CN110658247B - 一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用 - Google Patents

一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用 Download PDF

Info

Publication number
CN110658247B
CN110658247B CN201910958320.0A CN201910958320A CN110658247B CN 110658247 B CN110658247 B CN 110658247B CN 201910958320 A CN201910958320 A CN 201910958320A CN 110658247 B CN110658247 B CN 110658247B
Authority
CN
China
Prior art keywords
graphite
carbon nitride
polypyrrole
composite material
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910958320.0A
Other languages
English (en)
Other versions
CN110658247A (zh
Inventor
莫尊理
王嘉
杨星
刘振宇
裴贺兵
陈颖
贾倩倩
郭瑞斌
刘妮娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201910958320.0A priority Critical patent/CN110658247B/zh
Publication of CN110658247A publication Critical patent/CN110658247A/zh
Application granted granted Critical
Publication of CN110658247B publication Critical patent/CN110658247B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种类石墨相氮化碳/聚吡咯/β‑环糊精复合材料的制备及应用,在Ar气氛中煅烧三聚氰胺,冷却至室温,收集、研磨,得到类石墨相氮化碳;类石墨相氮化碳加入盐酸,超声分散,加入十六烷基三甲溴化铵和蒸馏后的吡咯,冰水浴中搅拌,得悬浮液;制备过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液,搅拌,洗涤产物,真空干燥,制得类石墨相氮化碳/聚吡咯;混合类石墨相氮化碳/聚吡咯和β‑环糊精,加去离子水,超声分散,制得类石墨相氮化碳/聚吡咯/β‑环糊精复合材料。本发明方法制备的复合材料具有更好的电子传输性能,可应用于用于超级电容器、电化学传感器、锂离子电池、纳米材料等领域。

Description

一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及 应用
技术领域
本发明属于复合材料技术领域,涉及一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法,本发明还涉及一种该复合材料的应用。
背景技术
类石墨相氮化碳是一种二维的碳纳米材料,具有独特的电子结构和优异的化学稳定性,已经广泛应用于有机官能团的选择性转换、电化学传感器、光催化分解水、纳米材料以及储氢等领域。g-C3N4可通过C、N原子间的sp2杂化得到类似石墨片的片层结构,每层结构中每个碳氮键的键长和键能都相等,C和N原子相间形成芳香共轭环状结构。环与环之间通过N原子连接形成片状,片与片的层层堆叠就形成了类石墨相氮化碳。且本身具有缺陷,具有良好的活性位点。
聚吡咯是一种重要的杂环共轭型导电高分子,具有单双键交替的p-π共轭特殊结构,组成闭合大π键的电子可沿分子链移动进而导电,具有较高的导电性、环境稳定性、合成简单等优良特性。把无机化合物与聚吡咯进行复合制备新型复合材料,可以调节材料的导电、电化学以及磁学性能。
β-环糊精是一种由七个葡萄糖单元构成的多聚糖。其内腔疏水,而外腔亲水,环糊精的内腔可以包合不同种类的客体分子,例如氨基酸分子、阴离子及阳离子客体以及聚合物链等等,这使得环糊精在电化学传感器中具有广泛的应用。
发明内容
本发明的目的是提供一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法。
本发明的另一目的是提供上述复合材料在电化学传感器中的应用。
为实现上述目的,本发明所采用的技术方案是:一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法,具体按以下步骤进行:
1)类石墨相氮化碳的制备:称取5~5.1g三聚氰胺加入带盖的陶瓷坩埚中,将陶瓷坩埚放入管式炉中,在Ar气氛中以4~6℃/min的升温速率升温至545~555℃,煅烧6~6.5h,冷却至室温,收集产物并研磨,得到淡黄色粉末状固体类石墨相氮化碳(g-C3N4);
2)聚吡咯的制备:将0.109~0.110g(0.3mmol)十六烷基三甲溴化铵(CTAB)加入100~101mL的N2饱和0.1M盐酸溶液中,形成包裹吡咯单体的球形胶束,然后加入0.27~0.28mL(20 mmol)经过蒸馏的吡咯,搅拌均匀,得悬浮液;
将0.91~0.92g(20 mmol)的过硫酸铵溶于10~11mL水中,得过硫酸铵溶液;
将悬浮液置于冰水浴中,逐滴加入过硫酸铵溶液,使反应温度保持在0~1℃,搅拌24~25h,进行完全聚合,聚合产物用去离子水和乙醇交替洗涤,除去表面活性剂残留物,然后在55~65℃的温度下真空干燥12~13h,得聚吡咯(Ppy);
吡咯与过硫酸铵的摩尔比为1︰1。
3)类石墨相氮化碳/聚吡咯复合材料的制备:称取0.092~0.093g的g-C3N4置于250mL烧瓶中,加入100~101mL浓度为0.1M的盐酸,超声分散20~30min,加入0.109~0.110g(0.3mmol)十六烷基三甲溴化铵(CTAB)和0.27~0.28mL(20 mmol)的蒸馏后的吡咯,置于冰水浴中搅拌,得悬浮液;将0.91~0.92g(20 mmol)过硫酸铵溶于10~11mL水中,得过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液中,使反应温度保持在0~1℃,搅拌24~25h,完全反应,用去离子水和乙醇交替洗涤产物,除去表面活性剂残留物,在55~65℃温度下真空干燥12~13h,制得类石墨相氮化碳/聚吡咯(g-C3N4/Ppy);
吡咯与过硫酸铵的摩尔比为1︰1。
步骤2)和步骤3)不重复,步骤2)制得的聚吡咯是为了证明聚吡咯的合成成功,所以在步骤3)用步骤2)中同样的合成方法在g-C3N4上进行原位聚合,也是确保吡咯在相应的条件下形成聚吡咯。
4)类石墨相氮化碳/聚吡咯/β-环糊精的制备:称取0.002~0.003g的g-C3N4/Ppy和0.002~0.003g的β-环糊精置于10mL的离心管中,加入4~6mL去离子水,超声分散4~5h,得到类石墨相氮化碳/聚吡咯/β-环糊精复合材料(g-C3N4/Ppy/β-CD)。
本发明所采用的另一个技术方案是:一种上述制备方法制得的类石墨相氮化碳/聚吡咯/β-环糊精复合材料在电化学传感器中的应用。具体为:将该复合材料分散于水中,得饱和均匀的质量体积浓度为1~1.2mg/mL的分散液,用麂皮和氧化铝浆料仔细洗涤玻碳电极(GCE)后,将8μL悬浮液滴到GCE表面,室温下干燥,得类石墨相氮化碳/聚吡咯/β-环糊精复合材料电极(g-C3N4/Ppy/β-CD/GCE)。
一、类石墨相氮化碳/聚吡咯/β-环糊精复合材料的表征
1、红外谱图
图1是g-C3N4、Ppy和g-C3N4/Ppy的红外光谱图,对于g-C3N4在1644cm-1、1405 cm-1、1239cm-1处的特征吸收峰为CN杂环振动的特征吸收峰,在890 cm-1、808cm-1的特征吸收峰为三嗪单元结构的振动峰。Ppy在1540 cm-1、1465cm-1处的特征吸收峰分别是吡咯环非对称环伸缩振动吸收峰和吡咯环对称环伸缩振动吸收峰,在1173 cm-1、1038cm-1处的特征吸收峰是杂环CN伸缩振动吸收峰。复合材料g-C3N4/Ppy与Ppy的特征吸收峰类似,随着g-C3N4的加入,看到位于Ppy的特征吸收峰1465 cm-1、1173 cm-1、1038cm-1红移至1456 cm-1、1169 cm-1、1036cm-1处,表明复合材料g-C3N4/Ppy的成功合成。
、扫描电镜图
图2是g-C3N4和g-C3N4/Ppy的扫描电镜图,在g-C3N4电镜图(图2A)可以看出它的结构为聚集态的片状结构,表面光滑。g-C3N4/Ppy的电镜图(图2B)看出将Ppy结合到g-C3N4上后通过氢键和π-π相互作用形成高度有序的自组装结构。
二、类石墨相氮化碳/聚吡咯/β-环糊精复合材料的电化学性能测试
1、修饰电极的制备
将类石墨相氮化碳/聚吡咯/β-环糊精复合材料(g-C3N4/Ppy/β-CD)均匀分散到水中,形成浓度为1~1.2mg/mL的分散液,然后将该分散液滴涂到经过处理的玻碳电极(GCE)表面,构建成g-C3N4/Ppy/β-CD/GCE。
将类石墨相氮化碳(g-C3N4)均匀分散到水中,形成浓度为1~1.2mg/mL的分散液,将该分散液滴涂到经过处理的玻碳电极(GCE)表面,构建成g-C3N4 /GCE。
将β-环糊精(β-CD)均匀分散到水中,形成浓度为1~1.2mg/mL的分散液,将该分散液滴涂到经过处理的玻碳电极(GCE)表面,构建成β-CD/GCE。
2、修饰电极的电化学性能
将GCE和上述制备的电极g-C3N4/GCE、β-CD/GCE、g-C3N4/Ppy/β-CD/GCE分别浸入5mM Fe(CN)6 4−/3−包含0.1 M KCl的溶液中,该溶液作为支持电解质,扫描电势从-0.2V到0.6V,扫速为0.05 V/s。用循环伏安法测其电化学性能。修饰电极的CV曲线如图3所示。由图3可以看出,峰电流的大小依次为g-C3N4/Ppy/β-CD/GCE>g-C3N4/GCE>GCE>β-CD/GCE。此外,还可以观察到当g-C3N4/Ppy/β-CD/GCE浸入5 mM Fe(CN)6 4−/3−包含0.1 M KCl溶液时,相比于裸电极,峰电流减小很明显,这是由于Fe(CN)6 4−/3−的空腔和环糊精的空腔大小不匹配,环糊精内腔疏水,而Fe(CN)6 4−/3−具有亲水性,它的尺寸也比环糊精的大。因此,Fe(CN)6 4−/3−不能进入环糊精空腔发生氧化还原反应。
本发明制备方法使用三聚氰胺作为前体制备类石墨相氮化碳(g-C3N4),然后与吡咯混合,将吡咯原位聚合制得氮化碳和聚吡咯的复合材料(g-C3N4/Ppy),由于吡咯的共轭结构,吡咯可以通过氢键和π-π相互作用附着到g-C3N4上,增加复合材料的导电性。β-环糊精(β-CD)作为手性选择剂,然后与g-C3N4/Ppy复合制得复合材料g-C3N4/Ppy/β-CD。电化学性能检测显示,本发明制备的g-C3N4/Ppy/β-CD复合材料具有更好的电子传输性能,可应用于用于超级电容器、电化学传感器、锂离子电池、纳米材料等领域。扫描电镜(SEM)、红外光谱(FT-IR)以及电化学方法用以表征复合材料的合成。
附图说明
图1为本发明制备方法制得的类石墨相氮化碳/聚吡咯/β-环糊精复合材料的红外谱图。
图2为g-C3N4和g-C3N4/Ppy的扫描电镜图。
图3为Fe(CN)6 4−/3−在不同修饰电极的循环伏安曲线。
具体实施方式
下面通过具体实施例对本发明作进一步说明。
实施例1
称取5g三聚氰胺加入带盖的陶瓷坩埚中,将陶瓷坩埚放入管式炉中,在Ar气氛中以4℃/min的升温速率升温至545℃,煅烧6.5h,冷却至室温,收集产物并研磨,得到类石墨相氮化碳(g-C3N4);称取0.092g的g-C3N4置于250mL烧瓶中,加入100mL浓度为0.1M的盐酸,超声分散20min,加入0.109g(0.3mmol)十六烷基三甲溴化铵(CTAB)和0.27mL(20 mmol)的蒸馏后的吡咯,置于冰水浴中搅拌,得悬浮液;使反应温度保持在0℃,将0.91g(20 mmol)过硫酸铵溶于10mL水中,得过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液中,搅拌24h,完全反应,用去离子水和乙醇交替洗涤产物,除去表面活性剂残留物,在55℃温度下真空干燥13h,制得类石墨相氮化碳/聚吡咯(g-C3N4/Ppy);称取0.002g的g-C3N4/Ppy和0.002g的β-环糊精置于10mL的离心管中,加入4mL去离子水,超声分散4h,得到类石墨相氮化碳/聚吡咯/β-环糊精复合材料(g-C3N4/Ppy/β-CD)。
用麂皮和氧化铝浆料仔细洗涤玻碳电极(GCE)后,将8μL的g-C3N4/Ppy/β-CD悬浮液滴加到GCE的表面上,然后在室温下干燥。
实施例2
称取5.1g三聚氰胺加入带盖的陶瓷坩埚中,将陶瓷坩埚放入管式炉中,在Ar气氛中以6℃/min的升温速率升温至555℃,煅烧6h,冷却至室温,收集产物并研磨,得到淡黄色粉末状固体类石墨相氮化碳(g-C3N4);称取0.093g的g-C3N4置于250mL烧瓶中,加入101mL浓度为0.1M的盐酸,超声分散30min,加入0.110g(0.3mmol)十六烷基三甲溴化铵(CTAB)和0.28mL(20 mmol)的蒸馏后的吡咯,置于冰水浴中搅拌,得悬浮液;使反应温度保持在1℃,将0.92g(20 mmol)过硫酸铵溶于11mL水中,得过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液中,搅拌25h,完全反应,用去离子水和乙醇交替洗涤产物,除去表面活性剂残留物,在65℃温度下真空干燥12h,得制备的类石墨相氮化碳/聚吡咯(g-C3N4/Ppy);称取0.003g的g-C3N4/Ppy和0.003g的β-环糊精置于10mL的离心管中,加入6mL去离子水,超声分散5h,得到类石墨相氮化碳/聚吡咯/β-环糊精复合材料(g-C3N4/Ppy/β-CD)。
用麂皮和氧化铝浆料仔细洗涤玻碳电极(GCE)后,将8μL的g-C3N4/Ppy/β-CD悬浮液滴加到GCE的表面上,然后在室温下干燥。
实施例3
称取5.05g三聚氰胺加入带盖的陶瓷坩埚中,将陶瓷坩埚放入管式炉中,在Ar气氛中以5℃/min的升温速率升温至550℃,煅烧6.25h,冷却至室温,收集产物并研磨,得到淡黄色粉末状固体类石墨相氮化碳(g-C3N4);称取0.0925g的g-C3N4置于250mL烧瓶中,加入100.5mL浓度为0.1M的盐酸,超声分散25min,加入0.1095g(0.3mmol)十六烷基三甲溴化铵(CTAB)和0.275mL(20 mmol)的蒸馏后的吡咯,置于冰水浴中搅拌,得悬浮液;使反应温度保持在0.5℃,将0.915g(20 mmol)过硫酸铵溶于10.5mL水中,得过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液中,搅拌24.5h,完全反应,用去离子水和乙醇交替洗涤产物,除去表面活性剂残留物,在60℃温度下真空干燥12.5h,制得类石墨相氮化碳/聚吡咯(g-C3N4/Ppy);称取0.0025g的g-C3N4/Ppy和0.0025g的β-环糊精置于10mL的离心管中,加入5mL去离子水,超声分散4.5h,得到类石墨相氮化碳/聚吡咯/β-环糊精复合材料(g-C3N4/Ppy/β-CD)。
用麂皮和氧化铝浆料仔细洗涤玻碳电极(GCE)后,将8μL的g-C3N4/Ppy/β-CD悬浮液滴加到GCE的表面上,然后在室温下干燥。

Claims (4)

1.一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法,包括以下工艺:
1)称取5~5.1g三聚氰胺,在Ar气氛中以4~6℃/min的升温速率升温至545~555℃,煅烧6~6.5h,
2)将0.109~0.110g十六烷基三甲溴化铵加入100~101mL的N2饱和0.1M盐酸溶液中,形成包裹吡咯单体的球形胶束,然后加入0.27~0.28mL经过蒸馏的吡咯,搅拌均匀,得悬浮液;加入0.092~0.093g类石墨相氮化碳,冰水浴中搅拌,得悬浮液;将0.91~0.92g过硫酸铵溶于10~11mL水中,得过硫酸铵溶液;将过硫酸铵溶液逐滴加入悬浮液中,使反应温度保持在0~1℃,搅拌24~25h,完全反应,洗涤产物,在55~65℃温度下真空干燥,制得类石墨相氮化碳/聚吡咯;
3)称取0.002~0.003g石墨相氮化碳/聚吡咯和0.002~0.003g的β-环糊精,混合,加入4~6mL去离子水,超声分散,制得类石墨相氮化碳/聚吡咯/β-环糊精复合材料。
2.如权利要求1所述类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法,其特征在于:所述工艺 2)中,吡咯和过硫酸铵的摩尔比为1︰1。
3.一种权利要求1所述的类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备方法制得的复合材料的应用。
4.如权利要求3所述的复合材料的应用,其特征在于:该复合采用应用于电化学传感器;具体为:将该复合材料均匀分散到水中形成浓度为1~1.2mg/mL的分散液,再将分散液滴涂在经处理的玻碳电极表面形成修饰电极;然后将修饰电极浸入5 mM Fe(CN)6 4−/3−包含0.1 M KCl 的溶液中,该溶液作为支持电解质,扫描电势从-0.2V到0.6 V,用循环伏安法测其电化学性能。
CN201910958320.0A 2019-10-10 2019-10-10 一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用 Expired - Fee Related CN110658247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910958320.0A CN110658247B (zh) 2019-10-10 2019-10-10 一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910958320.0A CN110658247B (zh) 2019-10-10 2019-10-10 一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用

Publications (2)

Publication Number Publication Date
CN110658247A CN110658247A (zh) 2020-01-07
CN110658247B true CN110658247B (zh) 2022-04-05

Family

ID=69040342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910958320.0A Expired - Fee Related CN110658247B (zh) 2019-10-10 2019-10-10 一种类石墨相氮化碳/聚吡咯/β-环糊精复合材料的制备及应用

Country Status (1)

Country Link
CN (1) CN110658247B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051048A (zh) * 2010-11-10 2011-05-11 西北师范大学 聚吡咯/石墨烯纳米复合材料及其制备
CN104614420A (zh) * 2015-01-16 2015-05-13 济南大学 功能化石墨烯聚吡咯修饰电极快速筛选多氯联苯的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051048A (zh) * 2010-11-10 2011-05-11 西北师范大学 聚吡咯/石墨烯纳米复合材料及其制备
CN104614420A (zh) * 2015-01-16 2015-05-13 济南大学 功能化石墨烯聚吡咯修饰电极快速筛选多氯联苯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚吡咯/石墨型氮化碳复合材料的制备及其导电/电化学性能;盛维琛 等;《江苏大学学报(自然科学版)》;20150331;第36卷(第2期);第1.2-1.4节 *

Also Published As

Publication number Publication date
CN110658247A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Wu et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors
Bandyopadhyay et al. Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application
Liu et al. Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes
Zhang et al. Carbon nanotubes@ metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage
Wang et al. Polyaniline-carbon nanotubes@ zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode
Ma et al. Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode
Fan et al. Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode
Liu et al. Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes
Zhang et al. A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion
Li et al. Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors
Liu et al. Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors
Lai et al. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors
Zhao et al. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization
Tang et al. Silver nanoparticle decorated polyaniline/multiwalled super-short carbon nanotube nanocomposites for supercapacitor applications
Liu et al. A biomimetic Setaria viridis-inspired electrode with polyaniline nanowire arrays aligned on MoO 3@ polypyrrole core–shell nanobelts
Jiao et al. Electrochemically assembling of a porous nano-polyaniline network in a reverse micelle and its application in a supercapacitor
Liu et al. One-step potentiodynamic synthesis of poly (1, 5-diaminoanthraquinone)/reduced graphene oxide nanohybrid with improved electrocatalytic activity
Sun et al. Rational synthesis of novel π-conjugated poly (1, 5-diaminoanthraquinone) for high-performance supercapacitors
Kazemi et al. Metal-polyaniline nanofibre composite for supercapacitor applications
CN104900845B (zh) 纳米阀门封装的硫介孔二氧化硅复合材料的制备方法
Hsieh et al. Iron phthalocyanine supported on 3D nitrogen-doped graphene aerogel as an electrocatalyst for non-aqueous Li− O2 batteries
Heydari et al. Polyaniline/reduced graphene oxide–cobalt sulfide ternary composite for high-performance supercapacitors
Das et al. Designing hierarchical NiO/PAni-MWCNT core–shell nanocomposites for high performance super capacitor electrodes
Jin et al. Stable GQD@ PANi nanocomposites based on benzenoid structure for enhanced specific capacitance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220405