CN110657632A - 一种快速确定天然气液化工艺冷剂适宜配比的方法 - Google Patents

一种快速确定天然气液化工艺冷剂适宜配比的方法 Download PDF

Info

Publication number
CN110657632A
CN110657632A CN201910926489.8A CN201910926489A CN110657632A CN 110657632 A CN110657632 A CN 110657632A CN 201910926489 A CN201910926489 A CN 201910926489A CN 110657632 A CN110657632 A CN 110657632A
Authority
CN
China
Prior art keywords
refrigerant
natural gas
proper
variable
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910926489.8A
Other languages
English (en)
Other versions
CN110657632B (zh
Inventor
范峥
姬盼盼
孔劼
李文君
田润芝
景根辉
刘钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Zhongmin Gas Co.,Ltd.
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201910926489.8A priority Critical patent/CN110657632B/zh
Publication of CN110657632A publication Critical patent/CN110657632A/zh
Application granted granted Critical
Publication of CN110657632B publication Critical patent/CN110657632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/009Hydrocarbons with four or more carbon atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0252Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供一种快速确定天然气液化工艺冷剂适宜配比的方法,通过对冷剂中n种组分xi进行编码,将自然变量xi变成规范变量zi,再根据实验方案利用流程模拟软件得到不同参数条件下的冷剂单位冷量建立起冷剂单位冷量
Figure DDA0002219068230000012
与规范变量zi之间的高阶回归方程,通过规划求解的方法得到该高阶回归方程的各项回归系数,进一步计算得到适宜冷剂单位冷量条件下各规范变量zi的取值,从而可以得到与适宜冷剂单位冷量相对应的冷剂中各组分的百分比,即得到天然气液化工艺冷剂适宜配比。装置现场验证结果表明,按照本发明方法优化冷剂配比后,天然气液化工艺的实际单位能耗大大降低。

Description

一种快速确定天然气液化工艺冷剂适宜配比的方法
技术领域
本发明属于天然气液化领域,具体涉及一种快速确定天然气液化工艺冷剂适宜配比的方法。
背景技术
随着环境污染问题的日益加剧,天然气作为一种新型的优质清洁燃料,在能源、交通、化工等领域的应用越来越广泛。目前,天然气输送主要有两种方式:一种是管道输送,虽然输气量大,但输送成本高,沿线需加设加压站和调节站;另一种是液化输送,即净化后的天然气采用制冷工艺,在一个大气压下冷冻至-162℃变为液体,液化后体积仅为气态时1/600,可有效解决气体不方便运输的问题,为实现天然气的跨国贸易和回收偏、散、小的天然气资源提供了有利条件。
国内外天然气液化的方法较多,主要包括阶式制冷液化流程、多级单组分制冷液化流程、混合冷剂制冷液化流程、带预冷的混合冷剂制冷液化流程和膨胀机制冷液化流程等。冷剂作为这些制冷液化流程中冷能共同的媒介和载体,其配比大小对于天然气液化工艺实际运行效果的好坏具有非常重要的作用,若从天然气液化装置的冷能平衡角度来看,当冷剂提供的冷量小于天然气液化所需的冷量时,天然气液化率不足,产品收率降低;当冷剂提供的冷量大于天然气液化所需的冷量时,冷剂所携冷量富余,装置能耗增加。因此,适宜的天然气液化工艺冷剂配比不但可以显著降低装置能耗、提高产品收率,同时还能够大幅减少生产成本和提高企业竞争力。
然而,由于现场操作人员在装置实际运行过程中往往无法准确、可靠地通过调节冷剂配比来及时应对生产状况的变化,导致液化天然气吸收的冷量和冷剂提供的冷量难以形成理想匹配,故经常造成设备处理能力偏低或系统能耗增加。
发明内容
本发明的目的是提供一种快速确定天然气液化工艺冷剂适宜配比的方法,解决了现有技术中存在的液化天然气吸收的冷量和冷剂提供的冷量难以形成理想匹配的问题。
本发明是通过以下技术方案来实现:
一种快速确定天然气液化工艺冷剂适宜配比的方法,包括如下步骤:
第一步,以x1、x2、…、xn-1和xn表示冷剂中n种组分各占的百分比,每种组分的百分比均为非负的且各种组分的百分比总和为1;xi受到如下约束条件的限制,
xi≥ai,i=1,2,...,n-1,n
第二步,对xi进行编码,将自然变量xi变成规范变量zi,使得xi转换成0≤zi≤1,其中,i=1,2,...,n-1,n;则
第三步,根据冷剂中的组分数n确定相应的基础数据组合方案,并通过流程模拟软件得到不同规范变量zi组合条件下的冷剂单位冷量
Figure BDA0002219068220000022
第四步,按照基础数据组合方案模拟得到的冷剂单位冷量建立冷剂单位冷量
Figure BDA0002219068220000024
与规范变量zi之间的高阶回归方程,并进一步求解得到该高阶回归方程的各项回归系数;
第五步,将第四步高阶回归方程中的冷剂单位冷量替换为天然气液化所需的适宜冷剂单位冷量
Figure BDA0002219068220000026
并将各项回归系数代入,计算得到适宜冷剂单位冷量条件下的各规范变量zi的取值;
第六步,将适宜冷剂单位冷量
Figure BDA0002219068220000027
条件下的各规范变量zi转换成自然变量xi,得到适宜的冷剂配比。
优选的,ai=0,则xi=zi,i=1,2,...,n-1,n。
优选的,第三步中,基础数据组合方案如以下表格所示:
Figure BDA0002219068220000031
优选的,第四步中,
Figure BDA0002219068220000032
其中,
Figure BDA0002219068220000033
优选的,第五步中,通过规划求解的方法对高阶回归方程进行计算,得到适宜冷剂单位冷量条件下的各规范变量zi的取值。
优选的,第五步中,所述的适宜冷剂单位冷量是根据制冷液化流程的理论单位能耗,并结合制冷装置的实际天然气加工能力、实际能量利用效率、实际保冷率和实际冷剂循环量计算得到的。
进一步的,适宜冷剂单位冷量计算公式为:
Figure BDA0002219068220000041
式中,
Figure BDA0002219068220000042
为适宜冷剂单位冷量,kJ/kg冷剂;
Figure BDA0002219068220000043
为不同制冷液化流程的理论单位能耗,kJ/m3天然气;QLNG为实际天然气加工能力,m3天然气/h;η为实际能量利用效率;ζ为实际保冷率;QR为实际冷剂循环量,kg冷剂/h。
优选的,第六步中,将适宜冷剂单位冷量
Figure BDA0002219068220000044
条件下的各规范变量zi转换成自然变量xi,具体公式为:
x1=[1-(a1+a2+...+an-1+an)]z1+a1
x2=[1-(a1+a2+...+an-1+an)]z2+a2
...
xn-1=[1-(a1+a2+...+an-1+an)]zn-1+an-1
xn=[1-(a1+a2+...+an-1+an)]zn+an
优选的,第三步中,所述流程模拟软件为ASPEN Plus、ASPEN HYSYS或CHEMICALCAD。
与现有技术相比,本发明具有以下有益的技术效果:
本发明通过对冷剂中n种组分xi进行编码,将自然变量xi变成规范变量zi,再根据实验方案利用流程模拟软件得到不同参数条件下的冷剂单位冷量
Figure BDA0002219068220000045
建立起冷剂单位冷量
Figure BDA0002219068220000046
与规范变量zi之间的高阶回归方程,通过规划求解的方法得到该高阶回归方程的各项回归系数,进一步计算得到适宜冷剂单位冷量
Figure BDA0002219068220000047
条件下各规范变量zi的取值,从而可以得到与适宜冷剂单位冷量相对应的冷剂中各组分的百分比,即得到天然气液化工艺冷剂适宜配比。装置现场验证结果表明,按照本发明方法优化冷剂配比后,天然气液化工艺的实际单位能耗大大降低,与计算所得的理论单位能耗相差不大,同时装置的能量利用率达到了最大化,节能效果十分显著。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明快速确定天然气液化工艺冷剂适宜配比的方法,具体步骤如下:
第一步,根据不同制冷液化流程的理论单位能耗(详见表1),结合各装置的实际天然气加工能力、实际能量利用效率、实际保冷率和实际冷剂循环量来计算适宜冷剂单位冷量。
表1不同制冷液化流程的理论单位能耗
制冷液化流程 理论单位能耗(kJ/m<sup>3</sup>天然气)
阶式制冷液化流程 1152
单级混合冷剂制冷液化流程 1440
丙烷预冷单级混合冷剂制冷液化流程 1325
多级混合冷剂制冷液化流程 1210
单级膨胀制冷液化流程 2304
丙烷预冷单级膨胀制冷液化流程 1958
两级膨胀制冷液化流程 1958
Figure BDA0002219068220000051
式中,为天然气液化所需的适宜冷剂单位冷量,kJ/kg冷剂;
Figure BDA0002219068220000053
为不同制冷液化流程的理论单位能耗,kJ/m3天然气;QLNG为实际天然气加工能力,m3天然气/h;η为实际能量利用效率;ζ为实际保冷率;QR为实际冷剂循环量,kg冷剂/h。
第二步,设定冷剂配比的约束条件。以x1、x2、…、xn-1和xn表示冷剂中n种组分各占的百分比,要求每种组分的比例必须是非负的且它们的总和必须是1,即
Figure BDA0002219068220000061
同时,除了上述约束条件外,若xi还要受到其他约束条件的限制,则存在
xi≥ai,i=1,2,...,n-1,n
ai为各自然变量xi对应的最小值(下限)。
第三步,对xi(i=1,2,...,n-1,n)进行编码,将自然变量xi变成规范变量zi,使得xi转换成0≤zi≤1,此时
Figure BDA0002219068220000063
对于由n种组分组成的天然气液化工艺冷剂来说,各组分所占的百分比分别为x1、x2、…、xn-1、xn,由如下约束条件x1≥a1、x2≥a2、...、xn-1≥an-1、xn≥an可知
a1+a2+...+an-1+an<x1+x2+...+xn-1+xn=1
因此,
x1=[1-(a1+a2+...+an-1+an)]z1+a1
x2=[1-(a1+a2+...+an-1+an)]z2+a2
...
xn-1=[1-(a1+a2+...+an-1+an)]zn-1+an-1
xn=[1-(a1+a2+...+an-1+an)]zn+an
需要说明的是,如果各组分xi的下界都是0,则xi=zi,这时自然变量xi与规范变量zi的值相等。
第四步,根据冷剂中的组分数n确定相应的基础数据组合方案,并通过流程模拟实验得到不同参数条件下的冷剂单位冷量,详见表2。所述流程模拟软件为ASPEN Plus、ASPENHYSYS或CHEMICAL CAD。
表2不同参数条件下的冷剂单位冷量
Figure BDA0002219068220000071
第五步,按照基础数据组合方案模拟得到冷剂单位冷量
Figure BDA0002219068220000072
建立冷剂单位冷量与规范变量zi之间的高阶回归方程,并进一步求解该高阶回归方程的各项回归系数。
其中,
Figure BDA0002219068220000082
yji、yj和yi为试验指标。
第六步,根据冷剂单位冷量
Figure BDA0002219068220000083
与规范变量zi之间的高阶回归方程以及有关约束条件,通过规划求解的方法可预测适宜冷剂单位冷量
Figure BDA0002219068220000084
条件下各规范变量zi的取值。
Figure BDA0002219068220000085
第七步,将适宜冷剂单位冷量
Figure BDA0002219068220000086
条件下的各规范变量zi转换成自然变量xi,就能够得到适宜的冷剂配比。
实施例一:
第一步,陕北某天然气液化装置采用多级混合冷剂制冷液化流程(理论单位能耗为1210kJ/m3天然气),其实际天然气加工能力为21316m3天然气/h,实际能量利用效率为0.25,实际保冷率为0.94,实际冷剂循环量为73079kg冷剂/h。
天然气液化所需的适宜冷剂单位冷量
第二步,设定冷剂配比的约束条件。以x1、x2、x3、x4、x5分别表示冷剂中氮气、甲烷、乙烯、丙烷和异戊烷这5种组分各占的百分比,要求每种组分的比例必须是非负的且它们的总和必须是1,即
Figure BDA0002219068220000091
同时,除了上述约束条件外,x1、x2、x3、x4、x5均不受其他约束条件的限制,即
a1=a2=a3=a4=a5=0。
第三步,对x1、x2、x3、x4和x5进行编码,将自然变量x1、x2、x3、x4、x5变成规范变量z1、z2、z3、z4、z5。鉴于a1=a2=a3=a4=a5=0,因此x1=z1,x2=z2,x3=z3,x4=z4,x5=z5
第四步,根据冷剂中的组分数确定相应的基础数据组合方案,并通过Aspen HYSYS流程模拟实验得到不同参数条件下的冷剂单位冷量,详见表3。
表3实施例一不同参数条件下的冷剂单位冷量
Figure BDA0002219068220000092
Figure BDA0002219068220000101
第五步,按照基础数据组合方案得到不同参数下的实验结果,建立冷剂单位冷量
Figure BDA0002219068220000102
与规范变量z1、z2、z3、z4、z5之间的高阶回归方程,并进一步求解该高阶回归方程的各项回归系数。
将每号实验结果代入上述方程,可得
Figure BDA0002219068220000104
此时,
第六步,根据冷剂单位冷量
Figure BDA0002219068220000106
与规范变量z1、z2、z3、z4、z5之间的高阶回归方程以及有关约束条件来预测适宜冷剂单位冷量
Figure BDA0002219068220000107
条件下各规范变量z1、z2、z3、z4、z5的取值。
Figure BDA0002219068220000114
冷剂时,
1502=732z1+1168z2+2096z3+2758z4+3241z5+
136z1z2+592z1z3+484z1z4+894z1z5+112z2z3+92z2z4+94z2z5+116z3z4-2z3z5+434z4z5
通过规划求解的方法对以上高阶回归方程进行计算,最终得到规范变量z1、z2、z3、z4和z5分别为
Figure BDA0002219068220000111
第七步,将适宜冷剂单位冷量条件下的各规范变量zi转换成自然变量xi,就能够得到适宜的冷剂配比。
因为x1=z1,x2=z2,x3=z3,x4=z4,x5=z5,所以
因此,当冷剂中氮气的百分比为49.51%(V/V),甲烷的百分比为19.48%(V/V),乙烯的百分比为13.91%(V/V),丙烷的百分比为10.10%(V/V)且异戊烷的百分比为7.00%(V/V)时,液化天然气吸收的冷量可与冷剂提供的冷量形成理想的匹配。
装置现场验证结果表明,冷剂配比优化前该装置的实际单位能耗高达1982kJ/m3天然气,而冷剂配比优化后该装置的实际单位能耗仅为1475kJ/m3天然气,较优化前降低了约26%且与理论单位能耗1210kJ/m3天然气相差不大,节能效果十分显著。

Claims (9)

1.一种快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,包括如下步骤:
第一步,以x1、x2、…、xn-1和xn表示冷剂中n种组分各占的百分比,每种组分的百分比均为非负的且各种组分的百分比总和为1;xi受到如下约束条件的限制,
xi≥ai,i=1,2,...,n-1,n
第二步,对xi进行编码,将自然变量xi变成规范变量zi,使得xi转换成0≤zi≤1,其中,i=1,2,...,n-1,n;则
第三步,根据冷剂中的组分数n确定相应的基础数据组合方案,并通过流程模拟软件得到不同规范变量zi组合条件下的冷剂单位冷量
Figure FDA0002219068210000012
第四步,按照基础数据组合方案模拟得到的冷剂单位冷量
Figure FDA0002219068210000013
建立冷剂单位冷量
Figure FDA0002219068210000014
与规范变量zi之间的高阶回归方程,并进一步求解得到该高阶回归方程的各项回归系数;
第五步,将第四步高阶回归方程中的冷剂单位冷量
Figure FDA0002219068210000015
替换为天然气液化所需的适宜冷剂单位冷量
Figure FDA0002219068210000016
并将各项回归系数代入,计算得到适宜冷剂单位冷量条件下的各规范变量zi的取值;
第六步,将适宜冷剂单位冷量
Figure FDA0002219068210000017
条件下的各规范变量zi转换成自然变量xi,得到适宜的冷剂配比。
2.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,ai=0,则xi=zi,i=1,2,...,n-1,n。
3.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第三步中,基础数据组合方案如以下表格所示:
4.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第四步中,
Figure FDA0002219068210000022
其中,
Figure FDA0002219068210000023
5.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第五步中,通过规划求解的方法对高阶回归方程进行计算,得到适宜冷剂单位冷量条件下的各规范变量zi的取值。
6.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第五步中,所述的适宜冷剂单位冷量是根据制冷液化流程的理论单位能耗,并结合制冷装置的实际天然气加工能力、实际能量利用效率、实际保冷率和实际冷剂循环量计算得到的。
7.根据权利要求6所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,适宜冷剂单位冷量计算公式为:
Figure FDA0002219068210000031
式中,为适宜冷剂单位冷量,kJ/kg冷剂;
Figure FDA0002219068210000033
为不同制冷液化流程的理论单位能耗,kJ/m3天然气;QLNG为实际天然气加工能力,m3天然气/h;η为实际能量利用效率;ζ为实际保冷率;QR为实际冷剂循环量,kg冷剂/h。
8.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第六步中,将适宜冷剂单位冷量
Figure FDA0002219068210000034
条件下的各规范变量zi转换成自然变量xi,具体公式为:
x1=[1-(a1+a2+...+an-1+an)]z1+a1
x2=[1-(a1+a2+...+an-1+an)]z2+a2
...
xn-1=[1-(a1+a2+...+an-1+an)]zn-1+an-1
xn=[1-(a1+a2+...+an-1+an)]zn+an
9.根据权利要求1所述的快速确定天然气液化工艺冷剂适宜配比的方法,其特征在于,第三步中,所述流程模拟软件为ASPEN Plus、ASPEN HYSYS或CHEMICAL CAD。
CN201910926489.8A 2019-09-27 2019-09-27 一种快速确定天然气液化工艺冷剂适宜配比的方法 Active CN110657632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910926489.8A CN110657632B (zh) 2019-09-27 2019-09-27 一种快速确定天然气液化工艺冷剂适宜配比的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910926489.8A CN110657632B (zh) 2019-09-27 2019-09-27 一种快速确定天然气液化工艺冷剂适宜配比的方法

Publications (2)

Publication Number Publication Date
CN110657632A true CN110657632A (zh) 2020-01-07
CN110657632B CN110657632B (zh) 2021-06-18

Family

ID=69039635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910926489.8A Active CN110657632B (zh) 2019-09-27 2019-09-27 一种快速确定天然气液化工艺冷剂适宜配比的方法

Country Status (1)

Country Link
CN (1) CN110657632B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054583A (ko) * 2013-11-12 2015-05-20 최창균 탄화수소 혼합 냉매 및 이것의 조성비를 결정하기 위한 시뮬레이션 장치
CN106566475A (zh) * 2016-10-25 2017-04-19 华油天然气广安有限公司 不同原料气所对应的制冷剂组分配比及调整制冷剂配比的方法
CN108763721A (zh) * 2018-05-23 2018-11-06 特灵空调系统(中国)有限公司 空调系统充注量的仿真方法
US20190162469A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054583A (ko) * 2013-11-12 2015-05-20 최창균 탄화수소 혼합 냉매 및 이것의 조성비를 결정하기 위한 시뮬레이션 장치
CN106566475A (zh) * 2016-10-25 2017-04-19 华油天然气广安有限公司 不同原料气所对应的制冷剂组分配比及调整制冷剂配比的方法
US20190162469A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
CN108763721A (zh) * 2018-05-23 2018-11-06 特灵空调系统(中国)有限公司 空调系统充注量的仿真方法

Also Published As

Publication number Publication date
CN110657632B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Nekså et al. Development and analysis of a natural gas reliquefaction plant for small gas carriers
Wu et al. Optimization of a novel cryogenic air separation process based on cold energy recovery of LNG with exergoeconomic analysis
JP2011526993A5 (zh)
CN103727741A (zh) 一种天然气液化工艺
CN102748918A (zh) 双级混合冷剂循环天然气液化系统
CN110657632B (zh) 一种快速确定天然气液化工艺冷剂适宜配比的方法
Pakzad et al. Investigation of a new energy‐efficient cryogenic process configuration for helium extraction and liquefaction
CN204981793U (zh) 一种lng冷能应用于油田伴生气的处理装置
CN103398545B (zh) 一种原料气多级压缩节流的生产液化天然气的系统
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统
CN111607423B (zh) 车载移动式油田放空气回收系统中的液化单元及其液化方法
CN101126041A (zh) 级联式制备液化天然气的方法
CN102645084B (zh) 一种混合冷剂三级制冷制备液化天然气的方法及装置
CN205119655U (zh) 一种石油化工尾气中二氧化碳低温高压液化回收装置
Lee et al. Analysis of cryogenic refrigeration cycle using two stage intercooler
Trigilio et al. Modelling and simulation of natural gas liquefaction process
Amin et al. Simulation of N2 gas separation process from air
CN110779275B (zh) 一种提高天然气液化装置能效的方法
Naquash et al. Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production
CN112212610B (zh) 一种lng制备液氢的方法
CN104132504A (zh) 一种从井场天然气回收混烃的系统及方法
CN207379164U (zh) Bog回收与氮气液化系统
Karabuğa et al. Energy and exergy analyses of nitrogen liquefaction process
CN202692600U (zh) 一种双级混合冷剂循环天然气液化系统
CN111288747A (zh) 一种lng冷能利用空分装置系统及其设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231229

Address after: 402660 No. 86 Dongsheng Street, Zitong Street Office, Tongnan District, Chongqing City

Patentee after: Chongqing Zhongmin Gas Co.,Ltd.

Address before: 710065, No. 18, two East, electronic road, Shaanxi, Xi'an

Patentee before: XI'AN SHIYOU University