CN110624117A - 具有氧化还原响应的t1/t2双模态纳米造影剂空心mco及其制备方法和应用 - Google Patents
具有氧化还原响应的t1/t2双模态纳米造影剂空心mco及其制备方法和应用 Download PDFInfo
- Publication number
- CN110624117A CN110624117A CN201910919793.XA CN201910919793A CN110624117A CN 110624117 A CN110624117 A CN 110624117A CN 201910919793 A CN201910919793 A CN 201910919793A CN 110624117 A CN110624117 A CN 110624117A
- Authority
- CN
- China
- Prior art keywords
- mco
- nano
- hollow
- contrast agent
- bimodal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002902 bimodal effect Effects 0.000 title claims abstract description 32
- 239000002872 contrast media Substances 0.000 title claims abstract description 31
- 230000004044 response Effects 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims description 26
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 229910017052 cobalt Inorganic materials 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 239000003153 chemical reaction reagent Substances 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000002244 precipitate Substances 0.000 claims description 12
- 230000035484 reaction time Effects 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 7
- 239000012279 sodium borohydride Substances 0.000 claims description 7
- 239000012286 potassium permanganate Substances 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 5
- 238000005303 weighing Methods 0.000 claims description 5
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 abstract description 8
- 201000011510 cancer Diseases 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 239000002202 Polyethylene glycol Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 229920001223 polyethylene glycol Polymers 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 125000003277 amino group Chemical group 0.000 abstract description 2
- 238000012984 biological imaging Methods 0.000 abstract description 2
- 229940079593 drug Drugs 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 43
- 229920002125 Sokalan® Polymers 0.000 description 41
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 14
- 229960003180 glutathione Drugs 0.000 description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 108010024636 Glutathione Proteins 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- WSHADMOVDWUXEY-UHFFFAOYSA-N manganese oxocobalt Chemical compound [Co]=O.[Mn] WSHADMOVDWUXEY-UHFFFAOYSA-N 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 239000002405 nuclear magnetic resonance imaging agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0002—General or multifunctional contrast agents, e.g. chelated agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5138—Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法。其步骤为:通过控制不同的反应条件制备不同尺寸的空心纳米MCO粒子,通过氨基在空心纳米MCO粒子表面修饰上氨基化聚乙二醇,得到具有优异生物相容性和氧化还原响应的T1/T2双模态一体的空心纳米MCO粒子。本发明合成步骤简单,操作方便,可以改变加工条件来改变空心纳米MCO尺寸,此外空心纳米MCO本身具有较好的生物相容性,同时,空心纳米MCO具有优秀的氧化还原响应效果,从而使得空心纳米MCO能够在癌症环境分解释放包裹药物,定向杀死癌细胞。空心纳米MCO也在T1/T2双模态生物成像材料方面展现出广阔的应用前景。
Description
技术领域
本发明属于新型核磁共振造影剂的制备技术领域,涉及一种具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO及其制备方法和应用。
背景技术
纳米材料由于其较小的尺寸而致使其具有优异的表面效应如尺寸效应、优异的生物相容性和生物吸收代谢等特性。
癌症,是正常细胞突变为可无限增殖并向其他部位扩散的一类异常细胞所引起的疾病。一般而言,正常细胞的谷胱甘肽(GSH)浓度在10nM左右,而癌细胞周围的谷胱甘肽浓度高达10mM。通过设计环境响应型功能材料特别是对于谷胱甘肽的氧化还原响应的纳米材料,有利于为智能药物传输奠定良好基础。磁共振成像技术(magnetic resonanceimaging,MRI)可以诊断出早期肿瘤,还可以在体内直接监测疾病的病源、病变过程及一系列的病理和生理变化,使其在医学检测中迅速发展,也是近几年来国内外学者研究的热点之一(Smith B R,Gambhir S S.Nanomaterials for in vivo imaging[J].Chemicalreviews,2017,117(3):901-986;Dai Y,Xu C,Sun X,et al.Nanoparticle designstrategies for enhanced anticancer therapy by exploiting the tumourmicroenvironment[J].Chemical Society Reviews,2017,46(12):3830-3852.)。造影剂通过注射或者口服方式进入人体,用于增强成像效果的化学材料。在此选用设计合成的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO,具有合成步骤简单,操作方便,生物相容性好等优点。目前,虽然制备具有T1/T2双模态的纳米粒子的方法有很多,但是这些方法过程复杂、参数精细。而我们一步合成生物相容性好的空心MCO,操作简单,重复性高,无疑是一种高效的制备空心MCO的方法。
发明内容
本发明的目的是提供一种具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO(钴锰氧)的制备方法,简单操作即可合成生物相容性好的空心MCO。
本发明的技术方案:一种具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,向氯化钴与聚丙烯酸(PAA)的溶液中先后加入硼氢化钠(NaBH4)和高锰酸钾(KMnO4)溶液反应得到PAA修饰的空心纳米MCO,将PAA修饰的空心纳米MCO与氨基化聚乙二醇(PEG-NH2)反应,得到氧化还原响应的T1/T2双模态纳米造影剂空心MCO。
优选的,包括如下步骤:
A、称取2mg~20mg的氯化钴,用20ml~200ml的水溶解配制成溶液,随后将溶液搅拌20min-60min;
B、向10mg~20mg的氯化钴溶液中加入20mg~80mg的PAA试剂中,室温搅拌反应60min~300min,然后加入4mg-8mg NaBH4,搅拌得到PAA修饰的纳米钴;
C、将步骤B中获得PAA修饰的纳米钴溶液取10mg~20mg与10mg~40mg KMnO4室温搅拌反应10min~20min,离心得到沉淀,去离子水洗涤,得到PAA修饰的空心纳米MCO。
D、将步骤C中获得PAA修饰的空心纳米MCO溶液取20mg~40mg与80mg~160mg PEG-NH2室温搅拌反应2h~4h,离心得到沉淀,去离子水洗涤,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO。
优选的,本发明步骤A中,所述氯化钴的质量为15mg;用水的体积为150ml;室温反应时间为30min。
优选的,本发明步骤B中,所述氯化钴溶液的质量为15mg;PAA试剂的质量为40mg;室温反应时间为120min;NaBH4的质量为6mg;室温反应时间为2min。
优选的,本发明步骤C中,所述PAA修饰的纳米钴溶液的质量为20mg;KMnO4试剂的质量为40mg;室温反应时间为20min。
优选的,所述PAA修饰的空心纳米MCO溶液为40mg;PEG-NH2的质量为100mg;室温反应时间为2h。
本发明还公开了上述的T1/T2双模态纳米造影剂空心MCO的制备方法制得的T1/T2双模态纳米造影剂空心MCO。
本发明还公开了上述的T1/T2双模态纳米造影剂空心MCO在声光成像或核磁共振成像的造影剂中的应用。
本发明通过控制不同的反应条件(比如:PAA含量和反应时间)制备不同尺寸的空心纳米MCO粒子,通过氨基在空心纳米MCO粒子表面修饰上聚乙二醇,得到具有优异生物相容性和氧化还原响应的T1/T2双模态一体的空心纳米MCO粒子。本发明合成步骤简单,操作方便,可以改变加工条件来改变空心纳米MCO尺寸,此外空心纳米MCO本身具有较好的生物相容性,同时,空心纳米MCO具有优秀的氧化还原响应效果,可与癌症周围GSH发生氧化还原反应,从而使得空心纳米MCO能够在癌症环境分解释放包裹药物,定向杀死癌细胞。空心纳米MCO也在T1/T2双模态生物成像材料方面展现出广阔的应用前景。本发明具有以下有益效果:
1、本发明的工艺操作简单,尺寸均匀且可重复性高,能满足实验室和工业需求。
2、本发明制备的空心纳米MCO具备生物相容性好、无毒害作用的优点。
3、本发明可以通过改变PAA含量和反应时间控制得到不同尺寸的空心纳米MCO。
4、本发明制备的空心纳米MCO具有氧化还原响应的医药载体和造影剂。
附图说明
图1是实施例1制备的空心纳米MCO的扫描和透射电子显微镜照片。
图2是实施例2制备的空心纳米MCO的扫描和透射电子显微镜照片。
图3是实施例3制备的空心纳米MCO的扫描和透射电子显微镜照片。
图4是实施例4制备的空心纳米MCO的扫描和透射电子显微镜照片。
图5是实施例3制备的空心纳米MCO在有无谷胱甘肽(GSH)条件下的T1弛豫率曲线(r1=2.24和3.43mM-1s-1),插入图为T1造影成像图。
图6是实施例3制备的空心纳米MCO在有无GSH条件下的T2弛豫率曲线(r2=32.51和110.70mM-1s-1),插入图为T2造影成像图。
图7是MCO对阿霉素(DOX)的负载曲线。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1:
称取2mg的氯化钴,用20ml的水溶解配制成溶液,随后将溶液搅拌20min;量取10mg的氯化钴溶液,并向其中加入20mg的PAA试剂中,室温搅拌反应60min,然后加入4mg NaBH4,搅拌反应2min得到PAA修饰的纳米钴;量取PAA修饰的纳米钴溶液10mg与20mg KMnO4室温搅拌反应10min,离心得到沉淀,去离子水洗涤三次,得到PAA修饰的空心纳米MCO。将PAA修饰的空心纳米MCO溶液取20mg与80mg PEG-NH2室温搅拌反应2h,离心得到沉淀,去离子水洗涤三次,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO,尺寸在50.5±6.4nm。
实施例2:
称取2mg的氯化钴,用100ml的水溶解配制成溶液,随后将溶液搅拌30min;量取15mg的氯化钴溶液,并向其中加入40mg的PAA试剂中,室温搅拌反应90min,然后加入5mgNaBH4,搅拌反应3min得到PAA修饰的纳米钴;量取PAA修饰的纳米钴溶液20mg与30mg KMnO4室温搅拌反应15min,离心得到沉淀,去离子水洗涤三次,得到PAA修饰的空心纳米MCO。将PAA修饰的空心纳米MCO溶液取30mg与100mg PEG-NH2室温搅拌反应2.5h,离心得到沉淀,去离子水洗涤三次,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO,尺寸在67.5±9.4nm。
实施例3:
称取2mg的氯化钴,用150ml的水溶解配制成溶液,随后将溶液搅拌30min;量取15mg的氯化钴溶液,并向其中加入40mg的PAA试剂中,室温搅拌反应120min,然后加入6mgNaBH4,搅拌反应2min得到PAA修饰的纳米钴;量取PAA修饰的纳米钴溶液20mg与40mg KMnO4室温搅拌反应20min,离心得到沉淀,去离子水洗涤三次,得到PAA修饰的空心纳米MCO。将PAA修饰的空心纳米MCO溶液取40mg与100mg PEG-NH2室温搅拌反应2h,离心得到沉淀,去离子水洗涤三次,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO,尺寸在95±7.9nm。
实施例4:
称取2mg的氯化钴,用200ml的水溶解配制成溶液,随后将溶液搅拌60min;量取20mg的氯化钴溶液,并向其中加入80mg的PAA试剂中,室温搅拌反应300min,然后加入8mgNaBH4,搅拌反应4min得到PAA修饰的纳米钴;量取PAA修饰的纳米钴溶液15mg与40mg KMnO4室温搅拌反应20min,离心得到沉淀,去离子水洗涤三次,得到PAA修饰的空心纳米MCO。将PAA修饰的空心纳米MCO溶液取40mg与160mg PEG-NH2室温搅拌反应4h,离心得到沉淀,去离子水洗涤三次,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO,尺寸在286±47.2nm。
实施例5:
向氯化钴溶液中加入80mg的PAA试剂,其它条件与实施例1相同,最终得到的空心MCO尺寸在85.2±6.9nm。
实施例6:
加入8mg NaBH4,其它条件与实施例1相同,最终得到的空心MCO尺寸在101.2±5.3nm。
实施例7:
量取PAA修饰的纳米钴溶液10mg与40mg KMnO4室温搅拌反应,其它条件与实施例1相同,最终得到的空心MCO尺寸在92.3±3.2nm。
实施例8:
将PAA修饰的空心纳米MCO溶液取20mg与120mg PEG-NH2室温搅拌反应,其它条件与实施例1相同,最终得到的空心MCO尺寸在58.5±6.9nm。
实施例9:
将PAA修饰的空心纳米MCO溶液取20mg与160mg PEG-NH2室温搅拌反应,其它条件与实施例1相同,最终得到的空心MCO尺寸在67.2±2.8nm。
实施例10:
向氯化钴溶液中加入20mg的PAA试剂,其它条件与实施例4相同,最终得到的空心MCO尺寸在102.3±5.4nm。
实施例11:
加入4mg NaBH4,其它条件与实施例4相同,最终得到的空心MCO尺寸在125.6±5.6nm。
实施例12:
量取PAA修饰的纳米钴溶液15mg与10mg KMnO4室温搅拌反应,其它条件与实施例4相同,最终得到的空心MCO尺寸在110.5±8.6nm。
实施例13:
将PAA修饰的空心纳米MCO溶液取40mg与80mg PEG-NH2室温搅拌反应,其它条件与实施例4相同,最终得到的空心MCO尺寸在253.6±4.3nm。
实施例14:
将PAA修饰的空心纳米MCO溶液取20mg与160mg PEG-NH2室温搅拌反应,其它条件与实施例4相同,最终得到的空心MCO尺寸在220.4±9.1nm。
实施例15-20:
将实施例1、5-9中,配制氯化钴溶液时称取氯化钴量均改为15mg,其它条件不变,相应的最终得到的空心MCO尺寸在分别是320.4±2.6,440.5±7.9,510.2±9.1,480.3±4.2,126.9±4.2,142.3±6.1nm。
实施例21-26:
将实施例4、10-14中,配制氯化钴溶液时称取氯化钴量均改为20mg,其它条件不变,相应的最终得到的空心MCO尺寸在分别是425.4±5.4,552.5±4.2,765.2±2.3,627.3±6.5,224.6±9.2,259.7±2.9nm。
Claims (8)
1.一种具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于:在氯化钴溶液中加入PAA,再先后加入NaBH4和KMnO4溶液反应得到PAA修饰的空心纳米MCO,PAA修饰的空心纳米MCO加入PEG-NH2进行反应,得到氧化还原响应的T1/T2双模态纳米造影剂空心MCO。
2.根据权利要求1所述的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于具体步骤为:
A、称取2mg~20mg的氯化钴,用20ml~200ml的水溶解配制成溶液,随后将溶液搅拌20min-60min;
B、向10mg~20mg的氯化钴溶液中加入20mg~80mg的PAA试剂中,室温搅拌反应60min~300min,然后加入4mg-8mg NaBH4,搅拌得到PAA修饰的纳米钴;
C、将步骤B中获得PAA修饰的纳米钴溶液取10mg~20mg与10mg~40mg KMnO4室温搅拌反应10min~20min,离心得到沉淀,去离子水洗涤,得到PAA修饰的空心纳米MCO;
D、将步骤C中获得PAA修饰的空心纳米MCO溶液取20mg~40mg与80mg~160mg PEG-NH2室温搅拌反应2h~4h,离心得到沉淀,去离子水洗涤,得到具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO。
3.根据权利要求2所述的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于:步骤A中氯化钴的质量为15mg;用水的体积为150ml;室温反应时间为30min。
4.根据权利要求3所述的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于:步骤B中氯化钴溶液的质量为15mg;PAA试剂的质量为40mg;室温反应时间为120min;NaBH4的质量为6mg;室温反应时间为2min。
5.根据权利要求4所述的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于:步骤C中PAA修饰的纳米钴溶液的质量为20mg;KMnO4试剂的质量为40mg;室温反应时间为20min。
6.根据权利要求5所述的具有氧化还原响应的T1/T2双模态纳米造影剂空心MCO的制备方法,其特征在于:步骤D中PAA修饰的空心纳米MCO溶液为40mg;PEG-NH2的质量为100mg;室温反应时间为2h。
7.权利要求1-6中任一项所述的T1/T2双模态纳米造影剂空心MCO的制备方法制得的T1/T2双模态纳米造影剂空心MCO。
8.权利要求7所述的T1/T2双模态纳米造影剂空心MCO在声光成像或核磁共振成像的造影剂中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910919793.XA CN110624117B (zh) | 2019-09-26 | 2019-09-26 | 具有氧化还原响应的t1/t2双模态纳米造影剂空心mco及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910919793.XA CN110624117B (zh) | 2019-09-26 | 2019-09-26 | 具有氧化还原响应的t1/t2双模态纳米造影剂空心mco及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110624117A true CN110624117A (zh) | 2019-12-31 |
CN110624117B CN110624117B (zh) | 2021-09-24 |
Family
ID=68974242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910919793.XA Active CN110624117B (zh) | 2019-09-26 | 2019-09-26 | 具有氧化还原响应的t1/t2双模态纳米造影剂空心mco及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110624117B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103405788A (zh) * | 2013-08-26 | 2013-11-27 | 中国科学技术大学 | 一种造影剂及其制备方法和应用 |
KR20140136638A (ko) * | 2013-05-21 | 2014-12-01 | 연세대학교 산학협력단 | 치료와 진단이 동시에 가능한 나노 캡슐 구조의 유-무기 나노복합체 및 이의 제조방법 |
CN105031671A (zh) * | 2015-07-08 | 2015-11-11 | 中国科学院上海硅酸盐研究所 | 基于普鲁士蓝的智能pH触发MRI监测药物释放的协同纳米诊疗剂及其制备方法 |
CN105188772A (zh) * | 2013-04-05 | 2015-12-23 | 因特伦生物技术株式会社 | 基于金属氧化物纳米颗粒的t1-t2双模式磁共振成像造影剂 |
CN105209079A (zh) * | 2013-04-05 | 2015-12-30 | 因特伦生物技术株式会社 | 具有中心腔的基于金属氧化物纳米颗粒的磁共振成像造影剂 |
CN108030933A (zh) * | 2017-12-13 | 2018-05-15 | 北京工商大学 | 一种高灵敏度双模态磁共振造影剂及其制备方法 |
-
2019
- 2019-09-26 CN CN201910919793.XA patent/CN110624117B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105188772A (zh) * | 2013-04-05 | 2015-12-23 | 因特伦生物技术株式会社 | 基于金属氧化物纳米颗粒的t1-t2双模式磁共振成像造影剂 |
CN105209079A (zh) * | 2013-04-05 | 2015-12-30 | 因特伦生物技术株式会社 | 具有中心腔的基于金属氧化物纳米颗粒的磁共振成像造影剂 |
KR20140136638A (ko) * | 2013-05-21 | 2014-12-01 | 연세대학교 산학협력단 | 치료와 진단이 동시에 가능한 나노 캡슐 구조의 유-무기 나노복합체 및 이의 제조방법 |
CN103405788A (zh) * | 2013-08-26 | 2013-11-27 | 中国科学技术大学 | 一种造影剂及其制备方法和应用 |
CN105031671A (zh) * | 2015-07-08 | 2015-11-11 | 中国科学院上海硅酸盐研究所 | 基于普鲁士蓝的智能pH触发MRI监测药物释放的协同纳米诊疗剂及其制备方法 |
CN108030933A (zh) * | 2017-12-13 | 2018-05-15 | 北京工商大学 | 一种高灵敏度双模态磁共振造影剂及其制备方法 |
Non-Patent Citations (3)
Title |
---|
LONGHAI JIN等: "MnO2‑Functionalized Co-P Nanocomposite: A New Theranostic Agent for pH-Triggered T1/T2 Dual-Modality Magnetic Resonance Imaging-Guided Chemo-photothermal Synergistic Therapy", 《ACS APPL. MATER. INTERFACES》 * |
MEI-YI LIAO等: "Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor", 《J. MATER. CHEM.》 * |
MI HYEON CHO等: "Redox-Responsive Manganese Dioxide Nanoparticles for Enhanced MR Imaging and Radiotherapy of Lung Cancer", 《FRONTIERS IN CHEMISTRY》 * |
Also Published As
Publication number | Publication date |
---|---|
CN110624117B (zh) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Metal-organic framework-based nanomaterials for biomedical applications | |
Dong et al. | Guiding transition metal‐doped hollow cerium tandem nanozymes with elaborately regulated multi‐enzymatic activities for intensive chemodynamic therapy | |
Wang et al. | Functionalized holmium‐doped hollow silica nanospheres for combined sonodynamic and hypoxia‐activated therapy | |
Tian et al. | Poly (acrylic acid) bridged gadolinium metal–organic framework–gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging | |
Chen et al. | NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters | |
Liu et al. | An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy | |
Bao et al. | Multifunctional Hf/Mn-TCPP metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy | |
CN105031647B (zh) | 一种聚多巴胺包裹的聚乙烯亚胺稳定的金纳米星光热治疗剂的制备方法 | |
Zhou et al. | Mitochondria-targeted zirconium metal–organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors | |
Wu et al. | MoO3-x nanosheets-based platform for single NIR laser induced efficient PDT/PTT of cancer | |
CN112143499B (zh) | 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用 | |
CN111298141B (zh) | 一种基于铁和多巴胺配位的纳米颗粒光热转换材料及其制备方法和应用 | |
CN111358964A (zh) | 磁性八面体铂掺杂金纳米壳、其制备方法和应用 | |
Lu et al. | Progress in the preparation of Prussian blue-based nanomaterials for biomedical applications | |
Sha et al. | Manganese-doped gold core mesoporous silica particles as a nanoplatform for dual-modality imaging and chemo-chemodynamic combination osteosarcoma therapy | |
Amirthalingam et al. | Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs | |
Foroushani et al. | Folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations | |
Chu et al. | Biodegradable iron-doped ZIF-8 based nanotherapeutic system with synergistic chemodynamic/photothermal/chemo-therapy | |
Pandit et al. | Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells | |
Chu et al. | Manganese amplifies photoinduced ROS in toluidine blue carbon dots to boost MRI guided chemo/photodynamic therapy | |
CN113941009A (zh) | 一种金属有机骨架纳米载体及其制备方法与应用 | |
Ruan et al. | Recent development on controlled synthesis of Mn‐based nanostructures for bioimaging and cancer therapy | |
CN104984341B (zh) | 一种近红外激光触发的复合纳米制剂的制备方法 | |
Yang et al. | Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy | |
Zhou et al. | Manganese oxide/metal-organic frameworks-based nanocomposites for tumr micro-environment sensitive 1H/19F dual-mode magnetic resonance imaging in vivo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |