2.根据权利要求1所述的铈掺杂二氧化钛忆阻器薄膜的制备方法,其特征在于,在所述步骤1中,制备铈金属氧化物溶胶具体为:以乙醇为溶剂,以硝酸铈为前驱体,两者混合后于室温下搅拌6h~8h并陈化24h,配制得到摩尔比为0.04mol/l的氧化铈溶胶。
3.根据权利要求1所述的铈掺杂二氧化钛忆阻器薄膜的制备方法,其特征在于,在所述步骤2中,制备氧化钛溶胶具体为:以乙醇为溶剂,以钛酸丁酯作为前驱体,钛酸丁酯和乙醇按1:10的摩尔比混合后,采用硝酸调节PH值为2~3,于室温下搅拌6h~8h后陈化24h得到二氧化钛溶胶。
4.根据权利要求1所述的铈掺杂二氧化钛忆阻器薄膜的制备方法,其特征在于,在所述步骤3中,搅拌的时间为8h,陈化时间为24h。
5.根据权利要求1所述的铈掺杂二氧化钛忆阻器薄膜的制备方法,其特征在于,在所述步骤3中,热处理在氩气或空气或氧气气氛下进行。
CN201910933647.2A 2019-09-29 2019-09-29 一种铈掺杂二氧化钛忆阻器薄膜的制备方法 Pending CN110676377A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910933647.2A CN110676377A (zh) 2019-09-29 2019-09-29 一种铈掺杂二氧化钛忆阻器薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910933647.2A CN110676377A (zh) 2019-09-29 2019-09-29 一种铈掺杂二氧化钛忆阻器薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN110676377A true CN110676377A (zh) 2020-01-10

Family

ID=69080198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910933647.2A Pending CN110676377A (zh) 2019-09-29 2019-09-29 一种铈掺杂二氧化钛忆阻器薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110676377A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159862A (zh) * 2022-08-05 2022-10-11 中北大学 一种利用氧空位调控金红石型二氧化钛基阻变存储器性能的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030623A (zh) * 2006-02-27 2007-09-05 三星电子株式会社 采用两个氧化物层的非易失性存储器件
CN101212019A (zh) * 2006-12-26 2008-07-02 北京大学 一种电阻式随机存取存储器的存储单元及其制备方法
WO2010080079A1 (en) * 2009-01-06 2010-07-15 Hewlett-Packard Development Company, L.P. Memristor devices configured to control bubble formation
US20130126818A1 (en) * 2011-11-23 2013-05-23 Albert Chin Resistive random access memory (rram) using stacked dielectrics and method for manufacturing the same
CN103904216A (zh) * 2014-03-21 2014-07-02 西安理工大学 一种钛掺杂氧化镍电阻存储器薄膜的制备方法
US9887351B1 (en) * 2016-09-30 2018-02-06 International Business Machines Corporation Multivalent oxide cap for analog switching resistive memory
CN108281548A (zh) * 2018-02-07 2018-07-13 中南大学 一种双极性双稳态忆阻器及其制备方法
CN109411599A (zh) * 2018-10-22 2019-03-01 西安理工大学 一种锆掺杂氧化钛忆阻器薄膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030623A (zh) * 2006-02-27 2007-09-05 三星电子株式会社 采用两个氧化物层的非易失性存储器件
CN101212019A (zh) * 2006-12-26 2008-07-02 北京大学 一种电阻式随机存取存储器的存储单元及其制备方法
WO2010080079A1 (en) * 2009-01-06 2010-07-15 Hewlett-Packard Development Company, L.P. Memristor devices configured to control bubble formation
US20130126818A1 (en) * 2011-11-23 2013-05-23 Albert Chin Resistive random access memory (rram) using stacked dielectrics and method for manufacturing the same
CN103904216A (zh) * 2014-03-21 2014-07-02 西安理工大学 一种钛掺杂氧化镍电阻存储器薄膜的制备方法
US9887351B1 (en) * 2016-09-30 2018-02-06 International Business Machines Corporation Multivalent oxide cap for analog switching resistive memory
CN108281548A (zh) * 2018-02-07 2018-07-13 中南大学 一种双极性双稳态忆阻器及其制备方法
CN109411599A (zh) * 2018-10-22 2019-03-01 西安理工大学 一种锆掺杂氧化钛忆阻器薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于武刚等: "铈离子掺杂的氧化钛纳米薄膜的结构及性能研究", 《内蒙古工业大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159862A (zh) * 2022-08-05 2022-10-11 中北大学 一种利用氧空位调控金红石型二氧化钛基阻变存储器性能的方法
CN115159862B (zh) * 2022-08-05 2024-04-02 中北大学 一种利用氧空位调控金红石型二氧化钛基阻变存储器性能的方法

Similar Documents

Publication Publication Date Title
Sun et al. Hydrothermal synthesis and resistive switching behaviour of WO 3/CoWO 4 core–shell nanowires
Bayram et al. Effect of doping concentration on the structural and optical properties of nanostructured Cu-doped Mn3O4 films obtained by SILAR technique
CN103904216A (zh) 一种钛掺杂氧化镍电阻存储器薄膜的制备方法
Karuppasamy Electrochromism and photocatalysis in dendrite structured Ti: WO3 thin films grown by sputtering
Gu et al. Structural, optical and photoelectric properties of Mn-doped ZnO films used for ultraviolet detectors
CN109411599A (zh) 一种锆掺杂氧化钛忆阻器薄膜的制备方法
CN110676377A (zh) 一种铈掺杂二氧化钛忆阻器薄膜的制备方法
CN103922798B (zh) 一种Cu掺杂氧化锆电阻存储器薄膜的制备方法
Reddy et al. Effect of tungsten oxide thin films deposited on cerium oxide nano rods for electrochromic applications
Rosario et al. The effect of composition variables on precursor degradation and their consequence on Nb 2 O 5 film properties prepared by the pecchini method
Ghasedi et al. Improvement in structural, electrical, and optical properties of Al-doped ZnO nanolayers by sodium carbonate prepared via solgel method
Tao et al. Preparation of Co doped NiO thin films with excellent switching time and coloring efficiency through sol-gel spin coating
He et al. The Mg-Co3O4 coating on indium tin oxide film with improved electrochromic and energy storage properties by sol-gel spin coating
Reddy et al. Comparative analysis of the effect of post-annealing on CeO2 and DC Magnetron Sputtered WO3/CeO2 nanorods thin films for smart windows
CN105568265A (zh) 高掺杂BaTiO3:Fe多铁薄膜材料及其制备方法
Reddy et al. Effect of growth fluid concentration on characteristics of CeO2 nanorods and WO3/CeO2 nanostructured hybrid films for electrochromic applications
Che Ani et al. Investigation of the structural, optical and electrical properties of gadolinium-doped zinc oxide films prepared by sol-gel method
CN1974461A (zh) 一种介电常数可调的锌掺杂pst薄膜及其制备方法
CN110707211B (zh) 一种氧化铈忆阻器薄膜的制备方法
CN115465890B (zh) 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用
Vaidya et al. Controlled Synthesis of Nanomaterials using Reverse Micelles.
Yu et al. Incorporation of polyvinyl alcohol into ZrO 2 to modulate the hysteresis-type current–voltage characteristics of Au/ZrO 2/heavily doped p-type Si devices
Zhao et al. Facile solution-grown Mo-doped vanadium dioxide thermochromic films with decreased phase transition temperature and narrowed hysteresis loop width
US6508959B1 (en) Preparation of energy storage materials
Mozammel et al. Structural and wettability investigation of titanium dioxide coating: influence of dopant concentration (Si and Sr)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110