CN110632153A - 测量燃料电池催化层中碳载体对氧气传质影响特征的方法 - Google Patents

测量燃料电池催化层中碳载体对氧气传质影响特征的方法 Download PDF

Info

Publication number
CN110632153A
CN110632153A CN201910858812.2A CN201910858812A CN110632153A CN 110632153 A CN110632153 A CN 110632153A CN 201910858812 A CN201910858812 A CN 201910858812A CN 110632153 A CN110632153 A CN 110632153A
Authority
CN
China
Prior art keywords
mass transfer
layer
transfer resistance
catalytic layer
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910858812.2A
Other languages
English (en)
Other versions
CN110632153B (zh
Inventor
章俊良
程晓静
闫晓晖
沈水云
夏国锋
殷洁炜
王超
朱凤鹃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201910858812.2A priority Critical patent/CN110632153B/zh
Publication of CN110632153A publication Critical patent/CN110632153A/zh
Application granted granted Critical
Publication of CN110632153B publication Critical patent/CN110632153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种测量燃料电池催化层中碳载体对氧气传质的影响特征的方法。本方法选择不同物理化学特性的碳载体颗粒作为研究对象,利用双层膜电极结构,结合法拉第定律、菲克定律和线性回归法,测量得到催化层内的体相传质阻力和局域传质阻力,实现对不同碳载体制备的催化层内氧气传质特性的定量研究,可以帮助指导碳载体的设计与制备。

Description

测量燃料电池催化层中碳载体对氧气传质影响特征的方法
技术领域
本发明涉及一种测量燃料电池催化层中碳载体对氧气传质的影响特征的方法,属于燃料电池技术领域。
背景技术
质子交换膜燃料电池(polymer electrolyte membrane fuel cells,PEMFCs)是一种能量转换装置,通过电化学氧化还原反应,将化学能转化为电能,具有能量转化效率高、环境友好、无噪音和可靠性高等特点,是取代内燃机作为汽车动力的终极方案。随着Pt载量的不断下降,燃料电池中的传质问题渐渐显露出来,尤其是低Pt/超低Pt膜电极中,传质问题已经成为限制电池性能的重要因素。
碳载体是催化层的重要组成部分,碳纳米颗粒堆积形成的孔道结构为氧气扩散提供通路,离子树脂在碳载体表面附着,形成一层超薄的离子树脂薄膜,为质子传导提供通路,但这层离子树脂薄膜大大增加了氧气的传质阻力。碳载体的颗粒形状、表面微孔和粒径尺寸等性质会影响催化层内的微观孔道分布,从而影响体相传质特性;碳载体表面的官能团分布、石墨化程度和电荷分布等性质会影响离子树脂在催化层内的分布,从而影响局域传质特性。
然而,传统的测试方法中,两种阻力共轭存在,难以区分,无法单独表征碳载体对氧气体相传质和局域传质分别的影响规律。因此,需要设计一种方法,将碳载体对氧气体相传质和局域传质的影响区分开来,互不干扰地探究其影响特征。
发明内容
针对现有技术中的不足,本发明的目的是提供一种测量燃料电池催化层中碳载体对氧气传质的影响特征的方法。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种测量燃料电池催化层中碳载体对氧气传质的影响特征的方法,所述方法包括如下步骤:
S1、选取一种碳载体作为研究对象;
S2、在所述碳载体表面负载催化剂金属,得到催化剂颗粒;
S3、使用步骤S2中所述催化剂颗粒分别制成阴极催化剂浆料和阳极催化剂浆料,在质子交换膜的两侧制备阴极催化层和阳极催化层;使用步骤S1所述碳载体在阴极催化层上制备类催化层,得到双层膜电极;
S4、检测所述双层膜电极的极限电流密度ilim,利用法拉第定律和菲克定律计算得到双层膜电极的阴极总传质阻力Rtotal
S5、根据下式计算得到催化层内的体相传质阻力和局域传质阻力,即步骤S1中所述碳载体对氧气传质阻力的影响特征:
Rtotal=h·rBulk+RLocal+RCH+RGDL,其中,rBulk为类催化层单位厚度上的体相传质阻力,h为类催化层厚度,RLocal为局域传质阻力,RCH为流场内的传质阻力,RGDL为扩散层内的传质阻力。
由于催化层和类催化层结构相同,其阻力也是一致的,因此根据rBulk可以计算得到催化层内的体相传质阻力。
优选的,步骤S2中所述负载方法选自超声法、溶胶凝胶法、电化学沉积法和磁控溅射法中的一种。
优选的,步骤S2中所述催化剂金属选自铂、镁、镍、钯、铜、铁、铷、钴和钙中的至少一种。
优选的,步骤S3中,所述阴极催化层厚度为类催化层厚度的2%-20%。可见所述催化层厚度远小于类催化层厚度;因此,可用于表征碳载体对氧气局域传质的影响特征。
优选的,阴极催化层厚度为1~2微米,阳极催化层厚度为2~4微米。
优选的,步骤S3中,所述类催化层内部微孔结构与催化层内部微孔结构一致。因此,可用于表征碳载体对氧气体相传质的影响特征。
优选的,步骤S3具体包括如下步骤:
A1、分别将所述催化剂颗粒、粘结剂和分散溶剂混合,搅拌分散,分别制得阴极催化层浆料和阳极催化层浆料;
A2、将所述碳载体、粘结剂和分散溶剂混合,搅拌分散,得到阴极类催化层浆料;
A3、将阴极催化层浆料喷涂于质子交换膜一侧,干燥后得到阴极催化层;将阴极类催化层浆料喷涂于阴极催化层表面,干燥后得到阴极类催化层;
A4、将阳极催化层浆料喷涂于质子交换膜另一侧,干燥后得到阳极催化层;即得所述双层膜电极。
优选的,步骤S4中,阴极总传质阻力Rtotal是利用公式(1)计算得到:
Figure BDA0002199044930000031
其中,F是法拉第常数,
Figure BDA0002199044930000032
是空气中的氧气摩尔浓度。
优选的,步骤S4中,公式(4)是通过如下步骤获得:
B1、所述阴极总传质阻力Rtotal分解为流场内的传质阻力RCH、扩散层内的传质阻力RGDL、类催化层内的传质阻力RDCL和阴极催化层内的传质阻力RCCL;如公式(2)所示:
Rtotal=RDCL+RCCL+RCH+RGDL (2);
B2、所述类催化层内的体相传质阻力与类催化层厚度成正比,得公式(3):
Rtotal=h·rBulk+RCCL+RCH+RGDL (3);
B3、阴极催化层内的传质阻力RCCL为催化层内的体相传质阻力RBulk和局域传质阻力RLocal之和,由于类催化层中的体相传质阻力远大于催化层中的体相传质阻力,可忽略后者,即得公式(4):
Rtotal=h·rBulk+RLocal+RCH+RGDL (4)。
优选的,所述流场内的传质阻力RCH由流体力学仿真方法得出。该流场内的传质阻力RCH只与测试条件和流场形状有关,因此可由流体力学仿真方法得出。所述扩散层内的传质阻力RGDL也只与测试条件和扩散层性质有关。
与现有技术相比,本发明具有如下有益效果:
本发明提供的测量燃料电池催化层中碳载体对氧气传质的影响特征的方法可以清晰地将碳载体对体相传质阻力和局域传质阻力的影响剥离开来,可用于定量评价不同形貌的碳载体在传质方面的优化或劣化作用,可以帮助指导碳载体的设计与制备。如得到一种新的碳载体颗粒后,可以使用本专利所述方法,测试得到其体相传质阻力和局域传质阻力并于经验值或文献值进行对比,找到改进方向。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为具有不同厚度类催化层的双层膜电极的扫描电镜图;其中,a为催化层厚度为类催化层厚度6%的双层膜电极的扫描电镜图;b为催化层厚度为类催化层厚度4%的双层膜电极的扫描电镜图;c为催化层厚度为类催化层厚度3%的双层膜电极的扫描电镜图;
图2为实施例1、2、3制备的双层膜电极的氧气传质阻力的关系图;
图3为实施例1、2、3制备的双层膜电极的体相传质阻力比较图;
图4为实施例1、2、3制备的双层膜电极的局域传质阻力比较图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及一种测量燃料电池催化层中碳载体对氧气传质影响特征的方法,包括如下步骤:
1、选择XC-72碳载体作为研究目标;
2、使用超声法在XC-72碳载体负载纯Pt催化剂金属,得到Pt/XC-72催化剂颗粒;
3、制备双层膜电极:
将Pt/XC-72催化剂颗粒分别与粘结剂和分散溶剂按比例混合,搅拌分散,制备阳极或阴极催化层浆料;将XC-72碳载体与粘结剂和分散溶剂按比例混合,搅拌分散,制备阴极类催化层浆料:
本实施例中,具体是将Pt/XC-72催化剂颗粒、去离子水、Nafion溶液和异丙醇,按照质量比为1:40:2:240混合,搅拌分散,得到阴极催化层浆料;
将Pt/XC-72催化剂颗粒、去离子水、Nafion溶液和异丙醇,按照质量比为1:40:2:240混合,搅拌分散,得到阳极催化层浆料;
将XC-72碳载体、去离子水、Nafion溶液和异丙醇,按照质量比为1:80:4:480混合,搅拌分散,得到阴极类催化层浆料;
使用静电喷涂法,将阴极催化层浆料喷涂于质子交换膜一侧,干燥后得到阴极催化层,调节静电喷涂仪参数,控制阴极催化层的Pt载量在0.05mgPt/cm2(其厚度在1~2微米之间);
使用静电喷涂法,将阴极类催化层浆料喷涂于阴极催化层表面,干燥后得到阴极类催化层,调节静电喷涂仪参数,控制阴极类催化层的厚度在10μm以上(调节催化层厚度分别为类催化层厚度6%、4%、3%;对应的双层膜电极的扫描电镜图如图1,可知,类催化层厚度均远大于催化层厚度;对应传质阻力测试图如图2中的三个正方形点);该阴极类催化层内部微孔结构与阴极催化层一致,可用于表征碳载体对氧气体相传质的影响特征;
使用静电喷涂法,将阳极催化层浆料喷涂于质子交换膜另一侧,干燥后得到阳极催化层,调节静电喷涂仪参数,控制阳极催化层的Pt载量在0.1mgPt/cm2(其厚度在2~4微米之间)。
4、检测双层膜电极的极限电流密度ilim
将所述双层膜电极组装成燃料电池,在美国Scribner Associates公司850e燃料电池全电池测试系统上进行检测。本例中电池测试温度为80℃,湿度为67%,阳极和阴极反应气体分别为氢气和8%氧氮混合气;电池所选流道为1cm*2cm直流道。
5、根据公式(1)计算得到阴极总传质阻力Rtotal,根据公式(4)拟合得到阴极催化层内的体相传质阻力和局域传质阻力,获得XC-72碳载体对对氧气传质阻力的影响特征;具体如下:
1)利用法拉第定律和菲克定律,根据公式(1)计算对应的阴极总传质阻力Rtotal
Figure BDA0002199044930000051
其中,F是法拉第常数,
Figure BDA0002199044930000052
是空气中的氧气摩尔浓度,ilim是前述测得的双层膜电极的极限电流密度。
2)将双层膜电极的阴极总传质阻力Rtotal分解为流场内的传质阻力RCH、扩散层内的传质阻力RGDL、类催化层内的传质阻力RDCL和阴极催化层内的传质阻力RCCL
Rtotal=RDCL+RCCL+RCH+RGDL (2)
所述双层膜电极中类催化层内的体相传质阻力与类催化层厚度成正比,得:
Rtotal=h·rBulk+RCCL+RCH+RGDL (3)
其中,rBulk为类催化层单位厚度上的体相传质阻力,h为类催化层厚度。
进一步地,所述双层膜电极中,阴极催化层内的传质阻力RCCL为催化层内的体相传质阻力RBulk和局域传质阻力RLocal之和,由于类催化层中的体相传质阻力远大于催化层中的体相传质阻力,催化层内的体相传质阻力忽略,得:
Rtotal=h·rBulk+RLocal+RCH+RGDL (4)
其中,RLocal为局域传质阻力,流场内的传质阻力RCH只与测试条件和流场形状有关,可由流体力学仿真方法得出,本实施例测试条件下取0.26s cm-1;扩散层内的传质阻力RGDL只与测试条件和扩散层性质有关,本实施例测试条件下取0.14s cm-1
计算得到RLocal为0.37s cm-1,rBulk为1597s cm-2,其体相传质阻力偏大,应针对体相传质进行优化。
实施例2
本实施例的孔隙结构可调的膜电极的制备步骤同实施例1,所不同之处在于:
选择EA高比表面碳载体作为研究目标,其对应传质阻力测试图如图2中的三个圆形点。计算得到RLocal为0.20s cm-1,rBulk为1133s cm-2,其体相传质阻力较大,应针对体相传质进行优化。
实施例3
本实施例的孔隙结构可调的膜电极的制备步骤同实施例1,所不同之处在于:
选择EC300J碳载体作为研究目标,其对应传质阻力测试图如图2中的三个三角形点。计算得到为RLocal0.66s cm-1,rBulk为936s cm-2,其局域传质阻力偏大,应针对局域传质进行优化。
图2为实施例1、2、3制备的双层膜电极的氧气传质阻力的关系图;由图2可线性回归得到三个实施例的体相和局域传质阻力。
图3为实施例1、2、3制备的双层膜电极的体相传质阻力比较图;由图3可知,EC300J碳载体局域传质阻力偏大,应针对局域传质进行优化。
图4为实施例1、2、3制备的双层膜电极的局域传质阻力比较图;由图4可知,XC-72碳载体体相传质阻力偏大,应针对体相传质进行优化。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (8)

1.一种测量燃料电池催化层中碳载体对氧气传质的影响特征的方法,所述方法包括如下步骤:
S1、选取一种碳载体作为研究对象;
S2、在所述碳载体表面负载催化剂金属,得到催化剂颗粒;
S3、使用步骤S2中所述催化剂颗粒分别制成阴极催化剂浆料和阳极催化剂浆料,在质子交换膜的两侧制备阴极催化层和阳极催化层;使用步骤S1所述碳载体在阴极催化层上制备类催化层,得到双层膜电极;
S4、检测所述双层膜电极的极限电流密度ilim,利用法拉第定律和菲克定律计算得到双层膜电极的阴极总传质阻力Rtotal
S5、根据下式计算得到催化层内的体相传质阻力和局域传质阻力,即步骤S1中所述碳载体对氧气传质阻力的影响特征:
Rtotal=h·rBulk+RLocal+RCH+RGDL,其中,rBulk为类催化层单位厚度上的体相传质阻力,h为类催化层厚度,RLocal为局域传质阻力,RCH为流场内的传质阻力,RGDL为扩散层内的传质阻力。
2.根据权利要求1所述的方法,其特征在于,步骤S2中所述负载方法选自超声法、溶胶凝胶法、电化学沉积法和磁控溅射法中的一种。
3.根据权利要求1所述的方法,其特征在于,步骤S2中所述催化剂金属选自铂、镁、镍、钯、铜、铁、铷、钴和钙中的至少一种。
4.根据权利要求1所述的方法,其特征在于,步骤S3中,所述阴极催化层厚度为类催化层厚度的2%-20%。
5.根据权利要求1所述的方法,其特征在于,步骤S3中,所述类催化层内部微孔结构与催化层内部微孔结构一致。
6.根据权利要求1所述的方法,其特征在于,步骤S3具体包括如下步骤:
A1、分别将所述催化剂颗粒、粘结剂和分散溶剂混合,搅拌分散,分别制得阴极催化层浆料和阳极催化层浆料;
A2、将所述碳载体、粘结剂和分散溶剂混合,搅拌分散,得到阴极类催化层浆料;
A3、将阴极催化层浆料喷涂于质子交换膜一侧,干燥后得到阴极催化层;将阴极类催化层浆料喷涂于阴极催化层表面,干燥后得到阴极类催化层;
A4、将阳极催化层浆料喷涂于质子交换膜另一侧,干燥后得到阳极催化层;即得所述双层膜电极。
7.根据权利要求1所述的方法,其特征在于,步骤S4中,阴极总传质阻力Rtotal是利用公式(1)计算得到:
Figure FDA0002199044920000021
其中,F是法拉第常数,
Figure FDA0002199044920000022
是空气中的氧气摩尔浓度。
8.根据权利要求1所述的方法,其特征在于,步骤S4中,公式(4)是通过如下步骤获得:
B1、所述阴极总传质阻力Rtotal分解为流场内的传质阻力RCH、扩散层内的传质阻力RGDL、类催化层内的传质阻力RDCL和阴极催化层内的传质阻力RCCL;如公式(2)所示:
Rtotal=RDCL+RCCL+RCH+RGDL (2);
B2、所述类催化层内的体相传质阻力与类催化层厚度成正比,得公式(3):
Rtotal=h·rBulk+RCCL+RCH+RGDL (3);
B3、阴极催化层内的传质阻力RCCL为催化层内的体相传质阻力RBulk和局域传质阻力RLocal之和,由于类催化层中的体相传质阻力远大于催化层中的体相传质阻力,可忽略后者,即得公式(4):
Rtotal=h·rBulk+RLocal+RCH+RGDL (4)。
CN201910858812.2A 2019-09-11 2019-09-11 测量燃料电池催化层中碳载体对氧气传质影响特征的方法 Active CN110632153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910858812.2A CN110632153B (zh) 2019-09-11 2019-09-11 测量燃料电池催化层中碳载体对氧气传质影响特征的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910858812.2A CN110632153B (zh) 2019-09-11 2019-09-11 测量燃料电池催化层中碳载体对氧气传质影响特征的方法

Publications (2)

Publication Number Publication Date
CN110632153A true CN110632153A (zh) 2019-12-31
CN110632153B CN110632153B (zh) 2022-03-11

Family

ID=68971363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910858812.2A Active CN110632153B (zh) 2019-09-11 2019-09-11 测量燃料电池催化层中碳载体对氧气传质影响特征的方法

Country Status (1)

Country Link
CN (1) CN110632153B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264709A (zh) * 2021-11-09 2022-04-01 深圳航天科技创新研究院 氢燃料电池气体扩散层传质阻力的测定方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281971A (zh) * 2008-05-21 2008-10-08 北京科技大学 直接甲醇燃料电池膜电极制备方法
CN106338459A (zh) * 2016-08-26 2017-01-18 上海交通大学 测量燃料电池催化层中氧气有效扩散系数的方法
CN109725034A (zh) * 2018-12-18 2019-05-07 上海交通大学 测量离聚物对局域传质阻力影响特征的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281971A (zh) * 2008-05-21 2008-10-08 北京科技大学 直接甲醇燃料电池膜电极制备方法
CN106338459A (zh) * 2016-08-26 2017-01-18 上海交通大学 测量燃料电池催化层中氧气有效扩散系数的方法
CN109725034A (zh) * 2018-12-18 2019-05-07 上海交通大学 测量离聚物对局域传质阻力影响特征的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO WANG 等: "The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells", 《THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS》 *
FAN YANG 等: "Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X‑ray Scattering and Cryo-TEM", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264709A (zh) * 2021-11-09 2022-04-01 深圳航天科技创新研究院 氢燃料电池气体扩散层传质阻力的测定方法及其应用
CN114264709B (zh) * 2021-11-09 2023-12-19 深圳航天科技创新研究院 氢燃料电池气体扩散层传质阻力的测定方法及其应用

Also Published As

Publication number Publication date
CN110632153B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
Majlan et al. Electrode for proton exchange membrane fuel cells: A review
Kang et al. Accelerated test analysis of reversal potential caused by fuel starvation during PEMFCs operation
EP2990105B1 (en) Catalyst, and electrode catalyst layer, film electrode assembly, and fuel cell each including said catalyst
EP2991142A1 (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
CN105142778B (zh) 催化剂以及使用该催化剂的电极催化剂层、膜电极接合体及燃料电池
Rahman et al. Synthesis of catalysts with fine platinum particles supported by high-surface-area activated carbons and optimization of their catalytic activities for polymer electrolyte fuel cells
US20150376803A1 (en) Gas Diffusion Electrodes and Methods for Fabricating and Testing Same
Lobato et al. Microporous layer based on SiC for high temperature proton exchange membrane fuel cells
Song et al. Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate
Mack et al. PTFE distribution in high-temperature PEM electrodes and its effect on the cell performance
JP6382277B2 (ja) 耐食触媒を形成するための方法、及びインク組成物
Wang et al. Studies of performance decay of Pt/C catalysts with working time of proton exchange membrane fuel cell
CN110632153B (zh) 测量燃料电池催化层中碳载体对氧气传质影响特征的方法
Zhang et al. A metallic gas diffusion layer and porous media flow field for proton exchange membrane fuel cells
Sepp et al. Enhanced stability of symmetrical polymer electrolyte membrane fuel cell single cells based on novel hierarchical microporous-mesoporous carbon supports
Qi Electrochemical methods for catalyst activity evaluation
Xie et al. Ionomer-free nanoporous iridium nanosheet electrodes with boosted performance and catalyst utilization for high-efficiency water electrolyzers
JP2004220786A (ja) 固体高分子形燃料電池の電極性能評価方法及び評価装置
Zaman et al. Bridging oxygen reduction performance gaps at half cell and full cell: Challenges and perspectives
JP5065289B2 (ja) 貴金属量を低減させた燃料電池用電極、及びそれを備えた固体高分子型燃料電池
JP4560623B2 (ja) 電極触媒の活性評価方法およびこれに用いる試験電極
JP2011243315A (ja) 燃料電池の診断方法
Zhang et al. Advances of high-performance and stable finely-ordered patterned membrane for proton exchange membrane fuel cell applications
Lo et al. Electrophoretic deposited Pt/C/SiO2 anode for self-humidifying and improved catalytic activity in PEMFC
Radev et al. Investigation of nanostructured platinum based membrane electrode assemblies in “EasyTest” cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant