CN110658180A - 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法 - Google Patents

增强拉曼散射的带纳米孔或亚微米孔薄膜及方法 Download PDF

Info

Publication number
CN110658180A
CN110658180A CN201911005080.9A CN201911005080A CN110658180A CN 110658180 A CN110658180 A CN 110658180A CN 201911005080 A CN201911005080 A CN 201911005080A CN 110658180 A CN110658180 A CN 110658180A
Authority
CN
China
Prior art keywords
sub
film
holes
nano
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911005080.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Fustrontium Nano Optical Technology Co Ltd
Original Assignee
Kunshan Fustrontium Nano Optical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Fustrontium Nano Optical Technology Co Ltd filed Critical Kunshan Fustrontium Nano Optical Technology Co Ltd
Priority to CN201911005080.9A priority Critical patent/CN110658180A/zh
Publication of CN110658180A publication Critical patent/CN110658180A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种增强拉曼散射的带纳米孔或亚微米孔薄膜,包括薄膜基底,薄膜基底分布有纳米孔或亚微米孔,薄膜基底上镀有金属或非金属导电材料。本发明还公开了一种使用所述的带纳米孔或亚微米孔薄膜的增强拉曼散射的方法。本发明极大的增强了样品的拉曼信号,便于检测;提高了检测的灵敏度,可检测溶液中的微量物质;使用方便,制备好基底之后可以过滤待测物质后直接测试。

Description

增强拉曼散射的带纳米孔或亚微米孔薄膜及方法
技术领域
本发明涉及光学检测技术领域,具体涉及增强拉曼散射的带纳米孔或亚微米孔薄膜及增强拉曼散射方法。
背景技术
在目前实际应用中,由于待测分子较小的散射截面,使得拉曼散射过程中得到的非弹性散射光子数目少,拉曼信号弱,从而需要增强激光拉曼光谱的信号强度。目前的表面增强拉曼则需要通过化学沉积等方法制备出一般具有纳米级的粗糙表面的基底,还需要完成将待测分子附着于该基底上才能得到增强信号。
当具有拉曼活性的分子吸附在粗糙的金属表面,尤其是在具有纳米级粗糙度的贵金属表面时,其拉曼散射信号强度被大大增强的效应称表面增强拉曼散射效应(SERS效应)。SERS技术克服了传统拉曼光谱与生俱来的信号微弱的缺点,可以使拉曼信号强度增大几个数量级,其增强因子可以高达1014~1016,足以探测到单个分子的拉曼信号。因此,SERS技术可以用于痕量物质分析、流式细胞术等应用中,这些都是传统拉曼光谱检测手段的灵敏度和测量速度不足以完成的。
SERS技术的核心是SERS基底,SERS技术最常用的金属材料是Au、Ag和Cu,需要通过化学沉积等方法制备出一般具有纳米级的粗糙表面的基底,其具有表面增强拉曼散射的效应。制作完成后还需要完成将待测分子附着于该基底上的操作,才能进行测试从而得到增强信号,在待测物质数量过少或微量存在于液体中时就会显得比较困难。
发明内容
针对现有技术的不足,本发明提供了一种增强拉曼散射的带纳米孔或亚微米孔薄膜及增强拉曼散射方法,具体技术方案如下:
增强拉曼散射的带纳米孔或亚微米孔薄膜,包括薄膜基底,薄膜基底分布有纳米孔或亚微米孔,薄膜基底上镀有金属或非金属导电材料。
进一步的,所述的纳米孔或亚微米孔孔径为20-1200nm。
进一步的,所述的镀层厚度为20-200nm。
进一步的,所述薄膜基底由金属或非金属固体材料制成。
进一步的,所述的纳米孔或亚微米孔均匀或非均匀分布。
一种使用所述的带纳米孔或亚微米孔薄膜的增强拉曼散射的方法,其特征在于包括以下步骤:
(1)将待测样品置于带纳米孔或亚微米孔薄膜上或是含有样品的溶液流过带纳米孔或亚微米孔薄膜;
(2)溶液中的液体部分从带纳米孔薄膜上的纳米孔或亚微米孔流过,而尺寸大于纳米孔或亚微米孔孔径的待测样品被富集在带纳米孔或亚微米孔薄膜上以供检测;
(3)在过滤之后,待测样品会被集中附着于带纳米孔或亚微米孔薄膜之上,将附有待测样品的带纳米孔或亚微米孔薄膜固定;
(4)使用特定波长的激光垂直照射或以不同角度照射于富集有待测样品的带纳米孔或亚微米孔薄膜上,再使用拉曼光谱仪去收集增强后的拉曼信号。
本发明极大的增强了样品的拉曼信号,便于检测;提高了检测的灵敏度,可检测溶液中的微量物质;使用方便,制备好基底之后可以过滤待测物质后直接测试。
附图说明
图1为本发明一实施例俯视结构示意图;
图2为本发明一实施例侧视结构示意图;
图3为本发明一实施例立体结构示意图;
图4为本发明另一实施例俯视结构示意图;
图5为本发明另一实施例侧视结构示意图;
图6为本发明另一实施例立体结构示意图;
图7为在纳米孔或亚微米孔薄膜上过滤测试得到的罗丹明 6G水溶液的拉曼光谱图;
其中:1-薄膜基底;2-纳米孔或亚微米孔。
具体实施方式
下面结合说明书附图,对本发明的技术方案做进一步说明。
如图1-6所示,本发明的增强拉曼散射的带纳米孔或亚微米孔薄膜包括厚度为微米级别的薄膜基底1,薄膜基底1为圆形,且其上均匀或非均匀分布有纳米级别的圆形纳米孔2或亚微米级别的圆形亚微米孔2,然后在薄膜基底1上镀金属或非金属导电材料。纳米孔或亚微米孔2的孔径为20-1200nm。所述薄膜基底1上镀层的厚度为20-200nm。
基于所述带纳米孔或亚微米孔薄膜的增强拉曼散射的方法,使用带纳米孔或亚微米孔薄膜时,将待测样品置于带纳米孔或亚微米孔薄膜上或是含有样品的溶液流过带纳米孔或亚微米孔薄膜,溶液中的液体部分从带纳米孔或亚微米孔薄膜上的纳米孔或亚微米孔流过,而尺寸大于纳米孔或亚微米孔孔径的待测样品被富集在带纳米孔或亚微米孔薄膜上以供检测,在过滤之后,待测样品会被集中附着于带纳米孔或亚微米孔薄膜之上,将附有待测样品的带纳米孔或亚微米孔薄膜固定,然后使用特定波长的激光垂直照射或以不同角度照射于富集有待测样品的带纳米孔或亚微米孔薄膜上,再使用拉曼光谱仪去收集增强后的拉曼信号。
如图7所示,为在带纳米孔或亚微米孔薄膜上过滤测试得到的罗丹明 6G水溶液的拉曼光谱图, 测试使用了785 nm 的激光激发。可以观察到的是,带纳米孔或亚微米孔薄膜对拉曼信号有着显著的增强。
薄膜基底上只需镀上金属或非金属导电材料就能得到可以增强信号的基底,并且带纳米孔或亚微米孔薄膜上分布的纳米孔或亚微米孔可以充当过滤的作用,将溶液中微量的待测物过滤后留在薄膜上以供测试,大大增强了测试的灵敏度。

Claims (6)

1.增强拉曼散射的带纳米孔或亚微米孔薄膜,其特征在于包括薄膜基底(1),薄膜基底(1)分布有纳米孔或亚微米孔(2),薄膜基底(1)上镀有金属或非金属导电材料。
2.根据权利要求1所述的增强拉曼散射的带纳米孔或亚微米孔薄膜,其特征在于所述的纳米孔或亚微米孔(2)孔径为20-1200nm。
3.根据权利要求1所述的增强拉曼散射的带纳米孔或亚微米孔薄膜,其特征在于所述的镀层厚度为20-200nm。
4.根据权利要求1所述的增强拉曼散射的带纳米孔或亚微米孔薄膜,其特征在于所述薄膜基底(1)由金属或非金属固体材料制成。
5.根据权利要求1所述的增强拉曼散射的带纳米孔或亚微米孔薄膜,其特征在于所述的纳米孔或亚微米孔(2)均匀或非均匀分布。
6.一种使用权利要求1-5之一所述的带纳米孔或亚微米孔薄膜的增强拉曼散射的方法,其特征在于包括以下步骤:
(1)将待测样品置于带纳米孔或亚微米孔薄膜上或是含有样品的溶液流过带纳米孔或亚微米孔薄膜;
(2)溶液中的液体部分从带纳米孔薄膜上的纳米孔或亚微米孔(2)流过,而尺寸大于纳米孔(2)或亚微米孔孔径的待测样品被富集在带纳米孔或亚微米孔薄膜上以供检测;
(3)在过滤之后,待测样品会被集中附着于带纳米孔或亚微米孔薄膜之上,将附有待测样品的带纳米孔或亚微米孔薄膜固定;
(4)使用特定波长的激光垂直照射或以不同角度照射于富集有待测样品的带纳米孔或亚微米孔薄膜上,再使用拉曼光谱仪去收集增强后的拉曼信号。
CN201911005080.9A 2019-10-22 2019-10-22 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法 Pending CN110658180A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911005080.9A CN110658180A (zh) 2019-10-22 2019-10-22 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911005080.9A CN110658180A (zh) 2019-10-22 2019-10-22 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法

Publications (1)

Publication Number Publication Date
CN110658180A true CN110658180A (zh) 2020-01-07

Family

ID=69041708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911005080.9A Pending CN110658180A (zh) 2019-10-22 2019-10-22 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法

Country Status (1)

Country Link
CN (1) CN110658180A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903655A (zh) * 2021-01-24 2021-06-04 复旦大学 一种基于拉曼光谱技术的单个微/纳米塑料的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176563A1 (en) * 2010-09-29 2013-07-11 Satoshi Ozawa Biopolymer Optical Analysis Device and Method
CN104406953A (zh) * 2014-11-21 2015-03-11 中国科学院电子学研究所 多孔膜增敏的大面积均匀拉曼检测芯片及其制备方法
US20160161414A1 (en) * 2011-05-27 2016-06-09 Drexel University Flexible SERS Substrates With Filtering Capabilities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176563A1 (en) * 2010-09-29 2013-07-11 Satoshi Ozawa Biopolymer Optical Analysis Device and Method
US20160161414A1 (en) * 2011-05-27 2016-06-09 Drexel University Flexible SERS Substrates With Filtering Capabilities
CN104406953A (zh) * 2014-11-21 2015-03-11 中国科学院电子学研究所 多孔膜增敏的大面积均匀拉曼检测芯片及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903655A (zh) * 2021-01-24 2021-06-04 复旦大学 一种基于拉曼光谱技术的单个微/纳米塑料的检测方法

Similar Documents

Publication Publication Date Title
Wang et al. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film
Phung et al. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate
JP5852245B2 (ja) 金属ナノ粒子ならびにその調製および使用のための方法
Alvarez-Puebla et al. Environmental applications of plasmon assisted Raman scattering
Chan et al. SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array
Truong et al. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes
US20070285657A1 (en) Substrate for surface-enhanced raman spectroscopy, sers sensors, and method for preparing same
WO2021083169A1 (zh) 一种基于聚氨酯的纳米银sers基底的制备方法
Kang et al. A needle-like reusable surface-enhanced Raman scattering substrate, and its application to the determination of acetamiprid by combining SERS and thin-layer chromatography
TW201231971A (en) Sensor chip for biomedical and micro-nano structured objects and material and method providing the same
US20220228993A1 (en) Adsorbable polymeric surface-enhanced raman spectroscopy substrates and the fabrication process
Jing et al. Hydrophobic gold nanostructures via electrochemical deposition for sensitive SERS detection of persistent toxic substances
KR101629569B1 (ko) 신경전달 물질 탐지를 위한 표면증강 라만 산란 측정용 프로브, 및 이의 제조방법
US20100245817A1 (en) Microsphere Having Hot Spots and Method for Identifying Chemicals Through Surface Enhanced Raman Scattering Using the Same
CN110658180A (zh) 增强拉曼散射的带纳米孔或亚微米孔薄膜及方法
Vo et al. Nanosilver-embedded silicon nanowires as a SERS-active substrate for the ultrasensitive detection of monoamine neurotransmitters
Tezcan et al. A new and facile route to prepare gold nanoparticle clusters on anodic aluminium oxide as a SERS substrate
TWI657166B (zh) 攜帶式拉曼光學檢測試紙及其製法與使用方法
Xu et al. Compact Ag nanoparticles anchored on the surface of glass fiber filter paper for SERS applications
Xu et al. Large-scale uniform Ag-NW tip array with enriched sub-10-nm gaps as SERS substrate for rapid determination of trace PCB77
Zhang et al. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice
Lee et al. Advanced porous gold nanofibers for highly efficient and stable molecular sensing platforms
TWI464389B (zh) Surface Enhancement Raman Spectroscopy Element and Its Manufacturing Method and Application
KR20210018606A (ko) 종이기반 분광분석용 기판 및 이의 제조방법
JP6368516B2 (ja) ラマン分光測定法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200107