CN110615411B - 一种NaOH插层过渡金属硫族化合物及其制备方法和应用 - Google Patents

一种NaOH插层过渡金属硫族化合物及其制备方法和应用 Download PDF

Info

Publication number
CN110615411B
CN110615411B CN201910912750.9A CN201910912750A CN110615411B CN 110615411 B CN110615411 B CN 110615411B CN 201910912750 A CN201910912750 A CN 201910912750A CN 110615411 B CN110615411 B CN 110615411B
Authority
CN
China
Prior art keywords
naoh
transition metal
intercalation
metal chalcogenide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910912750.9A
Other languages
English (en)
Other versions
CN110615411A (zh
Inventor
赖晓芳
任宇蓉
简基康
郭旻皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910912750.9A priority Critical patent/CN110615411B/zh
Publication of CN110615411A publication Critical patent/CN110615411A/zh
Application granted granted Critical
Publication of CN110615411B publication Critical patent/CN110615411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明属于材料技术领域,尤其涉及一种NaOH插层过渡金属硫族化合物及其制备方法和应用。本发明NaOH插层过渡金属硫族化合物的制备方法中,采用AxM2‑yX2作为前驱体,与金属M和X源置于NaOH溶液中,进行离子交换反应,前驱体中的碱金属A与NaOH溶液发生离子交换反应,碱金属A从前驱体脱出进入溶液中,NaOH进入到MX层间,得到NaOH插层过渡金属硫族化合物,该制备方法简单,适用范围广,产物NaOH插层过渡金属硫族化合物结晶性好,具有超导性能,在超导、热电、电催化方面具有潜在的应用价值。

Description

一种NaOH插层过渡金属硫族化合物及其制备方法和应用
技术领域
本发明属于材料技术领域,尤其涉及一种NaOH插层过渡金属硫族化合物及其制备方法和应用。
背景技术
层状过渡金属硫族化合物是一类结构和物性极其丰富的化合物,在超导、热电、光电、电池、超级电容器和电催化等领域都具有广泛而重要的应用。特别是含反萤石型结构的FeSe层的化合物近年来一度成为凝聚态物理和材料科学的研究热点,原因在于这类材料能够实现较高的超导转变温度,并且具有极其丰富的插层化学。
FeSe虽然具有丰富的插层化学,但是每一个FeSe插层化合物的发现都是极其不易的,都需要在合成技术上取得突破。KxFe2-ySe2是第一个FeSe插层化合物超导体,是通过高温固相自助溶剂法制备的,它只有当名义配比比较合适并且长成较大尺寸的单晶时才能表现出超导电性,这与它存在纳米尺度相分离并且超导相体积含量相对较低(大约20%)有关。一系列FeSe基插层化合物超导体Ax(NH3)yFe2Se2(A=Li,Na,Ba,Sr,Ca,Yb,Eu)、AxByFe2Se2(A=碱金属,B=吡啶,乙二胺,1,6-己烷二胺)是通过室温液氨或者低温溶剂热法得到的。液氨方法和溶剂热方法都是先用高温固相反应合成高质量的FeSe,然后再把FeSe浸泡在溶有金属的液氨或有机溶剂里以实现插层。FeSe的质量直接决定插层产物的质量,同时要求插层过程中体系严格无水。(Li1-xFexOH)FeSe超导体的发现得益于低温水热法的应用,其中维持反应体系的浓碱环境和还原性是获得高质量超导样品的关键。(Li1-xFexOH)FeSe超导体不存在相分离,并且能长成大尺寸的单晶,对于揭示铁基高温超导机理具有重要意义。
NaOH与LiOH非常相似,为此,很多研究者也尝试将类似的NaOH插入FeSe层间,但是一直没有成功。
发明内容
有鉴于此,本发明提供了一种NaOH插层过渡金属硫族化合物及其制备方法和应用,该制备方法能够成功制备NaOH插层过渡金属硫族化合物,制备得到的NaOH插层过渡金属硫族化合物结晶性好,具有超导性能。
本发明的具体技术方案如下:
一种NaOH插层过渡金属硫族化合物的制备方法,包括以下步骤:
将AxM2-yX2、金属M和X源置于NaOH溶液中,进行离子交换反应,得到NaOH插层过渡金属硫族化合物;
其中,A为不包括Na的碱金属,金属M为过渡金属,X为硫族元素,0.8≤x≤1.0,0≤y≤0.5。
本发明中,采用AxM2-yX2作为前驱体,与金属M和X源置于NaOH溶液中,进行离子交换反应,前驱体中的碱金属A与NaOH溶液发生离子交换反应,碱金属A从前驱体脱出进入溶液中,NaOH进入到MX层间,金属M一方面补充M源,另一方面使体系具有一定还原性;X源一方面补充产物所需要的X,另一方面使体系维持一定的碱性环境,得到NaOH插层过渡金属硫族化合物,该制备方法简单,适用范围广,产物NaOH插层过渡金属硫族化合物结晶性好,具有超导性能,在超导、热电、电催化方面具有潜在的应用价值。
本发明在层状过渡金属硫族化合物之间插入空间层,可增强层状过渡金属硫族化合物的二维特性,为研究二维电子气提供平台。
优选的,A选自K和/或Cs;
金属M选自Mn、Fe、Co中的一种或多种;
X为S和/或Se。
优选的,金属M为Fe,x为0.8,y为0.4。
优选的,金属M为Mn,x为1,y为0.5。
优选的,金属M为Co,x为1,y为0。
优选的,所述离子交换反应的温度为100℃~160℃,优选为140℃;
所述离子交换反应的时间为2~3天。
本发明中,NaOH溶液的浓度为1M~2M。
优选的,所述X源选自CH4N2S和/或CH4N2Se。
优选的,所述AxM2-yX2、所述金属M和所述X源的摩尔比为(8~45):(16~180):(16~52),更优选为1:2:2。
本发明中,得到的NaOH插层过渡金属硫族化合物优选室温真空干燥后储存于水氧含量均低于0.1PPM的手套箱。
本发明还提供了上述技术方案所述制备方法制得的NaOH插层过渡金属硫族化合物。
本发明还提供了上述技术方案所述NaOH插层过渡金属硫族化合物在超导领域、热电领域或电催化领域中的应用。
综上所述,本发明提供了一种NaOH插层过渡金属硫族化合物的制备方法,包括以下步骤:将AxM2-yX2、金属M和X源置于NaOH溶液中,进行离子交换反应,得到NaOH插层过渡金属硫族化合物;其中,A为不包括Na的碱金属,金属M为过渡金属,X为硫族元素,0.8≤x≤1.0,0≤y≤0.5。本发明中,采用AxM2-yX2作为前驱体,与金属M和X源置于NaOH溶液中,进行离子交换反应,前驱体中的碱金属A与NaOH溶液发生离子交换反应,碱金属A从前驱体脱出进入溶液中,NaOH进入到MX层间,得到NaOH插层过渡金属硫族化合物,该制备方法简单,适用范围广,产物NaOH插层过渡金属硫族化合物结晶性好,具有超导性能,在超导、热电、电催化方面具有潜在的应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1制备得到的NaOH插层FeSe的X射线衍射图谱;
图2为将图1通过Rietveld精修得到的晶体结构图;
图3为本发明实施例1制备得到的NaOH插层FeSe的磁化率随温度变化关系曲线。
具体实施方式
本发明提供了一种NaOH插层过渡金属硫族化合物及其制备方法和应用,该制备方法能够成功制备NaOH插层过渡金属硫族化合物,制备得到的NaOH插层过渡金属硫族化合物结晶性好,具有超导性能。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
按照文献Phys.Rev.B,2010,82,180520(R)的方法制备K0.8Fe1.6Se2,然后称取0.5gK0.8Fe1.6Se2、0.5g金属Fe和0.2g CH4N2Se,置于装有NaOH溶液(浓度为1M)的高压反应釜,反应釜密封后在140℃保温2天,之后随炉冷却,过滤并收集产物NaOH插层FeSe,再将产物室温真空干燥后储存于水氧含量都低于0.1PPM的手套箱。
对产物NaOH插层FeSe进行X射线衍射分析,请参阅图1,为本发明实施例1制备得到的NaOH插层FeSe的X射线衍射图谱。将图1通过Rietveld精修得到如图2所示的晶体结构,图2表明,产物NaOH插层FeSe的空间群是Cmma,晶胞参数是
Figure GDA0002881987570000041
产物NaOH插层FeSe结晶性好。
对产物NaOH插层FeSe进行超导性能检测,请参阅图3,为本发明实施例1制备得到的NaOH插层FeSe的磁化率随温度变化关系曲线,图3表明NaOH插层FeSe具有转变温度为33K的超导电性。
实施例2
按照文献Angewandte Chemie,21966,78,113-114的方法制备CsMn1.5S2,然后称取0.7g CsMn1.5S2、0.5g金属Mn和0.2g CH4N2S,置于装有NaOH溶液(浓度为2M)的高压反应釜,反应釜密封后在140℃保温2天,之后随炉冷却,过滤并收集产物NaOH插层MnS,再将产物室温真空干燥后储存于水氧含量都低于0.1PPM的手套箱。
实施例3
按照文献Phys.Rev.B,2013,88,064406的方法制备KCo2Se2,然后称取0.6gKCo2Se2、0.2g金属Co和0.2g CH4N2Se,置于装有NaOH溶液(浓度为2M)的高压反应釜,反应釜密封后在140℃保温3天,之后随炉冷却,过滤并收集产物NaOH插层CoSe,再将产物室温真空干燥后储存于水氧含量都低于0.1PPM的手套箱。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种NaOH插层过渡金属硫族化合物的制备方法,其特征在于,包括以下步骤:
将AxM2-yX2、金属M和X源置于NaOH溶液中,进行离子交换反应,得到NaOH插层过渡金属硫族化合物;
其中,A为不包括Na的碱金属,金属M为过渡金属,X为硫族元素,0.8≤x≤1.0,0≤y≤0.5;
所述A选自K和/或Cs;
所述金属M选自Mn、Fe、Co中的一种或多种;
X为S和/或Se;
所述X源选自CH4N2S和/或CH4N2Se;
所述离子交换反应的温度为100℃~160℃;
所述离子交换反应的时间为2~3天;
所述AxM2-yX2、所述金属M和所述X源的摩尔比为(8~45):(16~180):(16~52)。
2.根据权利要求1所述的制备方法,其特征在于,金属M为Fe,x为0.8,y为0.4。
3.根据权利要求1所述的制备方法,其特征在于,金属M为Mn,x为1,y为0.5。
4.根据权利要求1所述的制备方法,其特征在于,金属M为Co,x为1,y为0。
5.权利要求1至4任意一项所述制备方法制得的NaOH插层过渡金属硫族化合物。
6.权利要求5所述NaOH插层过渡金属硫族化合物在超导领域、热电领域或电催化领域中的应用。
CN201910912750.9A 2019-09-25 2019-09-25 一种NaOH插层过渡金属硫族化合物及其制备方法和应用 Active CN110615411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910912750.9A CN110615411B (zh) 2019-09-25 2019-09-25 一种NaOH插层过渡金属硫族化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910912750.9A CN110615411B (zh) 2019-09-25 2019-09-25 一种NaOH插层过渡金属硫族化合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110615411A CN110615411A (zh) 2019-12-27
CN110615411B true CN110615411B (zh) 2021-05-11

Family

ID=68924654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910912750.9A Active CN110615411B (zh) 2019-09-25 2019-09-25 一种NaOH插层过渡金属硫族化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110615411B (zh)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
(Li0.84Fe0.16)OHFe0.98Se superconductor: Ion-exchange synthesis of large single crystal and anomalous normal state properties;Xiaoli Dong et al.;《Physical Review B》;20150228;第1-13页 *
Hai Lin et al..Superconductivity in LiOHFeS single crystals with a shrunk c-axis lattice constant.《Sci.China-Phys.Mech.Astron.》.2016,第60卷(第2期), *
Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides;Xiuquan Zhou et al.;《Chem. Sci.》;20170313;第8卷;第3781-3788页 *
Superconductivity in LiOHFeS single crystals with a shrunk c-axis lattice constant;Hai Lin et al.;《Sci.China-Phys.Mech.Astron.》;20161202;第60卷(第2期);第1-5页 *
The electronic structure and magnetism of a new layered iron selenide superconductor: LiOHFeSe;Guangtao Wang et al.;《Physics Letters A》;20150611;第379卷;第2106-2109页 *
The intercalation chemistry of layered iron chalcogenide superconductors;Hector K.Vivanco et al.;《Journal ofSolidStateChemistry》;20161231;第242卷;第3-21页 *

Also Published As

Publication number Publication date
CN110615411A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
Sanjaya Ranmohotti et al. Topochemical Manipulation of Perovskites: Low‐Temperature Reaction Strategies for Directing Structure and Properties
Lu et al. Superconductivity in LiFeO 2 Fe 2 Se 2 with anti-PbO-type spacer layers
Hatakeda et al. New Li-Ethylenediamine-Intercalated Superconductor Li x (C2H8N2) y Fe2-z Se2 with T c= 45 K
Takano et al. ACuO2 (A: alkaline earth) crystallizing in a layered structure
Guo et al. Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties
Brugger et al. A novel route for the synthesis of mesoporous and low-thermal stability materials by coupled dissolution-reprecipitation reactions: mimicking hydrothermal mineral formation
Gao et al. A FeSe-based superconductor (C2H8N2) xFeSe with only ethylenediamine intercalated
CN110467165A (zh) 一种采用固定床催化制备高纯黑磷的方法
Xu et al. Research progress of FeSe-based superconductors containing ammonia/organic molecules intercalation
CN110615411B (zh) 一种NaOH插层过渡金属硫族化合物及其制备方法和应用
Jin Using pressure effects to create new emergent materials by design
Pavan Kumar Naik et al. Structural and thermal validations of Y 3 Ba 5 Cu 8 O 18 composites synthesized via citrate sol-gel spontaneous combustion method
Ikeda et al. Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films
CN104788505A (zh) 一种金属-有机框架单晶外延生长的DMCoF/DMMnF异质结材料及其制备方法
CN114686986B (zh) 一种SnSe2单晶的制备方法
Perrin et al. Chevrel Phases: Genesis and Developments
Zhang et al. Mechanism of oxygen releasing of copper ferrite in the formation of the corresponding oxygen-deficient compound
Guzzetta et al. A New, Thorough Look on Unusual and Neglected Group III‐VI Compounds Toward Novel Perusals
Qureshi et al. A comparative study of EDTA-gel derived BSCCO and Pb-BSCCO systems by thermoanalytical and X-ray diffraction techniques
Takamatsu et al. Low-temperature synthesis of the infinite-layer compound LaNiO2 by soft-chemical techniques
Huang et al. Accelerated formation of the three Cu‐O layered Tl‐(Pb, Bi)‐Sr‐Ca‐Cu‐O compound
US9708728B1 (en) Growth of metal oxide single crystals from alkaline-earth metal fluxes
Hauck et al. Structure families of superconducting oxides and interstitial alloys
CN109616256B (zh) 一种制备(Li,Fe)OHFeSe超导材料的方法
Sugimoto et al. Synthesis and structures of reduced niobates with four perovskite-like layers and their semiconducting properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant