CN110646250B - Sampling device for environment detection - Google Patents

Sampling device for environment detection Download PDF

Info

Publication number
CN110646250B
CN110646250B CN201910776226.3A CN201910776226A CN110646250B CN 110646250 B CN110646250 B CN 110646250B CN 201910776226 A CN201910776226 A CN 201910776226A CN 110646250 B CN110646250 B CN 110646250B
Authority
CN
China
Prior art keywords
fixedly connected
bolts
sampling device
upper side
environment detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910776226.3A
Other languages
Chinese (zh)
Other versions
CN110646250A (en
Inventor
张佑国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Guokang Inspection And Testing Technology Co ltd
Original Assignee
Hunan Guokang Inspection And Testing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Guokang Inspection And Testing Technology Co ltd filed Critical Hunan Guokang Inspection And Testing Technology Co ltd
Priority to CN201910776226.3A priority Critical patent/CN110646250B/en
Publication of CN110646250A publication Critical patent/CN110646250A/en
Application granted granted Critical
Publication of CN110646250B publication Critical patent/CN110646250B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention discloses a sampling device for environment detection, which relates to the technical field of environment detection work and aims at solving the problem of low sampling efficiency in the prior art, the sampling device comprises an unmanned aerial vehicle, wherein a positioner and a controller are fixedly connected in the unmanned aerial vehicle through bolts, the upper side of the unmanned aerial vehicle is fixedly connected with a detection box through bolts, the upper side of the detection box is fixedly connected with an air inlet pipe, the lower end of the air inlet pipe is fixedly connected with a detector, the lower side of the detector is fixedly connected with an air outlet pipe, the other end of the air outlet pipe extends to the outer side of the detection box, the bottom of the detection box is fixedly connected with an electric telescopic rod through bolts, and the output end of the electric telescopic rod is fixedly connected with a moving block. Meanwhile, continuous gas information is obtained, and comparison is convenient.

Description

Sampling device for environment detection
Technical Field
The invention relates to the technical field of environment detection work, in particular to a sampling device for environment detection.
Background
The environment of human life is collected, the step such as sample, experiment, analysis to the environment that the people live when environmental monitoring, confirms the parameter of environment in, knows the environment of self, wherein atmospheric monitoring is a part of daily detection, and the current is generally installed the detection station on ground or is carried out the hot air balloon and rises to the air and collect, the sample, but the detection station on ground can measure a part of data owing to the restriction of height, and the measurement cost of hot air balloon is high simultaneously, and is efficient slow for the efficiency of measuring the sample is low.
Disclosure of Invention
The sampling device for environment detection provided by the invention solves the problem of low sampling efficiency.
In order to achieve the purpose, the invention adopts the following technical scheme:
a sampling device for environmental detection comprises an unmanned aerial vehicle, wherein a positioner and a controller are fixedly connected in the unmanned aerial vehicle through bolts, the upper side of the unmanned aerial vehicle is fixedly connected with a detection box through bolts, the upper side of the detection box is fixedly connected with an air inlet pipe, the lower end of the air inlet pipe is fixedly connected with a detector, the lower side of the detector is fixedly connected with an air outlet pipe, the other end of the air outlet pipe extends to the outer side of the detection box, the bottom of the detection box is fixedly connected with an electric telescopic rod through bolts, the output end of the electric telescopic rod is fixedly connected with a movable block, the upper side of the movable block is fixedly connected with a limiting plate through bolts, the upper side of the limiting plate is fixedly connected with a plurality of pneumatic cylinders through bolts, the output ends of the pneumatic cylinders are fixedly connected with a movable box through bolts, and the inner wall of the movable box is fixedly connected with a motor through bolts, the output end of the motor is fixedly connected with a rotating shaft which is connected with the movable box in a rotating mode through a coupler, the other end of the rotating shaft is fixedly connected with a connecting plate, one side of the connecting plate is connected with a clamp, a collecting cylinder is clamped on the upper side of the movable block, a gas collecting pipe is fixedly connected to the upper side of the collecting cylinder, a valve is connected to the gas collecting pipe, and the valve is fixedly connected with the clamp.
Preferably, the controller adopts an AFPX0L14R model controller, the motor, the unmanned aerial vehicle, the positioner, the electric telescopic rod and the pneumatic cylinder are all electrically connected with the controller through electric wires, and the positioner adopts a TK303 model positioner.
Preferably, the limiting plate is of a rectangular structure, and the cross section of the moving block is of an F-shaped structure.
Preferably, a fixing ring is fixedly connected to the moving block, the fixing ring is made of rubber, and the collecting cylinder is in sliding sleeve connection with the fixing ring.
Preferably, the top of the air inlet pipe is provided with a plurality of through holes, and the through holes are of a rectangular structure.
Preferably, both sides of the detection box are provided with working holes, and the working holes are of rectangular structures.
Preferably, the air outlet pipe is of an L-shaped structure, and the collecting cylinder is of a cylindrical structure.
The invention has the beneficial effects that:
this scheme is through mutually supporting of unmanned aerial vehicle, detection case, electric telescopic handle, pneumatic cylinder, motor, collecting vessel and so on, and the gas sample of collection co-altitude that can be convenient quick is convenient for subsequent experiment to be explored, practices thrift sample time, increases efficiency.
This scheme is through mutually supporting of unmanned aerial vehicle, intake pipe, detector, outlet duct etc. can obtain the approximate gas information of continuous volume, conveniently contrasts.
In conclusion, the gas sampling device is simple in structure and convenient to use, can conveniently and quickly collect gas samples with different heights, saves sampling time, increases efficiency, obtains continuous approximate gas information and facilitates comparison.
Drawings
FIG. 1 is a schematic front cross-sectional view of the present invention.
FIG. 2 is a front cross-sectional view of the detection box of the present invention.
FIG. 3 is a schematic top cross-sectional view of the test cassette of the present invention.
Fig. 4 is an enlarged view of a point a in fig. 2.
Reference numbers in the figures: the device comprises an unmanned aerial vehicle 1, a detection box 2, an air inlet pipe 3, a positioner 4, a controller 5, an electric telescopic rod 6, a detector 7, an air outlet pipe 8, a movable block 9, a collecting cylinder 10, a motor 11, a movable box 12, a rotating shaft 13, a connecting plate 14, a clamp 15, a gas collecting pipe 16, a valve 17, a pneumatic cylinder 18 and a limiting plate 19.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. Referring to the attached drawings 1-3, a sampling device for environment detection comprises an unmanned aerial vehicle 1, a positioner 4 and a controller 5 are fixedly connected in the unmanned aerial vehicle 1 through bolts, the controller 5 controls the positioner 4 to position the height, distance and the like of the whole device, a detection box 2 is fixedly connected on the upper side of the unmanned aerial vehicle 1 through bolts, an air inlet pipe 3 is fixedly connected on the upper side of the detection box 2, a detector 7 is fixedly connected at the lower end of the air inlet pipe 3, an air outlet pipe 8 is fixedly connected on the lower side of the detector 7, the other end of the air outlet pipe 8 extends to the outer side of the detection box 2, the condition of the continuous air quality of each position is determined through the preliminary detection of the detector 7, an electric telescopic rod 6 is fixedly connected at the bottom of the detection box 2 through bolts, and a moving block 9 is fixedly connected at the output end of the electric telescopic rod 6, the upper side of a moving block 9 is fixedly connected with a limiting plate 19 through bolts, the upper side of the limiting plate 19 is fixedly connected with a plurality of pneumatic cylinders 18 through bolts, the output ends of the pneumatic cylinders 18 are fixedly connected with a moving box 12 through bolts, the inner wall of the moving box 12 is fixedly connected with a motor 11 through bolts, the output end of the motor 11 is fixedly connected with a rotating shaft 13 which is rotatably connected with the moving box 12 through a coupler, the other end of the rotating shaft 13 is fixedly connected with a connecting plate 14, one side of the connecting plate 14 is connected with a clamp 15, the upper side of the moving block 9 is clamped with a collecting cylinder 10, the interior of the collecting cylinder 10 is in vacuum arrangement, the upper side of the collecting cylinder 10 is fixedly connected with a gas collecting pipe 16, the gas collecting pipe 16 is connected with a valve 17, the valve 17 is fixedly connected with the clamp 15, when the moving block reaches a designated height or position, the moving block 9 moves outwards through the control of one of the electric telescopic rod 6 by a controller 5, further make surge drum 10 etc. remove out detection case 2, then the control of rethread controller 5, motor 11 works, it rotates to drive rotation axis 13, further centre gripping and pneumatic cylinder 18's that passes through anchor clamps 15 cooperation, unscrew valve 17, make external air enter into surge drum 10 and collect, then controller 5 is the reversal of control motor 11 again, make the valve close, and then make and collect the gas of a take the altitude, further operation through ground personnel control unmanned aerial vehicle 1, carry out the collection of the gas of different positions.
Controller 5 adopts AFPX0L14R model controller, and motor 11, unmanned aerial vehicle 1, locator 4, electric telescopic handle 6 and pneumatic cylinder 18 all are connected with controller 5 electricity through the electric wire, and locator 4 adopts TK303 model locator, can coordinate mutually supporting between each device through controller 5.
The limiting plate 19 is of a rectangular structure, the cross section of the moving block 9 is of an F-shaped structure, a fixing ring is fixedly connected to the moving block 9 and made of rubber, the collecting cylinder 10 is sleeved with the fixing ring in a sliding mode, and the F-shaped structure and the fixing ring of the moving block 9 are convenient to fix the collecting cylinder 10.
The top of intake pipe 3 is provided with a plurality of through-holes, and the through-hole adopts the rectangle structure, and the through-hole is ventilated, and the both sides of detection case 2 all are provided with the working hole, and the working hole adopts the convenient removal piece of rectangle structure working hole 9 and the equipment of top to remove, and outlet duct 8 adopts L shape structure, and collecting vessel 10 adopts cylindrical structure.
During the use, through the control of controller, control corresponding electric telescopic handle 6 in the position of difference and carry out work, then carry out gaseous collection, conveniently obtain different data information, through the detection of detector 7, can obtain the atmospheric approximate change of whole in-process simultaneously, conveniently compare.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art should be able to cover the technical scope of the present invention and the equivalent alternatives or modifications according to the technical solution and the inventive concept of the present invention within the technical scope of the present invention.

Claims (7)

1. The sampling device for environment detection comprises an unmanned aerial vehicle (1) and is characterized in that a positioner (4) and a controller (5) are fixedly connected in the unmanned aerial vehicle (1) through bolts, a detection box (2) is fixedly connected on the upper side of the unmanned aerial vehicle (1) through bolts, an air inlet pipe (3) is fixedly connected on the upper side of the detection box (2), a detector (7) is fixedly connected at the lower end of the air inlet pipe (3), an air outlet pipe (8) is fixedly connected on the lower side of the detector (7), the other end of the air outlet pipe (8) extends to the outer side of the detection box (2), an electric telescopic rod (6) is fixedly connected at the bottom of the detection box (2) through bolts, a moving block (9) is fixedly connected at the output end of the electric telescopic rod (6), and a limiting plate (19) is fixedly connected on the upper side of the moving block (9) through bolts, the upper side of the limiting plate (19) is fixedly connected with a plurality of pneumatic cylinders (18) through bolts, the output ends of the pneumatic cylinders (18) are fixedly connected with a movable box (12) through bolts, the inner wall of the movable box (12) is fixedly connected with a motor (11) through bolts, the output end of the motor (11) is fixedly connected with a rotating shaft (13) rotatably connected with the movable box (12) through a coupler, the other end of the rotating shaft (13) is fixedly connected with a connecting plate (14), one side of the connecting plate (14) is connected with a clamp (15), the upper side of the movable block (9) is connected with a collecting cylinder (10) in a clamping mode, the upper side of the collecting cylinder (10) is fixedly connected with a gas collecting pipe (16), the gas collecting pipe (16) is connected with a valve (17), and the valve (17) is fixedly connected with the clamp (15).
2. The sampling device for environment detection according to claim 1, wherein the controller (5) is an AFPX0L14R type controller, the motor (11), the drone (1), the positioner (4), the electric telescopic rod (6) and the pneumatic cylinder (18) are all electrically connected with the controller (5) through wires, and the positioner (4) is a TK303 type positioner.
3. The environmental monitoring sampling device according to claim 1, wherein the limiting plate (19) is rectangular and the cross section of the moving block (9) is F-shaped.
4. The sampling device for environment detection according to claim 1, wherein a fixing ring is fixedly connected to the moving block (9), the fixing ring is made of rubber, and the collecting cylinder (10) is slidably sleeved with the fixing ring.
5. The sampling device for environment detection according to claim 1, wherein a plurality of through holes are arranged at the top of the air inlet pipe (3), and the through holes are of a rectangular structure.
6. The sampling device for environment detection as recited in claim 1, wherein both sides of the detection box (2) are provided with working holes, and the working holes are of rectangular structures.
7. The sampling device for environment detection according to claim 1, wherein the air outlet pipe (8) is of an L-shaped structure, and the collecting cylinder (10) is of a cylindrical structure.
CN201910776226.3A 2019-08-22 2019-08-22 Sampling device for environment detection Active CN110646250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910776226.3A CN110646250B (en) 2019-08-22 2019-08-22 Sampling device for environment detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910776226.3A CN110646250B (en) 2019-08-22 2019-08-22 Sampling device for environment detection

Publications (2)

Publication Number Publication Date
CN110646250A CN110646250A (en) 2020-01-03
CN110646250B true CN110646250B (en) 2022-06-17

Family

ID=68990228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910776226.3A Active CN110646250B (en) 2019-08-22 2019-08-22 Sampling device for environment detection

Country Status (1)

Country Link
CN (1) CN110646250B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126686A (en) * 2007-09-29 2008-02-20 山东省职业卫生与职业病防治研究院 Tube type pump-free type samplers
DE102007027326A1 (en) * 2007-06-14 2008-12-18 Diehl Bgt Defence Gmbh & Co. Kg Gas collecting device for collecting gaseous sample for analysis of sample, has gas collecting module with diaphragm pump that is effectively connected with controller and power supply e.g. battery, of flying apparatus i.e. micro drone
JP2009092631A (en) * 2007-10-12 2009-04-30 National Institute For Environmental Studies Aircraft loading type automatic air flask-sampling device
CN105258978A (en) * 2015-10-09 2016-01-20 华南理工大学 Unmanned aerial vehicle pod for environmental sample collection and collection method
CN205608949U (en) * 2015-09-10 2016-09-28 中华映管股份有限公司 Security system
CN106525521A (en) * 2016-12-09 2017-03-22 南京信息工程大学 Gas acquisition and detection device and use method thereof
KR20170001248U (en) * 2015-10-01 2017-04-11 대우조선해양 주식회사 Gas injection and collection device for unmaned aerial vehicle
RU171238U1 (en) * 2017-02-15 2017-05-25 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт биологической защиты растений" AIR Sampler
CN107315422A (en) * 2017-07-29 2017-11-03 南京白云环境科技集团股份有限公司 Air automatic detection and sample-leaving system based on unmanned plane
CN107933908A (en) * 2017-12-22 2018-04-20 南京菱亚汽车技术研究院 A kind of air sampling unmanned plane for environmental monitoring
CN207351764U (en) * 2017-09-15 2018-05-11 湖北省环境监测中心站 The Soviet Union agate pot type sampling environment air device supporting with unmanned plane
CN108528718A (en) * 2018-04-02 2018-09-14 威洁(石狮)中水回用技术有限公司 Atmospheric environment monitors aircraft and monitoring method automatically
CN208171702U (en) * 2018-06-11 2018-11-30 滁州职业技术学院 Unmanned plane is used in a kind of sampling of air quality
CN109738239A (en) * 2019-03-04 2019-05-10 环境保护部华南环境科学研究所 A kind of multiple spot air acquisition and air detecting device based on unmanned plane
CN208953341U (en) * 2018-10-11 2019-06-07 河北嘉澳环境检测技术有限公司 A kind of environment measuring Multipoint synchronous atmosphere sampler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035693B1 (en) * 2010-12-23 2019-10-23 한국전자통신연구원 Method of monitoring air pollution and system for the same
US10175151B2 (en) * 2015-05-18 2019-01-08 Yaaqov AVAKOV Environmental monitoring UAV system
US10330571B2 (en) * 2017-03-07 2019-06-25 Alexander B. Adams Air sampling system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027326A1 (en) * 2007-06-14 2008-12-18 Diehl Bgt Defence Gmbh & Co. Kg Gas collecting device for collecting gaseous sample for analysis of sample, has gas collecting module with diaphragm pump that is effectively connected with controller and power supply e.g. battery, of flying apparatus i.e. micro drone
CN101126686A (en) * 2007-09-29 2008-02-20 山东省职业卫生与职业病防治研究院 Tube type pump-free type samplers
JP2009092631A (en) * 2007-10-12 2009-04-30 National Institute For Environmental Studies Aircraft loading type automatic air flask-sampling device
CN205608949U (en) * 2015-09-10 2016-09-28 中华映管股份有限公司 Security system
KR20170001248U (en) * 2015-10-01 2017-04-11 대우조선해양 주식회사 Gas injection and collection device for unmaned aerial vehicle
CN105258978A (en) * 2015-10-09 2016-01-20 华南理工大学 Unmanned aerial vehicle pod for environmental sample collection and collection method
CN106525521A (en) * 2016-12-09 2017-03-22 南京信息工程大学 Gas acquisition and detection device and use method thereof
RU171238U1 (en) * 2017-02-15 2017-05-25 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт биологической защиты растений" AIR Sampler
CN107315422A (en) * 2017-07-29 2017-11-03 南京白云环境科技集团股份有限公司 Air automatic detection and sample-leaving system based on unmanned plane
CN207351764U (en) * 2017-09-15 2018-05-11 湖北省环境监测中心站 The Soviet Union agate pot type sampling environment air device supporting with unmanned plane
CN107933908A (en) * 2017-12-22 2018-04-20 南京菱亚汽车技术研究院 A kind of air sampling unmanned plane for environmental monitoring
CN108528718A (en) * 2018-04-02 2018-09-14 威洁(石狮)中水回用技术有限公司 Atmospheric environment monitors aircraft and monitoring method automatically
CN208171702U (en) * 2018-06-11 2018-11-30 滁州职业技术学院 Unmanned plane is used in a kind of sampling of air quality
CN208953341U (en) * 2018-10-11 2019-06-07 河北嘉澳环境检测技术有限公司 A kind of environment measuring Multipoint synchronous atmosphere sampler
CN109738239A (en) * 2019-03-04 2019-05-10 环境保护部华南环境科学研究所 A kind of multiple spot air acquisition and air detecting device based on unmanned plane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"基于微型多旋翼无人机的气象及环境监测系统设计";史静 等;《气象水文海洋仪器》;20180331(第1期);第47-51页 *

Also Published As

Publication number Publication date
CN110646250A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
CN108956215A (en) A kind of unmanned plane polluted gas sampler
CN110646250B (en) Sampling device for environment detection
CN104677690B (en) A kind of atmospheric aerosol automatic acquisition device
CN110824379A (en) Movable leakage detector
CN105716802B (en) Blast gate air tightness detection equipment
CN211374243U (en) High-altitude atmosphere detection sampling balloon
CN212621743U (en) Atmospheric pollution check out test set
CN209676359U (en) A kind of multifunctional pick-up head
CN211179804U (en) Multi-parameter integrated water quality monitor
CN211425991U (en) Environment-friendly portable atmospheric sampling device
CN215525186U (en) Groundwater depthkeeping sample thief for geology
CN213842953U (en) Radioactive aerosol particle detection device
CN211785422U (en) Quick TVOC turbidity detection device
CN210175087U (en) Pollution discharge concealed pipe detection unmanned ship
CN210037985U (en) Unmanned aerial vehicle lightning protection detection device based on manipulator realizes high accuracy control
CN207585587U (en) A kind of power plant switchyard sedimentation early warning system based on electric inspection process robot
CN207908224U (en) A kind of precipitation sample devices
CN217415962U (en) Movable detection vehicle for permeability test of concrete in plateau distress area
CN212622353U (en) Portable indoor environmental monitoring equipment
CN220063503U (en) Sampling equipment for water source pollution detection
CN210774920U (en) Gas sampling device for environment detection
CN205506770U (en) Stench sampling detection equipment
CN205374526U (en) A sensor supporting mechanism for electrified detector of ultrasonic wave partial discharge
CN213689774U (en) Portable building lightning protection detection device
CN211697975U (en) Insulation resistance detection device between insulating clothing layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant