CN110642606A - 一种提高氧化铝陶瓷聚光腔反射率的方法 - Google Patents

一种提高氧化铝陶瓷聚光腔反射率的方法 Download PDF

Info

Publication number
CN110642606A
CN110642606A CN201910960880.XA CN201910960880A CN110642606A CN 110642606 A CN110642606 A CN 110642606A CN 201910960880 A CN201910960880 A CN 201910960880A CN 110642606 A CN110642606 A CN 110642606A
Authority
CN
China
Prior art keywords
stage
reflectivity
improving
heat preservation
gathering cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910960880.XA
Other languages
English (en)
Inventor
臧幼洁
周彩楼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN201910960880.XA priority Critical patent/CN110642606A/zh
Publication of CN110642606A publication Critical patent/CN110642606A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种提高氧化铝陶瓷聚光腔反射率的方法,属于氧化铝陶瓷技术领域,其特征在于,所述提高氧化铝陶瓷聚光腔反射率的方法至少包括:S101、将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,球磨时间范围为120min~360min,随后利用烘箱烘干至恒重;S102、将不同粒径的粉料制成试片;S103、将所述试片分为五组烧成,烧成温度范围为1100℃~1500℃;S104、用光谱仪进行反射率的测试。通过采用上述技术方案,本发明改变了氧化铝陶瓷的粒径和微观结构,进而提高陶瓷聚光腔的反射性能;本发明的工艺过程简洁易操作,能够很好地满足大规模生产的需求。

Description

一种提高氧化铝陶瓷聚光腔反射率的方法
技术领域
本发明属于氧化铝陶瓷技术领域,尤其涉及一种提高氧化铝陶瓷聚光腔反射率的方法。
背景技术
众所周知,激光、原子能、半导体和计算机一起被称为当代科学创新的四大发明,激光产生的重要核心部分是激光器中含有亚稳态能级的激光工作物质。其中通常将工作物质为晶体或者玻璃的激光器称为固体激光器,在激光科学技术领域的研究中高功率固体激光器的研究是最吸引人注意的。固体激光器通常由工作物质,激励源,聚光腔,光学谐振腔,电源及制冷系统组成。激光聚光腔是固体激光器的一个非常重要的部件。它的作用是将泵浦灯辐射出的光最大限度地聚集到激光工作物质上,它的性能直接影响着激光器件的输出效率和激光质量。可用于聚光腔的材料有金属材料和陶瓷材料。金属材料加工工艺比较繁琐,反射面精度要求高,在强激光照射下,反射面易产生硫化。陶瓷材料具有良好的化学物理性能,它具有聚光效率高、耐高温耐腐蚀、泵浦均匀性好、热膨胀小及长期使用效率不降低等优点,是制作漫反射聚光腔的优异材料,在大功率激光器上有较好的应用前景。但使用陶瓷材料的前提是其漫反射率要达到高水平,光学是核心问题,还要有高的机械强度。氧化铝陶瓷因其本身具有很高的漫反射率,而且热导率、机械强度都很高,同时氧化铝陶瓷耐腐蚀、化学稳定性好,因而倍受国内外的关注,成为研制激光聚光腔坯体比较理想的材料。氧化铝作为聚光腔材料,其热导率、机械强度高,化学稳定性好。通过改变粒径和晶界,提高在可见光区的反射率。而烧成温度也会改变氧化铝的微观结构;因此,设计开发一种提高氧化铝陶瓷聚光腔反射率的方法具有非常重要的意义。
发明内容
本发明为解决公知技术中存在的技术问题,提出一种提高氧化铝陶瓷聚光腔反射率的方法;通过改变氧化铝陶瓷的粒径和微观结构,进而提高陶瓷聚光腔的反射性能。
本发明所采用的具体技术方案为:
一种提高氧化铝陶瓷聚光腔反射率的方法,至少包括:
S101、将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,球磨时间范围为120min~360min,随后利用烘箱烘干至恒重;
S102、将不同粒径的粉料制成试片;
S103、将所述试片分为五组烧成,烧成温度范围为1100℃~1500℃;
S104、用光谱仪进行反射率的测试。
进一步,在所述湿法球磨时,料、球、水的质量比依次为1∶2∶1。
更进一步,球磨时间为120min或240min或360min。
进一步,所述烧成温度为1200℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
进一步,所述烧成温度为1100℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
进一步,所述烧成温度为1300℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
进一步,所述烧成温度为1500℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
进一步,所述S102具体为:将不同粒径的粉料干压成型为试片。
本发明的优点及积极效果为:
通过采用上述技术方案,本发明具有如下的技术效果:
由于本发明改变了氧化铝陶瓷的粒径和微观结构,因此提高了陶瓷聚光腔的反射性能;
本发明的工艺过程简洁易操作,能够很好地满足大规模生产的需求。
附图说明
图1为本发明优选实施例的流程图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
请参阅图1,一种提高氧化铝陶瓷聚光腔反射率的方法,
实施例1,具体步骤为:
(1)将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,料∶球∶水(质量比)=1∶2∶1,,球磨时间在120min,在烘箱中烘干至恒重;
(2)对所述粉料进行干压成型为试片;
(3)将所述试片分为五组烧成,烧成温度为1200℃。烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
(4)用光谱仪进行烧成试片的反射率测试。
实施例2,具体步骤为:
(1)将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,料∶球∶水(质量比)=1∶2∶1,球磨时间在240min,在烘箱中烘干至恒重;
(2)对所述粉料进行干压成型为试片;
(3)将所述试片分为五组烧成,烧成温度为1200℃。烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
(4)用光谱仪进行烧成试片的反射率测试。
实施例3,具体步骤为:
(1)将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,料:球∶水(质量比)=1∶2∶1,球磨时间在240min,在烘箱中烘干至恒重;
(2)对所述粉料进行干压成型为试片;
(3)将所述试片烧成,烧成温度为1100℃。烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
(4)用光谱仪进行烧成试片的反射率测试。
实施例4,具体步骤为:
(1)将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,料∶球∶水(质量比)=1∶2∶1,球磨时间在240min,在烘箱中烘干至恒重;
(2)对所述粉料进行干压成型为试片;
(3)将所述试片烧成,烧成温度为1300℃。烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
(4)用光谱仪进行烧成试片的反射率测试。
效果测试:用光谱仪测定上述实施例中试片的反射率,反射率公式为
R=(n1-n2)^2/(n1+n2)^2,测试效果见表1。
表1氧化铝试片在不同波长下的反射率
Figure BSA0000191894570000041
从表1数据可以看出,本方法得到的试片,随着粒径的减小,在主要吸收带(600nm~900nm)反射率有上升趋势,而随着温度的提高,氧化铝微观结构的变化,反射率也有相应提高,最高可以达到99.13%。
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (8)

1.一种提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,至少包括:
S101、将氧化铝粉料装入球磨罐中,采用球磨机湿法球磨,球磨时间范围为120min~360min,随后利用烘箱烘干至恒重;
S102、将不同粒径的粉料制成试片;
S103、将所述试片分为五组烧成,烧成温度范围为1100℃~1500℃;
S104、用光谱仪进行反射率的测试。
2.根据权利要求1所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,在所述湿法球磨时,料、球、水的质量比依次为1∶2∶1。
3.根据权利要求2所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,球磨时间为120min或240min或360min。
4.根据权利要求1所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,所述烧成温度为1200℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
5.根据权利要求1所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,所述烧成温度为1100℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
6.根据权利要求1所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,所述烧成温度为1300℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
7.根据权利要求1所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,所述烧成温度为1500℃,烧成分为两个阶段,第一阶段为升温阶段,升温速率为5℃/min~10℃/min;第二阶段为保温阶段,保温时间为120min~240min。
8.根据权利要求1-7任一项所述提高氧化铝陶瓷聚光腔反射率的方法,其特征在于,所述S102具体为:将不同粒径的粉料干压成型为试片。
CN201910960880.XA 2019-10-10 2019-10-10 一种提高氧化铝陶瓷聚光腔反射率的方法 Pending CN110642606A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910960880.XA CN110642606A (zh) 2019-10-10 2019-10-10 一种提高氧化铝陶瓷聚光腔反射率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910960880.XA CN110642606A (zh) 2019-10-10 2019-10-10 一种提高氧化铝陶瓷聚光腔反射率的方法

Publications (1)

Publication Number Publication Date
CN110642606A true CN110642606A (zh) 2020-01-03

Family

ID=68993739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910960880.XA Pending CN110642606A (zh) 2019-10-10 2019-10-10 一种提高氧化铝陶瓷聚光腔反射率的方法

Country Status (1)

Country Link
CN (1) CN110642606A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321155A (zh) * 2020-11-06 2021-02-05 焦作市吉成磁电有限公司 激光照明组件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000351A2 (en) * 1987-07-06 1989-01-12 Hughes Aircraft Company High reflectance pumping cavity
CN1419322A (zh) * 2002-12-31 2003-05-21 中国建筑材料科学研究院 陶瓷聚光腔材料、陶瓷聚光腔及其制造方法
CN102627472A (zh) * 2012-04-18 2012-08-08 大连理工大学 低气孔率氧化铝钛陶瓷件的激光近净成形方法
CN103771835A (zh) * 2012-10-24 2014-05-07 天津城市建设学院 激光泵浦腔Al2O3陶瓷反射体的热压铸成型技术
CN106007677A (zh) * 2016-03-23 2016-10-12 天津市光通陶瓷有限公司 一种激光泵浦腔Al2O3陶瓷反射体热压铸成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000351A2 (en) * 1987-07-06 1989-01-12 Hughes Aircraft Company High reflectance pumping cavity
US4802186A (en) * 1987-07-06 1989-01-31 Hughes Aircraft Company High reflectance laser resonator cavity
US4805181A (en) * 1987-07-06 1989-02-14 Hughes Aircraft Company High reflectance laser resonator cavity
CN1419322A (zh) * 2002-12-31 2003-05-21 中国建筑材料科学研究院 陶瓷聚光腔材料、陶瓷聚光腔及其制造方法
CN102627472A (zh) * 2012-04-18 2012-08-08 大连理工大学 低气孔率氧化铝钛陶瓷件的激光近净成形方法
CN103771835A (zh) * 2012-10-24 2014-05-07 天津城市建设学院 激光泵浦腔Al2O3陶瓷反射体的热压铸成型技术
CN106007677A (zh) * 2016-03-23 2016-10-12 天津市光通陶瓷有限公司 一种激光泵浦腔Al2O3陶瓷反射体热压铸成型方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴建锋等: "高反射激光泵浦腔材料的研制", 《佛山陶瓷》 *
谢昌平等: "热压铸成型陶瓷反射体坯体低温脱脂和烧成工艺研究", 《陶瓷学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321155A (zh) * 2020-11-06 2021-02-05 焦作市吉成磁电有限公司 激光照明组件及其制造方法
CN112321155B (zh) * 2020-11-06 2022-11-25 焦作市吉成磁电有限公司 激光照明组件及其制造方法

Similar Documents

Publication Publication Date Title
CN109704569B (zh) 一种zbya氟化物玻璃及其制备方法
CN101741011B (zh) 使半导体激光器在宽温区可靠工作的低应力封装装置及方法
CN102060539A (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN110642606A (zh) 一种提高氧化铝陶瓷聚光腔反射率的方法
CN104446497B (zh) 一种宽频透光氮氧化物透明陶瓷的制备方法
CN106329307B (zh) 一种微结构自加热碱金属蒸气激光器及制备方法
CN103880435A (zh) 一种高质量氮化铝陶瓷基片的微波快速烧结方法
CN106986662B (zh) 一种太阳能吸热陶瓷材料及其制备方法
Wu et al. A novel in-situ β-Sialon/Si3N4 ceramic used for solar heat absorber
CN105693246B (zh) 一种氧化钇透明陶瓷的制备方法
CN112563880B (zh) 一种基于多功能荧光陶瓷的绿光光源
CN104446489B (zh) 太阳能热发电用吸热体基体材料及其制备方法
CN201238151Y (zh) 一种泵浦大尺寸板条形增益介质的高反射率陶瓷聚光腔
CN104283092A (zh) Nd:YAG陶瓷晶体激光器
CN106746611A (zh) 具有较大负热光程系数和高增益的磷酸盐激光钕玻璃
CN204577831U (zh) 一种能产生266nm紫外激光的固体激光器
CN109516806B (zh) 一种红色发光陶瓷及其制备方法与应用
Liu et al. Influence of annealing on microstructures and properties of Yb: Lu2O3 transparent ceramics
CN114634311B (zh) 一种提高铋掺杂石英玻璃的近红外荧光强度的方法
CN115433007A (zh) 一种太阳能光谱宽频吸收材料及其制备方法
CN113828779B (zh) 一种粉末冶金法制备的高熵合金表面缺陷的激光修复方法
CN101172843A (zh) 一种激光透明陶瓷及其制备方法
CN113461417A (zh) 一种用飞秒激光织构化技术加工的荧光陶瓷
CN204298456U (zh) 一种薄膜沉积及退火装置
CN104018135A (zh) 一种用于短弧高压气体放电灯阳极表面粗糙化的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200103