CN110632497A - 测试soc系统中子系统功耗的方法、装置及系统 - Google Patents

测试soc系统中子系统功耗的方法、装置及系统 Download PDF

Info

Publication number
CN110632497A
CN110632497A CN201910512725.1A CN201910512725A CN110632497A CN 110632497 A CN110632497 A CN 110632497A CN 201910512725 A CN201910512725 A CN 201910512725A CN 110632497 A CN110632497 A CN 110632497A
Authority
CN
China
Prior art keywords
subsystem
dcdc
pll
power supply
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910512725.1A
Other languages
English (en)
Other versions
CN110632497B (zh
Inventor
马全伟
孙德印
韦虎
王奎
秦建鑫
张君宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eye Core Technology (shanghai) Co Ltd
Original Assignee
Eye Core Technology (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eye Core Technology (shanghai) Co Ltd filed Critical Eye Core Technology (shanghai) Co Ltd
Priority to CN201910512725.1A priority Critical patent/CN110632497B/zh
Publication of CN110632497A publication Critical patent/CN110632497A/zh
Application granted granted Critical
Publication of CN110632497B publication Critical patent/CN110632497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7807System on chip, i.e. computer system on a single chip; System in package, i.e. computer system on one or more chips in a single package
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本发明公开了测试SOC系统中子系统功耗的方法、装置及系统,涉及系统芯片测试技术领域。一种测试SOC系统中子系统功耗的方法,各个子系统设置有独立的DCDC电源,电源管理模块控制DCDC电源的开关打开或关闭,从而使待测试目标子系统工作在DCDC电源下;以及,通过PLL控制电路对每个子系统设置独立的时钟选择开关,通过控制各个子系统对应的时钟选择开关打开或关闭使待测试目标子系统工作在PLL时钟上。本发明能够对各个子系统的电源和PLL时钟进行独立控制,控制电源和PLL时钟的输出和关闭,从而使分析子系统功耗变得简单。

Description

测试SOC系统中子系统功耗的方法、装置及系统
技术领域
本发明涉及系统芯片测试技术领域,具体涉及系统功耗测试方法及应用。
背景技术
当前嵌入式系统越来越多的出现在日常生活中,以SOC(System On Chip)的应用尤为常见。SOC芯片通常由很多电路模块或IP构成,包括数字、模拟、射频和数模混合电路等,其具有规模大、集成度高、体积小等特点。随着SOC工艺不断演进,系统性能越来越强,系统的功耗也越来越重要。当前,系统功耗已成为衡量产品竞争力的一个关键指标:系统功耗越小,寿命越长,竞争力越强。而系统功耗的大小,主要体现在SOC整体子系统一起协同工作时,各子系统功耗的总和的大小。但由于系统芯片SOC的集成度高,而且整个系统上的时钟和电源复用度越来越高,耦合度也越来越大,要分解各模块的功耗的难度和成本也随之增加。作为举例,参见图1所示,比如SOC系统通常可以包括ARM(Advanced RISC Machines)、DSP(Digital Signal Processing数字信号处理)、GPU(Graphics Processing Unit图形处理器)及外围控制模块等各种功能子系统,整个SOC系统的电源和时钟往往都不是独立的提供给各子系统,通常由一个DCDC(直流电压转直流电压)电源给系统的多个子系统供电,比如ARM子系统和DSP子系统是同一个DCDC(直流电压转直流电压)供电,同一个PLL(phaselocked loop锁相环)时钟又可能同时供多个子系统及SOC内部总线使用,分解各模块的功耗的难度较大。
另一方面,各子系统往往还处于协同工作状态,比如GPU编解码视频数据时,DSP在处理数据算法,ARM在协同处理常规操作,多个子系统都参与工作,此时功耗可能会超过了预期值,此时还需要分析系统的功耗主要消耗在哪个子系统。再则,为了优化和减小整个系统的功耗,也需要知道SOC中各子系统的功耗,以更有针对性的优化和改进系统设计。本发明针对上述缺陷,提出了一种测试SOC系统中子系统功耗的方法,其操作简单,通用性强,对分析优化整个系统功耗有较大的指导意义。
发明内容
本发明的目的在于:克服现有技术的不足,提供了一种测试SOC系统中子系统功耗的方法、装置及系统,本发明能够对各个子系统的电源和时钟进行独立控制,使用DCDC电源开关和PLL选择开关,控制电源和PLL时钟的输出和关闭,从而使分析子系统功耗变得简单,其操作简单,通用性强。
为实现上述目标,本发明提供了如下技术方案:
一种测试SOC系统中子系统功耗的方法,对SOC系统的每个子系统设置独立的DCDC电源,且该DCDC电源对应设置有DCDC电源开关,所述DCDC电源开关由电源管理模块控制打开或关闭;以及,设置PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关,当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态;
测试目标子系统的功耗的步骤包括,
控制目标子系统对应的DCDC电源打开且其它子系统对应的DCDC电源关闭;
控制目标子系统对应的PLL选择开关打开且其它子系统对应的PLL选择开关关闭,使得目标子系统工作在PLL时钟上;
执行目标子系统测试代码,测出DCDC电源功耗W1;
控制目标子系统对应的PLL选择开关关闭,使目标子系统工作在系统时钟上;
控制目标子系统对应的DCDC电源关闭,测出DCDC电源功耗W2,前述功耗W1减去W2的值为所述目标子系统的功耗值。
进一步,通过精密电源测试电源功耗,所述精密电源能够控制输出电压,并显示电流和功率。
进一步,所述SOC系统包括ARM子系统、DSP子系统和GPU子系统,前述子系统依次独立设置有DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,所述DCDC_ARM给ARM子系统供电,DCDC_DSP给DSP子系统供电,DCDC_GPU给GPU子系统供电;
默认情况下,所述DCDC_ARM打开,所述DCDC_DSP和DCDC_GPU关闭。
进一步,通过所述PLL控制电路,针对ARM子系统、DSP子系统和GPU子系统依次设置PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL__GPU__SEL;
默认情况下,所述PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL均处于关闭状态,PLL无输出,此时,所述ARM子系统工作在系统时钟上,所述DSP子系统和GPU子系统处于断电状态。
进一步,测试所述ARM子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
DCDC电源连接精密电源供电;
读取ARM测试代码到SOC外部存储空间,打开PLL_ARM_SEL开关,使ARM子系统工作在PLL时钟上;
控制ARM执行测试代码,通过精密电源测出DCDC电源功耗W1;
关闭PLL_ARM_SEL开关,使ARM工作在系统时钟上;
关闭DCDC_ARM,通过精密电源测出DCDC电源功耗W2,两个功耗差值即为ARM子系统在DCDC电源下工作在PLL时钟的功耗。
进一步,测试所述DSP子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
ARM打开DCDC_DSP和PLL_DSP_SEL开关;
通过ARM把DSP的引导代码放置到DSP子系统内的启动向量位置,并把DSP测试代码拷贝到SOC外部存储空间,释放DSP从重置状态到使用状态;
DSP启动,执行完前述引导代码后,执行DSP测试代码,通过精密电源测出DCDC电源功耗W1;
ARM关闭DCDC_DSP和PLL_DSP_SEL开关,通过精密电源测出DCDC电源功耗W2,两个功耗差值即为DSP子系统在DCDC电源下工作在PLL时钟的功耗。
进一步,测试所述GPU子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
ARM打开DCDC_GPU和PLL_GPU_SEL开关;
通过ARM拷贝GPU测试代码到SOC外部存储空间,释放GPU从重置状态到使用状态;
GPU启动,执行测试代码,通过精密电源测出DCDC电源功耗W1;
ARM关闭DCDC_GPU和PLL_GPU_SEL开关,通过精密电源测出DCDC功耗W2,两个功耗差值即为GPU子系统在DCDC电源下工作在PLL时钟的功耗。
本发明还提供了一种测试SOC子系统功耗的装置,所述装置包括:
子系统DCDC电源,所述子系统DCDC电源对应着SOC系统的每个子系统独立设置且具有DCDC电源开关,所述DCDC电源开关由电源管理模块控制打开或关闭;
与DCDC电源开关连接的电源管理模块,所述电源管理模块用以控制DCDC电源开关打开或关闭,从而使待测试目标子系统工作在对应的DCDC电源下;
PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关,当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态;
通过控制各个子系统对应的PLL选择开关打开或关闭使待测试目标子系统工作在PLL时钟上。
进一步,还包括与DCDC电源连接的精密电源,通过所述精密电源测量DCDC电源功耗;所述精密电源能够控制输出电压,并显示电流和功率。
本发明还提供了一种SOC系统,包括ARM子系统、DSP子系统、GPU子系统和外围控制模块,以及前述的测试子系统功耗的装置。
本发明由于采用以上技术方案,与现有技术相比,作为举例,具有以下的优点和积极效果:能够对各个子系统的电源和时钟进行独立控制,使用DCDC电源开关和PLL选择开关,控制电源和PLL时钟的输出和关闭,从而使分析子系统功耗变得简单,其操作简单,通用性强。
附图说明
图1为本发明实施例提供的SOC系统的模块结构图。
图2为本发明实施例提供的DCDC电源开关的布置结构图。
图3为本发明实施例提供的PLL回路的模块结构图。
图4为本发明实施例提供的PLL选择开关的布置结构。
图5为本发明实施例提供的ARM子系统功耗测试流程图。
图6为本发明实施例提供的DSP子系统功耗测试流程图。
图7为本发明实施例提供的GPU子系统功耗测试流程图。
具体实施方式
以下结合附图和具体实施例对本发明公开的测试SOC系统中子系统功耗的方法、装置及系统作进一步详细说明。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。在下述实施例的附图中,各附图所出现的相同标号代表相同的特征或者部件,可应用于不同实施例中。因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
需说明的是,本说明书所附图中所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定发明可实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在不影响发明所能产生的功效及所能达成的目的下,均应落在发明所揭示的技术内容所能涵盖的范围内。本发明的优选实施方式的范围包括另外的实现,其中可以不按所述的或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
实施例
本实施例提供了一种测试SOC系统中子系统功耗的方法。
所述SOC系统包括有多个子系统,针对SOC系统的每个子系统设置独立的DCDC电源,且该DCDC电源对应设置有DCDC电源开关。所述每个DCDC电源开关由PMU(powermanagement unit电源管理模块)控制打开或关闭。
参见图2所示,本实施例中,所述SOC系统可以包括ARM子系统、DSP子系统和GPU子系统,前述子系统依次一一对应设置有DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,所述DCDC_ARM控制给ARM子系统供电,DCDC_DSP控制给DSP子系统供电,DCDC_GPU控制给GPU子系统供电。
所述DCDC电源相比于LDO(low dropout voltage regulator低压差调节器)而言,具有更高的转换效率,且可以大电流。
本实施例中,所述DCDC电源可以为整个SOC系统提供电源。在SOC系统内部,PMU电源可以由输入到SOC系统的DCDC电源直接提供,PMU电源处于常开状态。而给各个子系统供电的DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,都设置有一个DCDC电源开关,该开关可以由PMU控制打开或者关闭。
作为举例而非限制,比如PMU控制电源DCDC_ARM的开关打开(连通线路),则对应的电源DCDC_ARM打开,使得DCDC_ARM能够给ARM子系统供电;或者PMU控制电源DCDC_ARM的开关关闭(断开线路),则对应的电源DCDC_ARM关闭,DCDC_ARM不再给ARM子系统供电。
本实施例中,在默认情况下,所述DCDC_ARM处于打开状态,所述DCDC_DSP和DCDC_GPU处于关闭状态。
同时,还设置有PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关。当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态。也就是说,只要有一个子系统的PLL选择开关打开,PLL就有输出,否则PLL处于关闭状态,这样的设置方式可以降低整个SOC的功耗。
参见图3所示,示例了PLL回路的模块结构图。
所述PLL回路(或简称PLL)是利用反馈控制原理实现的频率与相位同步技术,其作用是将电路的输出时钟与其外部的参考时钟同步。当参考时钟的相位和频率发生改变时,锁相环回路(PLL回路)会检测到这种变化,并通过内部的反馈系统来调节频率,直到两者重新同步。所述PLL在SOC系统中可以起到提供时钟,倍频,相位锁定等功能。
参见图4所示,所述PLL控制电路可以包括PLL和多个PLL选择开关,PLL通过多个PLL选择开关连接各个子系统,一个子系统对应一个PLL选择开关。比如,针对ARM子系统、DSP子系统和GPU子系统依次设置PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL。
默认情况下,前述开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL均处于关闭状态,PLL无输出。此时,所述ARM子系统可以工作在系统时钟上——比如工作在26M时钟上,而所述DSP子系统和GPU子系统处于Power down(断电)状态。
在测试时,可以通过所述电源管理模块控制DCDC电源开关打开或关闭,从而使待测试目标子系统工作在对应的DCDC电源下;同时,通过控制各个子系统对应的PLL选择开关打开或关闭,从而使待测试目标子系统工作在PLL时钟上。
具体实施时,测试目标子系统的功耗的步骤可以如下:
控制目标子系统对应的DCDC电源开关打开,电源打开,此时其它子系统对应的DCDC电源为关闭状态;
控制目标子系统对应的PLL选择开关打开,此时其它子系统对应的PLL选择开关为关闭状态,使得目标子系统工作在PLL时钟上;
执行目标子系统测试代码,测出DCDC电源功耗W1;
控制目标子系统对应的PLL选择开关关闭,使目标子系统工作在系统时钟上;
控制目标子系统对应的DCDC电源开关关闭,测出DCDC电源功耗W2,前述功耗W1减去W2的值为所述目标子系统的功耗值。
本实施例中,优选的通过精密电源测试电源功耗。所述精密电源可以精确的控制输出电压,并能显示当前电流和功率。
利用上述方案进行功耗测试时,需要测试功耗的电压可以由精密电源直接提供,通过采集待测试目标子系统工作在需要的时钟上的功耗信息以及关掉待测试目标子系统的电源和时钟后的功耗信息,进行比对,两次功耗的差值便可作为待测试目标子系统的功耗值。
参见图5所示,本实施例中,测试所述ARM子系统在DCDC电源下工作在PLL时钟的功耗的步骤可以如下:
S11,DCDC电源连接精密电源供电。
此时,由精密电源直接外接提供电源,电源DCDC_ARM默认打开。
S12,读取ARM测试代码到SOC外部存储空间,打开PLL_ARM_SEL开关,使ARM子系统工作在PLL时钟上。此步骤中,将ARM子系统的时钟从系统时钟切换到PLL时钟。
S13,控制ARM执行测试代码,通过精密电源测出DCDC电源功耗W1。
S14,关闭PLL_ARM_SEL开关,使ARM工作在系统时钟上。
此步骤中,将ARM子系统的时钟从PLL时钟切换回系统时钟。
S15,关闭电源DCDC_ARM。
S16,通过精密电源测出DCDC电源功耗W2。
S17,两个功耗差值W1-W2即为ARM子系统在DCDC电源下工作在PLL时钟的功耗。
需要说明的是,上述步骤的实施顺序作为优选方式举例而非限制,比如将步骤S14和步骤S15合并成一个步骤来描述,由于这样的调整并不会影响本实施例的实施效果,类似这样的调整也应在本实施例公开内容的保护范围内。
参见图6所示,本实施例中,测试所述DSP子系统在DCDC电源下工作在PLL时钟的功耗的步骤可以如下(DCDC电源仍连接精密电源供电):
步骤S21,ARM打开PLL_DSP_SEL开关。
步骤S22,ARM打开DCDC_DSP,并通过ARM把DSP的引导代码放置到DSP子系统内的启动向量位置,并把DSP测试代码拷贝到SOC外部存储空间。
步骤S23,ARM释放DSP从重置(reset)状态到使用(active)状态。
步骤S24,DSP启动,执行完前述引导代码后,执行DSP测试代码,通过精密电源测出DCDC电源功耗W1。
步骤S25,ARM关闭DCDC_DSP开关和PLL_DSP_SEL开关。
步骤S26,通过精密电源测出DCDC电源功耗W2。
步骤S27,两个功耗差值W1-W2即为DSP子系统在DCDC电源下工作在PLL时钟的功耗。
需要说明的是,上述步骤的实施顺序作为优选方式举例而非限制,比如将步骤S21和步骤S22合并成一个步骤来描述,或者将步骤S25分解成两个步骤来描述,由于这样的调整并不会影响本实施例的实施效果,类似这样的调整也应在本实施例公开内容的保护范围内。
参见图7所示,本实施例中,测试所述GPU子系统在DCDC电源下工作在PLL时钟的功耗的步骤可以如下(DCDC电源仍连接精密电源供电):
步骤S31,ARM打开PLL_GPU_SEL开关。
步骤S32,ARM打开DCDC_GPU,并通过ARM拷贝GPU测试代码到SOC外部存储空间。
步骤S33,ARM释放GPU从重置状态到使用状态。
步骤S34,GPU执行测试代码,通过精密电源测出DCDC电源功耗W1。
步骤S35,ARM关闭DCDC_GPU和PLL_GPU_SEL开关。
步骤S36,通过精密电源测出DCDC功耗W2。
步骤S37,两个功耗差值W1-W2即为GPU子系统在DCDC电源下工作在PLL时钟的功耗。
本发明的另一实施例,提供了一种测试SOC子系统功耗的装置。
所述装置包括:
子系统DCDC电源,所述子系统DCDC电源对应着SOC系统的每个子系统独立设置且具有DCDC电源开关,所述DCDC电源开关由电源管理模块控制打开或关闭;
与DCDC电源开关连接的电源管理模块,所述电源管理模块用以控制DCDC电源开关打开或关闭,从而使待测试目标子系统工作在对应的DCDC电源下;
PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关,当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态;
通过控制各个子系统对应的PLL选择开关打开或关闭使待测试目标子系统工作在PLL时钟上。
进一步,所述装置还可以包括与DCDC电源连接的精密电源,通过所述精密电源测量DCDC电源功耗;所述精密电源能够控制输出电压,并显示电流和功率。
本实施例中,所述SOC系统可以包括ARM子系统、DSP子系统和GPU子系统,前述子系统依次一一对应设置有DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,所述DCDC_ARM控制给ARM子系统供电,DCDC_DSP控制给DSP子系统供电,DCDC_GPU控制给GPU子系统供电。
在SOC系统内部,PMU电源可以由输入到SOC系统的DCDC电源直接提供,PMU电源处于常开状态。而给各个子系统供电的DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,都设置有一个DCDC电源开关,该开关可以由PMU控制打开或者关闭。
作为举例而非限制,比如PMU控制电源DCDC_ARM的开关打开(连通线路),则对应的电源DCDC_ARM打开,使得DCDC_ARM能够给ARM子系统供电;或者PMU控制电源DCDC_ARM的开关关闭(断开线路),则对应的电源DCDC_ARM关闭,DCDC_ARM不再给ARM子系统供电。
本实施例中,在默认情况下,所述DCDC_ARM处于打开状态,所述DCDC_DSP和DCDC_GPU处于关闭状态。
同时,还设置有PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关。当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态。也就是说,只要有一个子系统的PLL选择开关打开,PLL就有输出,否则PLL处于关闭状态,这样的设置方式可以降低整个SOC的功耗。
所述PLL控制电路可以包括PLL和多个PLL选择开关,PLL通过多个PLL选择开关连接各个子系统,一个子系统对应一个PLL选择开关。比如,针对ARM子系统、DSP子系统和GPU子系统依次设置PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL。
默认情况下,前述开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL均处于关闭状态,PLL无输出。此时,所述ARM子系统可以工作在系统时钟上——比如工作在26M时钟上,而所述DSP子系统和GPU子系统处于Power down(断电)状态。
在测试时,可以通过所述电源管理模块控制DCDC电源开关打开或关闭,从而使待测试目标子系统工作在对应的DCDC电源下;同时,通过控制各个子系统对应的PLL选择开关打开或关闭,从而使待测试目标子系统工作在PLL时钟上。
具体实施时,测试目标子系统的功耗的步骤可以如下:
控制目标子系统对应的DCDC电源开关打开,电源打开,此时其它子系统对应的DCDC电源为关闭状态;
控制目标子系统对应的PLL选择开关打开,此时其它子系统对应的PLL选择开关为关闭状态,使得目标子系统工作在PLL时钟上;
执行目标子系统测试代码,测出DCDC电源功耗W1;
控制目标子系统对应的PLL选择开关关闭,使目标子系统工作在系统时钟上;
控制目标子系统对应的DCDC电源开关关闭,测出DCDC电源功耗W2,前述功耗W1减去W2的值为所述目标子系统的功耗值。
其它技术特征参见前述实施例,在此不再赘述。
在上面的描述中,本发明的公开内容并不旨在将其自身限于这些方面。而是,在本公开内容的目标保护范围内,各组件可以以任意数目选择性地且操作性地进行合并。另外,像“包括”、“囊括”以及“具有”的术语应当默认被解释为包括性的或开放性的,而不是排他性的或封闭性,除非其被明确限定为相反的含义。所有技术、科技或其他方面的术语都符合本领域技术人员所理解的含义,除非其被限定为相反的含义。在词典里找到的公共术语应当在相关技术文档的背景下不被太理想化或太不实际地解释,除非本公开内容明确将其限定成那样。本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

1.一种测试SOC系统中子系统功耗的方法,其特征在于:对SOC系统的每个子系统设置独立的DCDC电源,且该DCDC电源对应设置有DCDC电源开关,所述DCDC电源开关由电源管理模块控制打开或关闭;以及,设置PLL控制电路,通过所述PLL控制电路对每个子系统设置独立的PLL选择开关,当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态;
测试目标子系统的功耗的步骤包括,
控制目标子系统对应的DCDC电源打开且其它子系统对应的DCDC电源关闭;
控制目标子系统对应的PLL选择开关打开且其它子系统对应的PLL选择开关关闭,使得目标子系统工作在PLL时钟上;
执行目标子系统测试代码,测出DCDC电源功耗W1;
控制目标子系统对应的PLL选择开关关闭,使目标子系统工作在系统时钟上;
控制目标子系统对应的DCDC电源关闭,测出DCDC电源功耗W2,前述功耗W1减去W2的值为所述目标子系统的功耗值。
2.根据权利要求1所述的方法,其特征在于:通过精密电源测试电源功耗,所述精密电源能够控制输出电压,并显示电流和功率。
3.根据权利要求1或2所述的方法,其特征在于:所述SOC系统包括ARM子系统、DSP子系统和GPU子系统,前述子系统依次独立设置有DCDC电源DCDC_ARM、DCDC_DSP和DCDC_GPU,所述DCDC_ARM给ARM子系统供电,DCDC_DSP给DSP子系统供电,DCDC_GPU给GPU子系统供电;
默认情况下,所述DCDC_ARM打开,所述DCDC_DSP和DCDC_GPU关闭。
4.根据权利要求3所述的方法,其特征在于:通过所述PLL控制电路,针对ARM子系统、DSP子系统和GPU子系统依次设置PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL;
默认情况下,所述PLL选择开关PLL_ARM_SEL、PLL_DSP_SEL和PLL_GPU_SEL均处于关闭状态,PLL无输出,此时,所述ARM子系统工作在系统时钟上,所述DSP子系统和GPU子系统处于断电状态。
5.根据权利要求4所述的方法,其特征在于:测试所述ARM子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
DCDC电源连接精密电源供电;
读取ARM测试代码到SOC外部存储空间,打开PLL_ARM_SEL开关,使ARM子系统工作在PLL时钟上;
控制ARM执行测试代码,通过精密电源测出DCDC电源功耗W1;
关闭PLL_ARM_SEL开关,使ARM工作在系统时钟上;
关闭DCDC_ARM,通过精密电源测出DCDC电源功耗W2,两个功耗差值即为ARM子系统在DCDC电源下工作在PLL时钟的功耗。
6.根据权利要求5所述的方法,其特征在于:测试所述DSP子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
ARM打开DCDC_DSP和PLL_DSP_SEL开关;
通过ARM把DSP的引导代码放置到DSP子系统内的启动向量位置,并把DSP测试代码拷贝到SOC外部存储空间,释放DSP从重置状态到使用状态;
DSP启动,执行完前述引导代码后,执行DSP测试代码,通过精密电源测出DCDC电源功耗W1;
ARM关闭DCDC_DSP和PLL_DSP_SEL开关,通过精密电源测出DCDC电源功耗W2,两个功耗差值即为DSP子系统在DCDC电源下工作在PLL时钟的功耗。
7.根据权利要求6所述的方法,其特征在于:测试所述GPU子系统在DCDC电源下工作在PLL时钟的功耗的步骤包括,
ARM打开DCDC_GPU和PLL_GPU_SEL开关;
通过ARM拷贝GPU测试代码到SOC外部存储空间,释放GPU从重置状态到使用状态;
GPU启动,执行测试代码,通过精密电源测出DCDC电源功耗W1;
ARM关闭DCDC_GPU和PLL_GPU_SEL开关,通过精密电源测出DCDC功耗W2,两个功耗差值即为GPU子系统在DCDC电源下工作在PLL时钟的功耗。
8.一种测试SOC子系统功耗的装置,其特征在于包括:
子系统DCDC电源,所述子系统DCDC电源对应着SOC系统的每个子系统独立设置且具有DCDC电源开关,所述DCDC电源开关由电源管理模块控制打开或关闭;
与DCDC电源开关连接的电源管理模块,所述电源管理模块用以控制DCDC电源开关打开或关闭,从而使待测试目标子系统工作在对应的DCDC电源下;
PLL控制电路,通过所述PLL控制电路针对每个子系统设置独立的PLL选择开关,当其中一个或多个PLL选择开关打开时,PLL就有输出,否则PLL无输出处于关闭状态;
通过控制各个子系统对应的PLL选择开关打开或关闭使待测试目标子系统工作在PLL时钟上。
9.根据权利要求8所述的装置,其特征在于:还包括与DCDC电源连接的精密电源,通过所述精密电源测量DCDC电源功耗;所述精密电源能够控制输出电压,并显示电流和功率。
10.一种SOC系统,其包括ARM子系统、DSP子系统、GPU子系统和外围控制模块,其特征在于:所述系统还包括权利要求8或9所述的测试子系统功耗的装置。
CN201910512725.1A 2019-06-13 2019-06-13 测试soc系统中子系统功耗的方法、装置及系统 Active CN110632497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910512725.1A CN110632497B (zh) 2019-06-13 2019-06-13 测试soc系统中子系统功耗的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910512725.1A CN110632497B (zh) 2019-06-13 2019-06-13 测试soc系统中子系统功耗的方法、装置及系统

Publications (2)

Publication Number Publication Date
CN110632497A true CN110632497A (zh) 2019-12-31
CN110632497B CN110632497B (zh) 2022-01-28

Family

ID=68968451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910512725.1A Active CN110632497B (zh) 2019-06-13 2019-06-13 测试soc系统中子系统功耗的方法、装置及系统

Country Status (1)

Country Link
CN (1) CN110632497B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783375A (zh) * 2020-06-30 2020-10-16 Oppo广东移动通信有限公司 芯片系统及相关装置
CN113111030A (zh) * 2021-04-19 2021-07-13 上海金卓科技有限公司 一种片上系统及其控制方法
CN116125256A (zh) * 2023-04-17 2023-05-16 上海灵动微电子股份有限公司 一种比较器的参数测试方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167093A1 (en) * 2007-12-28 2009-07-02 Sandisk Corporation Systems and Circuits with Multirange and Localized Detection of Valid Power
CN102023256A (zh) * 2009-09-10 2011-04-20 英特尔公司 片上系统(soc)的功率测量技术
CN102478603A (zh) * 2010-11-19 2012-05-30 国际商业机器公司 用于测量集成电路中的功耗的方法和系统
CN102866291A (zh) * 2012-08-27 2013-01-09 中国科学院微电子研究所 基于硬件平台的门级功耗分析装置及方法
CN103884905A (zh) * 2012-12-20 2014-06-25 中国移动通信集团公司 一种终端设备业务应用的功耗测试方法、装置及系统
CN104569902A (zh) * 2014-11-21 2015-04-29 国家电网公司 一种数字式电能表功耗测量装置及方法
CN107707276A (zh) * 2017-11-09 2018-02-16 青岛东软载波科技股份有限公司 一种基于宽带电力线载波通信单元的功耗检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167093A1 (en) * 2007-12-28 2009-07-02 Sandisk Corporation Systems and Circuits with Multirange and Localized Detection of Valid Power
CN102023256A (zh) * 2009-09-10 2011-04-20 英特尔公司 片上系统(soc)的功率测量技术
CN102478603A (zh) * 2010-11-19 2012-05-30 国际商业机器公司 用于测量集成电路中的功耗的方法和系统
CN102866291A (zh) * 2012-08-27 2013-01-09 中国科学院微电子研究所 基于硬件平台的门级功耗分析装置及方法
CN103884905A (zh) * 2012-12-20 2014-06-25 中国移动通信集团公司 一种终端设备业务应用的功耗测试方法、装置及系统
CN104569902A (zh) * 2014-11-21 2015-04-29 国家电网公司 一种数字式电能表功耗测量装置及方法
CN107707276A (zh) * 2017-11-09 2018-02-16 青岛东软载波科技股份有限公司 一种基于宽带电力线载波通信单元的功耗检测装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783375A (zh) * 2020-06-30 2020-10-16 Oppo广东移动通信有限公司 芯片系统及相关装置
CN113111030A (zh) * 2021-04-19 2021-07-13 上海金卓科技有限公司 一种片上系统及其控制方法
CN113111030B (zh) * 2021-04-19 2024-02-23 上海金卓科技有限公司 一种片上系统及其控制方法
CN116125256A (zh) * 2023-04-17 2023-05-16 上海灵动微电子股份有限公司 一种比较器的参数测试方法及系统

Also Published As

Publication number Publication date
CN110632497B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN110632497B (zh) 测试soc系统中子系统功耗的方法、装置及系统
US8533509B2 (en) Device and method for controlling secondary battery
CN103427123B (zh) 一种最大化使用电池容量的方法及手持终端
CN103838349B (zh) 电源控制系统及其方法
CN103246335B (zh) 状态控制方法和电子设备
GB2472050A (en) Power management integrated circuit and method of power state transition
US9880610B2 (en) Power supplying method, power supplying system, and electronic device
EP1836545A2 (en) Method and apparatus for on-demand power management
US20050182983A1 (en) Instantaneous frequency-based microprocessor power management
CN102570973A (zh) 时钟系统以及用于时钟系统的方法
EP3885878A1 (en) Voltage minimum active protection circuit and method of operating same
CN107885683B (zh) 一种终端及终端的电流测试方法
CN102890524A (zh) 功率控制设备及其方法
CN101071329A (zh) 多核处理器的电源控制装置及其方法
CN102207767A (zh) 在S0ix状态期间调节系统VR输出来降低系统空闲功率的方法
US20210365273A1 (en) Coordinating power transitions between a smart interconnect and heterogeneous components
CN103262000A (zh) Vr功率模式接口
CN101646227A (zh) 移动终端电源管理方法和移动终端
WO2006102928A1 (en) Mobile device and a method for power management
KR20100080922A (ko) 동적 전력 붕괴 동안 바이패스 커패시터들에 저장되는 에너지를 보존하기 위한 방법 및 장치
CN103164014A (zh) 一种供电方法、系统及电子终端
KR20160048503A (ko) 반도체 장치 및 이를 포함하는 반도체 시스템
CN109324995A (zh) 一种配置dsp初始化的方法
US20180275736A1 (en) Phase lock loop bypass for board-level testing of systems
CN103686017A (zh) 供电控制电路和实现智能设备快速开机的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201210 8th floor, building 1, 298 Xiangke Road, Pudong New Area, Shanghai

Applicant after: MOUXIN TECHNOLOGY (SHANGHAI) Co.,Ltd.

Address before: Room 507, building 1, No. 800, Naxian Road, pilot Free Trade Zone, Pudong New Area, Shanghai 201210

Applicant before: MOUXIN TECHNOLOGY (SHANGHAI) Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant