CN110609015A - Optical path device and OCT imaging system - Google Patents

Optical path device and OCT imaging system Download PDF

Info

Publication number
CN110609015A
CN110609015A CN201911036359.3A CN201911036359A CN110609015A CN 110609015 A CN110609015 A CN 110609015A CN 201911036359 A CN201911036359 A CN 201911036359A CN 110609015 A CN110609015 A CN 110609015A
Authority
CN
China
Prior art keywords
galvanometer
optical path
sub
deflection state
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911036359.3A
Other languages
Chinese (zh)
Inventor
苏胜飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhongtou Huaxun Terahertz Technology Co., Ltd
Shenzhen Institute of Terahertz Technology and Innovation
Original Assignee
Shenzhen Institute of Terahertz Technology and Innovation
Shenzhen Huaxun Ark Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Terahertz Technology and Innovation, Shenzhen Huaxun Ark Technology Co Ltd filed Critical Shenzhen Institute of Terahertz Technology and Innovation
Priority to CN201911036359.3A priority Critical patent/CN110609015A/en
Publication of CN110609015A publication Critical patent/CN110609015A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention belongs to the technical field of optical coherence tomography, and particularly relates to an optical path device and an OCT imaging system. The optical path device includes: the optical path structure comprises a vibrating mirror and a plane reflection structure, the vibrating mirror is used for receiving a light splitting beam from the coupler and deflecting and reflecting the light splitting beam outwards, the vibrating mirror has a first deflection state and a second deflection state, the vibrating mirror reflects the light splitting beam to the plane reflection structure when in the first deflection state, and reflects the light splitting beam to a sample to be measured when in the second deflection state. The optical path structure is at least provided with two, each galvanometer receives a split beam from the coupler respectively, at least one galvanometer is in a first deflection state, and at least one galvanometer is in a second deflection state. The invention not only enables any light path structure to have the functions of the reference arm light path structure and the sample arm light path structure, enlarges the functional range of a single light path structure, but also enables all the light path structures to be equivalent in function and structure, and reduces the production cost.

Description

Optical path device and OCT imaging system
Technical Field
The invention belongs to the technical field of optical coherence tomography, and particularly relates to an optical path device and an OCT imaging system.
Background
Currently, Optical Coherence Tomography (OCT) is an emerging imaging technology in recent ten years, and attracts more and more attention because of its advantages of high resolution, non-invasive, non-contact measurement, and the like. The imaging technology utilizes the basic principle of a weak coherent light interferometer, the core components of the imaging technology are a broadband light source and a Michelson interferometer, in the signal acquisition process, coherent light from the broadband light source is divided into two parts in the Michelson interferometer, one part is a reference light reflected detector, the other part enters a sample as detection light, reflected light or scattered light with different sample depths and the reference light form an interference spectrum, the detected interference spectrum is analyzed to obtain depth information of the sample, and final three-dimensional information of the sample is obtained through two-dimensional moving scanning of the reference light or the sample.
However, in such OCT imaging systems, there is usually only one sample arm or reference arm, and the sample arm is limited to scan the sample to be measured, and the reference arm is limited to return reference light, and in the OCT industry, two or more sample arms are often required to perform OCT detection on the sample on the production line. Therefore, a plurality of OCT imaging systems are required, and the cost for providing a plurality of OCT imaging systems is high.
Disclosure of Invention
The invention aims to provide an optical path device, aiming at solving the problem of forming at least two sample arms or at least two reference arms in an OCT imaging system.
The invention provides an optical path device, which is used with a broadband light source and a coupler to scan a sample to be measured, wherein the broadband light source emits a source light beam, the coupler is used for dividing the source light beam into a plurality of sub-light beams, and the optical path device comprises: the optical path structure comprises a galvanometer and a plane reflection structure, the galvanometer is used for receiving the sub-beam from the coupler and deflecting and reflecting the sub-beam outwards, the galvanometer has a first deflection state and a second deflection state, the galvanometer reflects the sub-beam to the plane reflection structure when in the first deflection state, and reflects the sub-beam to the sample to be measured when in the second deflection state;
the optical path structure is at least provided with two galvanometers, each galvanometer receives the split beam from the coupler, at least one galvanometer is in the first deflection state, and at least one galvanometer is in the second deflection state.
The invention has the technical effects that: in the same optical path structure, the galvanometer is switched between a first deflection state and a second deflection state, so that the optical path structure can be switched between the reference arm optical path structure and the sample arm optical path structure. The optical path structure has the functions of a reference arm optical path structure and a sample arm optical path structure, the functional range of a single optical path structure is expanded to meet different scanning requirements, all the optical path structures are equivalent in function and structure, the universality of parts is improved, a scale effect is easy to form during batch production, and the production cost is reduced.
Drawings
Fig. 1 is a schematic structural diagram of an OCT imaging system according to an embodiment of the present invention.
The correspondence between reference numbers and names in the drawings is as follows:
100. an OCT imaging system; 10. a broadband light source; 20. a spectrum analyzer; 30. a coupler; 40. a collimating lens; 11. splitting a beam; 50', a first deflected state; 50 ", a second deflected state; 50. a galvanometer; 62. a planar reflective structure; 61. a sample to be tested; 101. an optical path device; 101', a sample arm light path structure; 101 ", reference arm optical path structure; 63. a focusing lens;
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the drawings are illustrative and intended to be illustrative of the invention and are not to be construed as limiting the invention.
In the description of the present invention, it is to be understood that the terms "thickness", "upper", "lower", "vertical", "parallel", "bottom", "angle", and the like, indicate orientations and positional relationships based on the orientations and positional relationships shown in the drawings, are only for convenience in describing the present invention and simplifying the description, and do not indicate or imply that the device or element referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be construed as limiting the present invention.
In the present invention, unless otherwise expressly stated or limited, the terms "mounted," "connected," and the like are to be construed broadly, e.g., as meaning fixedly connected, detachably connected, or integrally formed; can be mechanically or electrically connected; either directly or indirectly through intervening media, either internally or in any other relationship.
Referring to fig. 1, an embodiment of the invention provides an optical path apparatus 101 and an OCT imaging system 100 having the same. OCT imaging system 100 also includes a broadband light source 10 and a coupler 30. The broadband light source 10 emits a source light beam, and the coupler 30 serves to split the source light beam into a plurality of sub-beams 11. The optical path device 101 is used for cooperating with the broadband light source 10 and the coupler 30 to scan and sample the sample 61 to be measured for the imaging analysis of the spectrum analyzer.
The optical path device 101 includes: and (4) an optical path structure. The optical path structure includes a galvanometer 50 and a planar reflective structure 62, the galvanometer 50 is configured to receive a sub-beam 11 from the coupler 30 and polarizedly reflect the sub-beam 11 outward. The galvanometer 50 has a first deflected state 50' and a second deflected state 50 ". When the galvanometer 50 is in the first deflected state 50', the planar reflective structure 62 receives the sub-beam 11 from the galvanometer 50 and reflects the sub-beam 11 toward the galvanometer 50. When the galvanometer 50 is in the second deflected state 50 ″, the galvanometer 50 reflects the split beam 11 toward the sample 61 to be measured. The optical path structure is provided with at least two galvanometers 50, each galvanometer 50 receives a split beam 11 from the coupler 30, and at least two galvanometers 50 are respectively in a first deflection state 50' and a second deflection state 50 ″. Specifically, when the galvanometer 50 is in the first deflection state 50', the optical path structure where the galvanometer 50 is located is the reference arm optical path structure 101 "; when the galvanometer 50 is in the second deflection state 50 ″, the optical path structure of the galvanometer 50 is the sample arm optical path structure 101'. That is, any optical path structure can be used as the reference arm optical path structure 101 ″ and also as the sample arm optical path structure 101'.
In the same optical path structure, the galvanometer 50 is switched between the first deflected state 50 'and the second deflected state 50 ", so that the optical path structure can be switched between the reference arm optical path structure 101" and the sample arm optical path structure 101'. This not only makes any one optical path structure have the function of the reference arm optical path structure 101 'and the function of the sample arm optical path structure 101', enlarges the functional range of the single optical path structure to meet different scanning requirements, but also all the optical path structures are equally effective in function and structure, improves the universality of each part, and is easy to form scale effect in batch production, thereby reducing the production cost.
In one embodiment, the optical path structures are arranged in pairs, and the two galvanometers 50 in the same pair of optical path structures are in a first deflection state 50' and a second deflection state 50 ″, respectively. That is, the number of the optical path structures is even number, so that the optical path structures are arranged in a two-optical-path structure, a four-optical-path structure, an eight-optical-path structure and the like. It can be understood that the scanning functions of two optical path structures in the same pair of optical path structures can be interchanged, thereby satisfying different scanning requirements.
Referring to fig. 1, in one embodiment, a coupler 30 is disposed for each pair of optical path structures, and each coupler 30 receives a source light beam from the broadband light source 10 and splits the source light beam into at least two sub-beams 11. Specifically, the couplers 30 in this embodiment are 2 × 2 optical fiber couplers 30, each optical fiber coupler 30 is connected with two optical path structures, and each optical fiber coupler 30 splits a source light beam received by the broadband light source 10 into two sub-light beams 11, and the two sub-light beams 11 are incident on the two optical path structures, respectively. In one embodiment, the optical path structure further includes a collimating lens 40, and the collimating lens 40 is used for collimating the sub-beam 11 incident to the galvanometer 50. The collimating lens 40 is used for collimating the sub-beams 11, and the sub-beams 11 of the incident light path structure are arranged in parallel through the collimating lens 40.
In one embodiment, the optical path structure further includes a focusing lens 63; when the galvanometer 50 is in the second deflection state 50 ″, the focusing lens 63 receives the sub-beams 11 from the galvanometer 50 and focuses the sub-beams 11 into a sample scanning spot to perform depth scanning sampling on the sample 61 to be measured.
In one embodiment, the planar reflective structure 62 is a planar mirror.
In one embodiment, the optical path structure further comprises a control actuator for controlling and driving the galvanometer 50 to switch between the first deflection state 50' and the second deflection state 50 ". Optionally, the control driver is a smart computer.
Referring to fig. 1, specifically, a broadband light source 10 provides a broadband source beam and is input from one end of a 2 × 2 optical fiber coupler 30, and a pair of optical path structures is connected to the other end of the optical fiber coupler 30. The source light beam is divided into two identical sub-beams 11 by the optical fiber coupler 30 and output, the two sub-beams 11 are respectively incident into two optical path structures and are collimated into parallel light by the collimating lens 40, the parallel light is incident onto the corresponding vibrating mirror 50, and the vibrating mirror 50 is controlled and driven by the control driver. One of the mirrors 50 is in a first deflected state 50', and the planar reflective structure 62 receives the sub-beam 11 from the mirror 50 and reflects the sub-beam 11 toward the mirror 50, the reflected sub-beam 11 serving as sample light. With the optical path structure acting as the reference arm optical path structure 101 ". The other galvanometer 50 is in a second deflection state 50 ″, where the galvanometer 50 reflects the sub-beam 11 toward the sample 61 to be measured and receives the sub-beam 11 reflected from the sample 61 to be measured, and the optical path structure serves as a sample arm optical path structure 101', and the reflected sub-beam 11 serves as a reference light. The focusing lens 63 focuses the collimated sub-beams 11 to a sample scanning spot to perform depth sampling on the sample. Of the pair of optical path structures, one optical path structure scans as a sample and returns the sample light to the spectrum analyzer 20, and the other optical path structure returns the reference light to the spectrum analyzer 20.
The present invention is not limited to the above preferred embodiments, and any modifications, equivalent substitutions and improvements made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (8)

1. An optical circuit apparatus for use with a broadband light source and a coupler to scan a sample to be measured, the broadband light source emitting a source beam, the coupler for splitting the source beam into a plurality of sub-beams, the optical circuit apparatus comprising: the optical path structure comprises a galvanometer and a plane reflection structure, the galvanometer is used for receiving the sub-beam from the coupler and deflecting and reflecting the sub-beam outwards, the galvanometer has a first deflection state and a second deflection state, the galvanometer reflects the sub-beam to the plane reflection structure when in the first deflection state, and reflects the sub-beam to the sample to be measured when in the second deflection state;
the optical path structure is at least provided with two galvanometers, each galvanometer receives the split beam from the coupler, at least one galvanometer is in the first deflection state, and at least one galvanometer is in the second deflection state.
2. The optical circuit apparatus according to claim 1, wherein: the optical path structures are arranged in pairs, and the two galvanometers in the same pair of optical path structures are respectively in the first deflection state and the second deflection state.
3. The optical circuit apparatus according to claim 2, wherein: and each pair of the light path structures is correspondingly provided with one coupler, and each coupler receives the source light beam from the broadband light source and divides the source light beam into at least two sub-light beams.
4. The optical circuit apparatus according to claim 1, wherein: the light path structure further comprises a collimating lens, and the collimating lens is used for collimating the sub-beams incident to the galvanometer.
5. The optical circuit apparatus according to claim 1, wherein: the optical path structure further comprises a focusing lens; and when the galvanometer is in a second deflection state, the focusing lens receives the sub-beams from the galvanometer and focuses the sub-beams into sample scanning light spots so as to perform depth scanning sampling on the sample to be detected.
6. The optical circuit apparatus according to claim 1, wherein: the planar reflecting structure is a planar reflector.
7. The optical circuit apparatus according to claim 1, wherein: the optical path structure further comprises a control driver, and the control driver is used for controlling and driving the galvanometer to switch between the first deflection state and the second deflection state.
8. An OCT imaging system for scanning and imaging a sample to be measured, the OCT imaging system comprising: the optical circuit arrangement of any one of claims 1-7, a broadband light source for emitting a source light beam that is split by the coupler into a plurality of sub-beams, a coupler, and a spectrum analyzer for receiving and analyzing the sub-beams reflected back from the optical circuit structure.
CN201911036359.3A 2019-10-29 2019-10-29 Optical path device and OCT imaging system Pending CN110609015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911036359.3A CN110609015A (en) 2019-10-29 2019-10-29 Optical path device and OCT imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911036359.3A CN110609015A (en) 2019-10-29 2019-10-29 Optical path device and OCT imaging system

Publications (1)

Publication Number Publication Date
CN110609015A true CN110609015A (en) 2019-12-24

Family

ID=68895402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911036359.3A Pending CN110609015A (en) 2019-10-29 2019-10-29 Optical path device and OCT imaging system

Country Status (1)

Country Link
CN (1) CN110609015A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285669A1 (en) * 2006-05-26 2007-12-13 Ajgaonkar Mahesh U Polarization insensitive multiple probe
CN101915547A (en) * 2010-07-28 2010-12-15 深圳市斯尔顿科技有限公司 Time domain OCT measurement method and time domain OCT system
CN104523239A (en) * 2015-01-12 2015-04-22 南京理工大学 Full-depth spectral domain optical coherent tomography device and method
CN104568842A (en) * 2015-01-12 2015-04-29 南京理工大学 Device and method for measuring group delay dispersion of biological tissues by combining FDOCT
CN105147241A (en) * 2015-07-03 2015-12-16 南京航空航天大学 Method and system based on double-space carrier frequency technology for increasing OCT (optical coherence tomography) imaging depth
CN205181318U (en) * 2015-10-22 2016-04-27 宁夏盛天彩数字科技股份有限公司 Optical coherence tomographic imaging system
CN208837913U (en) * 2017-07-20 2019-05-10 苏州微景医学科技有限公司 Biaxial texture molecular imaging device
CN211426269U (en) * 2019-10-29 2020-09-04 深圳市太赫兹科技创新研究院有限公司 Optical path device and OCT imaging system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285669A1 (en) * 2006-05-26 2007-12-13 Ajgaonkar Mahesh U Polarization insensitive multiple probe
CN101915547A (en) * 2010-07-28 2010-12-15 深圳市斯尔顿科技有限公司 Time domain OCT measurement method and time domain OCT system
CN104523239A (en) * 2015-01-12 2015-04-22 南京理工大学 Full-depth spectral domain optical coherent tomography device and method
CN104568842A (en) * 2015-01-12 2015-04-29 南京理工大学 Device and method for measuring group delay dispersion of biological tissues by combining FDOCT
CN105147241A (en) * 2015-07-03 2015-12-16 南京航空航天大学 Method and system based on double-space carrier frequency technology for increasing OCT (optical coherence tomography) imaging depth
CN205181318U (en) * 2015-10-22 2016-04-27 宁夏盛天彩数字科技股份有限公司 Optical coherence tomographic imaging system
CN208837913U (en) * 2017-07-20 2019-05-10 苏州微景医学科技有限公司 Biaxial texture molecular imaging device
CN211426269U (en) * 2019-10-29 2020-09-04 深圳市太赫兹科技创新研究院有限公司 Optical path device and OCT imaging system

Similar Documents

Publication Publication Date Title
JP2023160825A (en) Lidar system with solid-state spectral scanning
US7681439B2 (en) Measuring apparatus
CN110691983A (en) LIDAR-based 3-D imaging with structured light and integrated illumination and detection
KR20210092212A (en) Scanning compensation of scanning lidar
JP2019512710A (en) Integrated illumination and detection for 3D imaging based on LIDAR
CN110118960B (en) Laser radar
CN109115723A (en) Optical coherence tomography and imaging method based on digital micromirror device
CN113167865B (en) Polarization encoded beam transmission and collection
US8477317B2 (en) Position measuring arrangement
US6297884B1 (en) Interferometric instrument provided with an arrangement for producing a frequency shift between two interfering beam components
CN211426269U (en) Optical path device and OCT imaging system
JP3947159B2 (en) Sensor device for quick optical distance measurement according to the confocal optical imaging principle
CN109459414A (en) Optical image-measuring device
CN103845039B (en) For the spectrogrph of frequency domain OCT system
CN209132156U (en) Optical coherence tomography based on digital micromirror device
CN110763135A (en) High-precision laser interferometer
US11092427B2 (en) Metrology and profilometry using light field generator
CN110609015A (en) Optical path device and OCT imaging system
CN112923848B (en) Correlation type laser size measurement sensor
JPH095059A (en) Flatness measuring device
CN113030912B (en) Laser radar system based on scanning galvanometer
CN104849237A (en) Refractive index measuring device based on wavelength modulation SPR (surface plasmon resonance)
CN216900213U (en) Flying spot scanning white light spectrum light splitting interferometer
US7719663B2 (en) Heterodyne laser doppler probe and measurement system using the same
CN221280182U (en) Confocal spectrum equipment coaxial with lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200914

Address after: 518000 Guangdong Province, Baoan District Xixiang street Shenzhen City Tian Yi Lu Chen Tian Bao Industrial District thirty-seventh building two floor East

Applicant after: SHENZHEN INSTITUTE OF TERAHERTZ TECHNOLOGY AND INNOVITION Co.,Ltd.

Applicant after: Shenzhen Zhongtou Huaxun Terahertz Technology Co., Ltd

Address before: 518000 Guangdong Province, Baoan District Xixiang street Shenzhen City Tian Yi Lu Chen Tian Bao Industrial District thirty-seventh building two floor East

Applicant before: SHENZHEN INSTITUTE OF TERAHERTZ TECHNOLOGY AND INNOVITION Co.,Ltd.

Applicant before: CHINA COMMUNICATION TECHNOLOGY Co.,Ltd.