CN110629014B - 一种双相钛合金增材构件激光冲击强化方法 - Google Patents
一种双相钛合金增材构件激光冲击强化方法 Download PDFInfo
- Publication number
- CN110629014B CN110629014B CN201910923611.6A CN201910923611A CN110629014B CN 110629014 B CN110629014 B CN 110629014B CN 201910923611 A CN201910923611 A CN 201910923611A CN 110629014 B CN110629014 B CN 110629014B
- Authority
- CN
- China
- Prior art keywords
- dual
- titanium alloy
- laser
- phase
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
- C21D10/005—Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/50—Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Automation & Control Theory (AREA)
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及增材制造领域以及激光冲击强化领域,特指一种双相钛合金增材构件激光冲击强化方法。首先获取复杂构件的三维数字模型,将模型分成若干片层;根据增材构件在工程应用中的受力方向,确定增材制造过程中成形件成形方向;然后采用选区激光熔化工艺完成双相钛合金构件的成形制造,并通过调控使α相C轴取向一致;最后采用激光冲击强化工艺并诱导高强冲击波作用方向与α相C轴形成特定范围的夹角,对双相钛合金高性能增材构件所有外表面进行冲击强化,从而达到最佳强化效果。
Description
技术领域
本发明涉及增材制造领域以及激光冲击强化领域,特指一种双相钛合金增材构件激光冲击强化方法。
背景技术
选区激光熔化(Selective laser melting,SLM)技术是一种近年出现的最新的快速成形技术,应用分层制造进行增材制造,通过粉末将CAD模型转换为实物零件。其采用激光快速熔化选区金属粉末与快速冷却凝固技术,可以获得非平衡态过饱和固溶体及均匀细小的金相组织,并且成形材料范围广泛,制造过程不受金属零件复杂结构的限制,无需任何工装模具,工艺简单,可实现金属零件的快速制造,降低成本,还能实现材料组分连续变化的梯度功能材料制造。虽然近年来在激光增材制造方面取得了长足进步,但其在形性一体控制方面仍然面临一些难题,其中亟待解决的是残余应力导致构件变形开裂的“控形”问题和冶金缺陷造成构件力学性能较差的“控性”问题。另外,选区激光熔化技术被广泛应用于航空航天等领域,但是由于航空航天工程中所使用的构件工作环境比较恶劣,在构件的各个方向不仅受到静载、动载、冲击载荷的作用,而且还会受到高温的热作用,因此材料的性能如何,是否存在明显的各向异性是人们十分关注的问题。
激光冲击强化(Laser shock peening:LSP)是一种新型的表面强化技术,强激光作用于金属表面形成的超强冲击波使金属表层产生剧烈塑性变形,诱导较深残余压应力和细化晶粒,显著提高了金属零件力学性能。与其他技术相比具有高压(冲击波压力达到GPa-TPa量级)、高能(峰值功率达到GW量级)、超快(几十纳秒)和超高应变率(达到107s-1)四个鲜明特点,是极端条件下的先进制造方法之一,具有常规加工方法无可比拟的优点和显著的技术优势。但是目前大量研究仅仅关注激光冲击作用试样表面的情况,以及如何诱导更深的残余压应力,如何更好地实现晶粒细化等问题。
双相钛合金具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温形变性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。此外,双相钛合金中的α相和β相对材料的物理性能和力学性能具有非常重要的影响。材料的晶体学与材料的各方面性能息息相关,基于晶体结构具有空间排列上的三维周期性,每个晶体品种都能为它自身提供一套天然合理的包含三个晶轴的晶轴系。由于晶体的各向异性,即晶体沿不同晶向的物理性质各不相同。同理,结合二维增材制造平面激光冲击波强化工艺,如何使高性能增材构件实现微结构的均匀强化。
发明内容
为了解决上述问题,本发明提出了一种双相钛合金增材构件激光冲击强化方法,即针对航空航天中的双相钛合金高性能增材构件,首先获取复杂构件的三维数字模型,将模型分成若干片层;根据增材构件在工程应用中的受力方向,确定增材制造过程中成形件成形方向;然后采用选区激光熔化工艺完成双相钛合金构件的成形制造,并通过调控使α相C轴取向一致;最后采用激光冲击强化工艺并诱导高强冲击波作用方向与α相C轴形成特定范围的夹角,对双相钛合金高性能增材构件进行冲击强化,从而达到最佳强化效果。本发明是激光增材制造方法的延续和拓展,针对航空航天中的双相钛合金关键构件,考虑晶体结构的各向异性,并结合激光冲击波强化作用原理,整体考虑高性能增材构件受力状态,以及激光冲击波与双相钛合金α相C轴的相互作用机理,对增材构件进行微结构强化,实现航空航天中的关键构件无变形高性能制造。
其具体步骤如下:
1)通过计算机软件获取复杂构件的三维数字模型,将模型分成若干片层;
2)根据增材构件在工程应用中的受力方向,确定增材制造过程中的成形方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成双相钛合金构件的成形制造,并通过持续对金属溶体加载由螺线状超导线圈产生的强磁场的方法,其中强磁场强度≥6T,使α相C轴取向一致,其中选区激光熔化成形的参数为:光斑直径为80μm,激光波长为1.06~1.10μm,激光功率为200~1000W,扫描速度为500~1000mm/s,铺粉层厚为0.02~0.5mm;
4)最后以C轴法线为对称轴,左右两边分别形成激光冲击波作用方向与α相C轴的入射角即α夹角,其中0°<α≤30°,进行激光冲击强化;
5)对双相钛合金高性能增材构件所有外表面进行冲击强化,从而达到最佳强化效果,其中激光冲击强化的工艺参数范围为:激光脉冲能量3~12J,脉宽5~20ns,光斑直径1~3mm,横向搭接率和纵向搭接率均为30%~50%。
所述双相钛合金高性能构件材料包括:TC1、TC4、TC6等近α型钛合金。
本发明有益效果:
1)有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能;
2)从微结构强化入手,通过激光冲击强化作用,更加有效地钉扎基面位错运动,使双相钛合金高性能增材构件得到理想的力学性能。
3)针对航空航天中的双相钛合金关键构件,考虑晶体结构的各向异性,并结合激光冲击波强化作用原理,整体考虑高性能增材构件受力状态,以及激光冲击波作用方向与α相C轴特定范围夹角下的相互作用机理,对双相钛合金增材构件进行冲击强化,实现航空航天中的关键构件无变形高性能制造。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实例或现有技术描述中所需要使用的附图作简单地介绍。
图1为双相钛合金α相C轴示意图。
图2为本发明增材制造过程中增材成形面与受力方向平行示意图。
图3为本发明激光冲击α相C轴示意图。
图4为本发明实施例涡轮叶片示意图。
表1为本发明实施例涡轮叶片不同状态下的疲劳寿命对比。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式做详细的说明,但本发明不应仅限于实施例。
本实施例采用的是TC4双相钛合金涡轮叶片。
实施例1
1)通过三维激光扫描仪获取涡轮叶片表面的三维点云数据,然后通过计算机软件获取涡轮叶片的三维数字模型,将模型分成若干片层;
2)通过模拟软件进行模拟分析,得出TC4涡轮叶片在实际应用中的受力方向分布,确定增材制造过程中的增材方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成涡轮叶片的成形制造,其中选区激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为300W,扫描速度为700mm/s,铺粉层厚为0.3mm。对成形的涡轮叶片进行振动疲劳试验。
实施例2
1)通过三维激光扫描仪获取涡轮叶片表面的三维点云数据,然后通过计算机软件获取涡轮叶片的三维数字模型,将模型分成若干片层;
2)通过模拟软件进行模拟分析,得出TC4涡轮叶片在实际应用中的受力方向,确定增材制造过程中的增材方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成涡轮叶片的成形制造,其中选区激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为300W,扫描速度为700mm/s,铺粉层厚为0.3mm;
4)最后直接对涡轮叶片表面进行激光冲击强化,其中激光冲击强化的工艺参数范围为:激光脉冲能量10J,脉宽10ns,光斑直径3mm,横向搭接率和纵向搭接率均为50%。对强化后的涡轮叶片进行振动疲劳试验。
实施例3
1)通过三维激光扫描仪获取涡轮叶片表面的三维点云数据,然后通过计算机软件获取涡轮叶片的三维数字模型,将模型分成若干片层;
2)通过模拟软件进行模拟分析,得出TC4涡轮叶片在实际应用中的受力方向,确定增材制造过程中的增材方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成涡轮叶片的成形制造,并通过持续对金属溶体加载由螺线状超导线圈产生的9T强磁场的方法,使α相C轴取向一致,其中选区激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为300W,扫描速度为700mm/s,铺粉层厚为0.3mm;
4)如图3所示,最后以C轴法线为对称轴,左右两边分别形成激光冲击波与α相C轴为30°<α≤60°以及60°<α≤90°夹角,进行激光冲击强化,其中激光冲击强化的工艺参数范围为:激光脉冲能量10J,脉宽10ns,光斑直径3mm,横向搭接率和纵向搭接率均为50%。对强化后的涡轮叶片进行振动疲劳试验。
实施例4
本发明的技术方案,参照图1、图2、图3和图4,本实施例涉及一种双相钛合金增材构件的激光冲击强化方法,包括以下步骤:
1)通过三维激光扫描仪获取涡轮叶片表面的三维点云数据,然后通过计算机软件获取涡轮叶片的三维数字模型,将模型分成若干片层;
2)通过模拟软件进行模拟分析,得出TC4涡轮叶片在实际应用中的受力方向,确定增材制造过程中的增材方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成涡轮叶片的成形制造,并通过持续对金属溶体加载由螺线状超导线圈产生的9T强磁场的方法,使α相C轴取向一致,其中选区激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为300W,扫描速度为700mm/s,铺粉层厚为0.3mm;
4)如图3所示,最后以C轴法线为对称轴,左右两边分别形成激光冲击波与α相C轴为0°<α≤30°夹角,进行激光冲击强化,其中激光冲击强化的工艺参数范围为:激光脉冲能量10J,脉宽10ns,光斑直径3mm,横向搭接率和纵向搭接率均为50%。对强化后的涡轮叶片进行振动疲劳试验。
从表1可以看出,实施例1(1-1、1-2),实施例2(2-1、2-2),实施例3(3-1(30°<α≤60°)、3-2(30°<α≤60°)、3-3(60°<α≤90°)、3-4(60°<α≤90°))以及实施例4(4-1、4-2)四个不同状态下的振动疲劳寿命试验,在430MPa、560MPa不同应力条件下,结果表明本发明的技术方案处理后的涡轮叶片的疲劳寿命明显提高,达到了最佳的强化效果。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
表1
Claims (5)
1.一种双相钛合金增材构件激光冲击强化方法,其特征在于,首先获取复杂构件的三维数字模型,将模型分成若干片层;根据增材构件在工程应用中的受力方向,确定增材制造过程中成形件成形方向;然后采用选区激光熔化工艺完成双相钛合金构件的成形制造,并通过调控使α相C轴取向一致;最后采用激光冲击强化工艺并诱导高强冲击波作用方向与α相C轴形成特定范围的夹角,对双相钛合金高性能增材构件进行冲击强化,从而达到最佳强化效果,具体步骤如下:
1)通过计算机软件获取复杂构件的三维数字模型,将模型分成若干片层;
2)根据增材构件在工程应用中的受力方向,确定增材制造过程中的成形方向,使增材成形面与受力方向平行;
3)然后采用选区激光熔化工艺完成双相钛合金构件的成形制造,并通过持续对金属熔体加载由螺线状超导线圈产生的强磁场的方法,使α相C轴取向一致;
4)最后以C轴法线为对称轴,左右两边分别形成激光冲击波作用方向与α相C轴的入射角即α夹角,进行激光冲击强化;
5)对双相钛合金高性能增材构件所有外表面进行冲击强化,从而达到最佳强化效果。
2.如权利要求1所述的一种双相钛合金增材构件激光冲击强化方法,其特征在于,步骤3)中,强磁场强度≥6 T,选区激光熔化成形的参数为:光斑直径为80 μm,激光波长为1.06~1.10 μm,激光功率为200~1000 W,扫描速度为500~1000 mm/s,铺粉层厚为0.02~0.5 mm。
3.如权利要求1所述的一种双相钛合金增材构件激光冲击强化方法,其特征在于,步骤4)中,0°<α≤30°。
4.如权利要求1所述的一种双相钛合金增材构件激光冲击强化方法,其特征在于,步骤5)中,激光冲击强化的工艺参数范围为:激光脉冲能量3~12 J,脉宽5~20 ns,光斑直径1~3mm,横向搭接率和纵向搭接率均为30%~50%。
5.如权利要求1所述的一种双相钛合金增材构件激光冲击强化方法,其特征在于,所述双相钛合金增材构件为TC1、TC4或TC6。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910923611.6A CN110629014B (zh) | 2019-09-27 | 2019-09-27 | 一种双相钛合金增材构件激光冲击强化方法 |
US17/280,924 US11148207B1 (en) | 2019-09-27 | 2020-09-18 | Laser shock peening method for additive manufactured component of double-phase titanium alloy |
PCT/CN2020/116028 WO2021057606A1 (zh) | 2019-09-27 | 2020-09-18 | 一种双相钛合金增材构件激光冲击强化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910923611.6A CN110629014B (zh) | 2019-09-27 | 2019-09-27 | 一种双相钛合金增材构件激光冲击强化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110629014A CN110629014A (zh) | 2019-12-31 |
CN110629014B true CN110629014B (zh) | 2021-04-20 |
Family
ID=68973038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910923611.6A Active CN110629014B (zh) | 2019-09-27 | 2019-09-27 | 一种双相钛合金增材构件激光冲击强化方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11148207B1 (zh) |
CN (1) | CN110629014B (zh) |
WO (1) | WO2021057606A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110629014B (zh) * | 2019-09-27 | 2021-04-20 | 江苏大学 | 一种双相钛合金增材构件激光冲击强化方法 |
CN111334730B (zh) * | 2020-02-02 | 2022-04-26 | 江苏大学 | 一种激光冲击辅助热氢处理Ti6Al4V合金的方法 |
CN113634765A (zh) * | 2021-08-06 | 2021-11-12 | 北京航空航天大学 | 一种增材制造医用钛合金植入体及表面冲击强化方法 |
CN114346255B (zh) * | 2021-10-30 | 2023-07-28 | 南京尚吉增材制造研究院有限公司 | 用于调控定向能量增材制造钛合金零件的微观组织的方法 |
CN114032382B (zh) * | 2021-11-10 | 2023-01-13 | 中国航发北京航空材料研究院 | 一种脉冲磁场强化钛合金板材的设备 |
CN114147203A (zh) * | 2021-12-14 | 2022-03-08 | 重庆大学 | 一种激光冲击诱导镁钛液固复合铸造界面冶金结合的方法 |
CN114959533B (zh) * | 2022-06-22 | 2023-06-23 | 沈阳工业大学 | 一种提升钛合金表面压应力层深度和疲劳性能的激光冲击强化方法 |
CN115232928A (zh) * | 2022-08-30 | 2022-10-25 | 江苏大学 | 一种热处理提升激光冲击强化金属增材件力学性能的方法 |
CN115846688B (zh) * | 2022-12-23 | 2024-09-24 | 上海大学 | 一种基于磁场调控的双相钛合金激光增材制造方法 |
CN116641050A (zh) * | 2023-06-21 | 2023-08-25 | 沈阳工业大学 | 一种提高激光增材制造钛合金力学性能的激光冲击强化方法 |
CN118060558B (zh) * | 2024-04-18 | 2024-09-24 | 西安空天机电智能制造有限公司 | 一种去支撑的锻打印方法、系统、装置及介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130052479A1 (en) | 2011-08-30 | 2013-02-28 | Venkatarama K. Seetharaman | Laser shock peening of airfoils |
CN103774136B (zh) * | 2014-01-10 | 2015-12-09 | 沈阳航空航天大学 | 辅助钛合金激光沉积修复的线圈式电磁搅拌装置 |
CN106048144A (zh) * | 2016-07-27 | 2016-10-26 | 东南大学 | 一种激光增材薄壁件激光冲喷丸应力调控的方法 |
CN106947856A (zh) * | 2017-04-06 | 2017-07-14 | 广东工业大学 | 一种延长构件服役寿命的制造方法及强化方法 |
CN107225244A (zh) * | 2017-06-21 | 2017-10-03 | 苏州大学 | 一种调控/降低激光增材制造零件内应力的方法 |
CN107414078B (zh) * | 2017-08-17 | 2019-06-18 | 湖南顶立科技有限公司 | 一种tc4钛合金激光选区熔化增材制造工艺 |
CN109746441B (zh) * | 2017-11-08 | 2021-07-27 | 中国科学院沈阳自动化研究所 | 一种激光冲击强化辅助的激光增材制造复合加工方法 |
CN109967739B (zh) | 2019-03-26 | 2021-07-20 | 上海工程技术大学 | 一种基于增材制造技术制备梯度结构金属件的方法 |
CN110629014B (zh) | 2019-09-27 | 2021-04-20 | 江苏大学 | 一种双相钛合金增材构件激光冲击强化方法 |
-
2019
- 2019-09-27 CN CN201910923611.6A patent/CN110629014B/zh active Active
-
2020
- 2020-09-18 WO PCT/CN2020/116028 patent/WO2021057606A1/zh active Application Filing
- 2020-09-18 US US17/280,924 patent/US11148207B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20210308767A1 (en) | 2021-10-07 |
WO2021057606A1 (zh) | 2021-04-01 |
US11148207B1 (en) | 2021-10-19 |
CN110629014A (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110629014B (zh) | 一种双相钛合金增材构件激光冲击强化方法 | |
Liu et al. | A study on the residual stress during selective laser melting (SLM) of metallic powder | |
Deng et al. | Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: A comprehensive review | |
Liu et al. | Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy | |
Xiao et al. | Compressive properties and micro-structural characteristics of Ti–6Al–4V fabricated by electron beam melting and selective laser melting | |
Jing et al. | Defects, densification mechanism and mechanical properties of 300M steel deposited by high power selective laser melting | |
CN110860797A (zh) | 一种电弧-激光复合增材制造方法 | |
Fatemi-Varzaneh et al. | Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy | |
Gurău et al. | Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements | |
Ge et al. | Enhancement in fatigue property of Ti-6Al-4V alloy remanufactured by combined laser cladding and laser shock peening processes | |
Guo et al. | Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms | |
Tang et al. | Effect of warm laser shock peening on the low-cycle fatigue behavior of DD6 nickel-based single-crystal superalloy | |
Gao et al. | Influence of heat accumulation on the distribution uniformity of microstructure and mechanical properties of laser additive manufacturing joint of 80 mm thick Ti6Al4V titanium alloy plates | |
CN106929786B (zh) | 一种大厚度纳米晶-超细晶-粗晶表面梯度层的制备方法 | |
Shen et al. | Forming mechanism, mechanical properties, and corrosion properties of aluminum alloy sheet with gradient structure processed by plastic flow machining | |
Cao et al. | Microstructural evolution in the cross section of Ni-based superalloy induced by high power laser shock processing | |
Liu et al. | Impact behaviors of additively manufactured metals and structures: A review | |
CN113403617A (zh) | 一种镍基合金增材制造的方法 | |
Yang et al. | Effect of laser shock peening without protective coating on surface integrity of titanium-based carbon-fibre/epoxy laminates | |
JP7386606B2 (ja) | 付加製造材料の微細構造を機械加工により改良する方法 | |
Fukumoto et al. | Dynamic recrystallisation phenomena of commercial purity aluminium during friction welding | |
Yu et al. | Molecular dynamics study on defect evolution during the plastic deformation of nickel-based superalloy GH4169 single crystal under different rolling temperatures | |
Fan et al. | Experimental study on surface characteristics of laser cladding layer regulated by high-frequency microforging | |
Fan et al. | Effect of deformation temperatures on microstructure of AQ80 magnesium alloy under repeated upsetting-extrusion | |
Liang et al. | Microstructural characteristics with process-microstructure-property relations during high-frequency ultrasonic vibration-assisted cutting of metallic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211229 Address after: No. 18, Nanshan Road, zone 3, Zhaoyang Industrial Park, Xinghua City, Taizhou City, Jiangsu Province 225775 Patentee after: XINGHUA SANCHENG PRECISION FORGING Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University |
|
TR01 | Transfer of patent right |