CN110596683A - 一种多组激光雷达外参标定系统及其方法 - Google Patents
一种多组激光雷达外参标定系统及其方法 Download PDFInfo
- Publication number
- CN110596683A CN110596683A CN201911023758.6A CN201911023758A CN110596683A CN 110596683 A CN110596683 A CN 110596683A CN 201911023758 A CN201911023758 A CN 201911023758A CN 110596683 A CN110596683 A CN 110596683A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- radar
- map
- laser
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000005457 optimization Methods 0.000 claims abstract description 16
- 230000011218 segmentation Effects 0.000 claims abstract description 14
- 238000010276 construction Methods 0.000 claims abstract description 13
- 230000004927 fusion Effects 0.000 claims abstract description 13
- 230000009466 transformation Effects 0.000 claims description 16
- 230000002068 genetic effect Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- 238000009616 inductively coupled plasma Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000009434 installation Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本发明属于激光雷达技术领域,更具体地,涉及一种多组激光雷达外参标定系统及其方法;包含点云分割模块、地面检测的点云匹配模块、地图构建模块、信息融合模块与路径优化模块;利用激光雷达一段时间内的上下文信息,计算激光雷达前后帧之间的点运动关系,加上IMU提供的位姿去除累计的雷达运动畸变,构建区域内的场景地图,即可完成多组激光雷达外参标定工作。本发明能接受一定程度的雷达视野遮挡、共同视野很小或没有的情况,标定完成后可充分利用多雷达之间的互信息,减少视野盲区、提高对外界环境的探测能力。相较于传统的人工或单帧标定方法,本发明适用性广、易于安装、标定结果的鲁棒性与精准度也有很大提升。
Description
技术领域
本发明属于激光雷达技术领域,更具体地,涉及一种多组激光雷达外参标定系统及其方法。
背景技术
近年来,激光雷达技术的不断进步,为无人驾驶汽车与智能移动机器人提供了良好的传感器基础。利用激光雷达,可精确测量雷达主体与外部环境和障碍物等的距离,其输出的点云可描述三维空间环境,并且可以可视化地显示出来。激光雷达不会因为光照强度以及动态环境的变化而影响设备的正常高效运行,但在实际的工作情况下,仅使用单个激光雷达,可能会导致部分视野的丢失,从而产生视野盲区。
发明内容
本发明为克服上述现有技术中单个激光雷达在车体上方无法检测车体周围地面环境状况、观测结果信息稀疏等缺陷,提供一种多组激光雷达外参标定系统及其方法,可完成多组激光雷达外参标定工作,获取高精度的标定结果。
为解决上述技术问题,本发明采用的技术方案是:一种多组激光雷达外参标定系统,包括:
点云分割模块:激光雷达的输出是三维激光点云,其中包含了外界环境的整体描述,包括车体周围的路面环境、障碍物等;点云分割模块将三维激光点云分割为多个类别,过滤噪声点,将分割之后的语义点云输出到地图构建模块与地面检测的点云匹配模块中;
地面检测的点云匹配模块:用于构建基于地面的约束,使激光点云匹配可以开展在一个相对稳定的平面上,点云匹配采用语义ICP(迭代最近点)匹配算法算法,选用当前帧与周围点云地图配准策略,匹配过程利用点云分割的类别信息,同时获取IMU提供的位姿信息作为约束提高匹配准确度与效率,输出注册点云的6自由度姿态估计,将此输出到地图构建模块;
地图构建模块:用于获得分割后的点云以及每一帧点云前后的6自由度姿态估计,在场景地图构建模块将新增的点云图与附近点云地图进行细粒度配准,配准过程采用图优化的方式优化构建点云地图,并保存特征点云的匹配序列,后续新增的点云经过语义ICP的闭环检测算法,可消除前段时间内的累计漂移误差,输出优化的点云地图与点云的匹配序列即路径到信息融合模块;
信息融合模块:采用多线程的方式,分别接收来自地图构建模块的多组语义点云地图与特征点云路径,整合多个激光雷达的信息;首先求解多组语义点云图与路径间的变换关系,对语义点云地图进行配准,获得点云地图之间的变换关系,在该变换关系上采取遗传算法对特征点云的路径进行拟合,将多组辅助雷达到主雷达之间的标定结果输出到路径优化模块;
路径优化模块:用于获取外参的初值,将外参作用到初始采集的数据中,每个雷达都进行坐标系转化,然后在主雷达的全局语义地图中分别注册语义点云,获取特征点云的路径,利用遗传算法对路径进行拟合获取更进一步的外参偏移量;以此往复多次迭代,直至多次外参变化量小于某阈值或达到迭代最大次数,最终输出多组激光雷达的外参。
传统的激光雷达点云注册方法依靠GPS定位信息或车辆轮式里程计,前者需要高精度GPS与良好的室外环境,后者对里程计积分会导致累计误差,本发明则利用激光雷达一段时间内的上下文信息,计算激光雷达前后帧之间的点运动关系,加上IMU提供的位姿去除累计的雷达运动畸变,构建区域内的场景地图,即可完成多组激光雷达外参标定工作。
本发明还提供一种多组激光雷达外参标定方法,具体包括以下步骤:
S1.车体固定好激光雷达,IMU置于车体中心,多组激光雷达之间的位置关系属于刚体变换,选取其中一个激光雷达作为主雷达,其他都设为辅助雷达,标定主雷达与IMU的外参;
S2.选取室内外合适环境,采集多组激光雷达与IMU的数据;
S3.离线启动点云分割模块,将激光点云信息发布到地面检测的点云匹配模块,构建地面约束与采用语义ICP算法,输出注册点云的6自由度姿态估计;
S4.获得语义点云与注册点云的6自由度姿态估计,在地图构建模块采用图优化的方式优化构建点云地图,并保存特征点云的路径,对于主雷达的点云地图添加IMU的位姿约束,提高主雷达语义地图的精确度;
S5.手动大致测出主雷达到其他雷达之间的偏移,在信息融合模块中利用该手动测量的初值,对每个辅助雷达的点云地图与主雷达地图进行语义ICP匹配,将配准的结果作为初值,采取遗传算法对多组特征点云的路径进行拟合,这一步可以获得初步的外参标定结果;
S6.利用步骤S5的标定结果,对辅助雷达的数据分别做一次刚体运动变换,将各自的坐标系都转到主激光雷达下;
S7.在主雷达的语义点云地图中,对每个激光雷达都进行各自的点云注册的姿态估计,获取每个激光雷达的特征点云路径,对此路径采用遗传算法进行细粒度的拟合,获得更精确的外参标定结果;
S8.重复步骤S6与步骤S7,直至两次外参变化量小于给定的阈值,或到达给定的迭代次数,最终获得多个辅助雷达到主雷达之间的外参。
进一步的,在标定过程中利用激光雷达的上下文信息,将语义点云地图的构建与路径优化融入到外参标定过程中。
进一步的,在标定过程中不依赖GPS等外部传感器提供的精准全局位姿,只需要激光雷达以及IMU,在室内外均可完成所有的标定工作。
进一步的,所述激光雷达为Velodyne 16线或32线的激光雷达,或Robosense 16线的激光雷达,所述IMU可获取3轴角速度和3轴加速度。
与现有技术相比,有益效果是:
1.本发明不依赖室外高精度GPS提供的精准全局定位信息,只需要激光雷达以及一个较为稳定的IMU,在室内或室外均可完成所有的标定工作,适用性广、受限性低;
2.本发明利用激光雷达的上下文信息用于标定,相较于传统的标定方法:基于人工测量法或雷达某时刻下的帧信息,本方法则利用了更多的边际与上下文信息,将语义点云地图的构建与路径优化融入到外参标定过程中,可获取高精度的标定结果;
3.本发明的标定方法具有很好的鲁棒性,在一定程度的雷达视野遮挡、共同视野很小或没有的情况下,本方法仍可提供一个良好精准的标定结果。
附图说明
图1是本发明标定系统的结构示意图。
图2是本发明标定方法的流程图。
具体实施方式
附图仅用于示例性说明,不能理解为对本发明的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本发明的限制。
实施例1:
如图1所示,一种多组激光雷达外参标定系统,包括:
点云分割模块:激光雷达的输出是三维激光点云,其中包含了外界环境的整体描述,包括车体周围的路面环境、障碍物等;点云分割模块将三维激光点云分割为多个类别,过滤噪声点,将分割之后的语义点云输出到地图构建模块与地面检测的点云匹配模块中;
地面检测的点云匹配模块:用于构建基于地面的约束,使激光点云匹配可以开展在一个相对稳定的平面上,点云匹配采用语义ICP(迭代最近点)匹配算法算法,选用当前帧与周围点云地图配准策略,匹配过程利用点云分割的类别信息,同时获取IMU提供的位姿信息作为约束提高匹配准确度与效率,输出注册点云的6自由度姿态估计,将此输出到地图构建模块;
地图构建模块:用于获得分割后的点云以及每一帧点云前后的6自由度姿态估计,在场景地图构建模块将新增的点云图与附近点云地图进行细粒度配准,配准过程采用图优化的方式优化构建点云地图,并保存特征点云的匹配序列,后续新增的点云经过语义ICP的闭环检测算法,可消除前段时间内的累计漂移误差,输出优化的点云地图与点云的匹配序列即路径到信息融合模块;
信息融合模块:采用多线程的方式,分别接收来自地图构建模块的多组语义点云地图与特征点云路径,整合多个激光雷达的信息;首先求解多组语义点云图与路径间的变换关系,对语义点云地图进行配准,获得点云地图之间的变换关系,在该变换关系上采取遗传算法对特征点云的路径进行拟合,将多组辅助雷达到主雷达之间的标定结果输出到路径优化模块;
路径优化模块:用于获取外参的初值,将外参作用到初始采集的数据中,每个雷达都进行坐标系转化,然后在主雷达的全局语义地图中分别注册语义点云,获取特征点云的路径,利用遗传算法对路径进行拟合获取更进一步的外参偏移量;以此往复多次迭代,直至多次外参变化量小于某阈值或达到迭代最大次数,最终输出多组激光雷达的外参。
传统的激光雷达点云注册方法依靠GPS定位信息或车辆轮式里程计,前者需要高精度GPS与良好的室外环境,后者对里程计积分会导致累计误差,本发明则利用激光雷达一段时间内的上下文信息,计算激光雷达前后帧之间的点运动关系,加上IMU提供的位姿去除累计的雷达运动畸变,构建区域内的场景地图,即可完成多组激光雷达外参标定工作。
实施例2
如图2所示,一种多组激光雷达外参标定方法,具体包括以下步骤:
S1.车体固定好激光雷达,IMU置于车体中心,多组激光雷达之间的位置关系属于刚体变换,选取其中一个激光雷达作为主雷达,其他都设为辅助雷达,标定主雷达与IMU的外参;
S2.选取室内外合适环境,采集多组激光雷达与IMU的数据;
S3.离线启动点云分割模块,将激光点云信息发布到地面检测的点云匹配模块,构建地面约束与采用语义ICP算法,输出注册点云的6自由度姿态估计;
S4.获得语义点云与注册点云的6自由度姿态估计,在地图构建模块采用图优化的方式优化构建点云地图,并保存特征点云的路径,对于主雷达的点云地图添加IMU的位姿约束,提高主雷达语义地图的精确度;
S5.手动大致测出主雷达到其他雷达之间的偏移,在信息融合模块中利用该手动测量的初值,对每个辅助雷达的点云地图与主雷达地图进行语义ICP匹配,将配准的结果作为初值,采取遗传算法对多组特征点云的路径进行拟合,这一步可以获得初步的外参标定结果;
S6.利用步骤S5的标定结果,对辅助雷达的数据分别做一次刚体运动变换,将各自的坐标系都转到主激光雷达下;
S7.在主雷达的语义点云地图中,对每个激光雷达都进行各自的点云注册的姿态估计,获取每个激光雷达的特征点云路径,对此路径采用遗传算法进行细粒度的拟合,获得更精确的外参标定结果;
S8.重复步骤S6与步骤S7,直至两次外参变化量小于给定的阈值,或到达给定的迭代次数,最终获得多个辅助雷达到主雷达之间的外参。
为了更好的标定多组激光雷达的外参,首先需要保证多个激光雷达之间是刚体变换,即它们之间不会因为车体的移动而产生比较大的抖动或位置偏移。尽管本发明的标定方法可容纳一定程度的雷达视野遮挡、共同视野很小或没有的情况,但是最好还是保证每个雷达都可以拥有大于180度的视野范围。为了优化地面检测的点云匹配模块的结果,实验的环境应选取在平整的路面。由于对与三维激光雷达进行语义分割并且采用语义ICP匹配,这些步骤需要一定的计算量,因此本发明需要采取离线标定的方式,为了更可靠地计算多组雷达之间的外参。本发明在装配Velodyne 16线激光雷达、Velodyne 32线激光雷达、Robosense 16线激光雷达的情况下都可获得良好精准的标定结果。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (5)
1.一种多组激光雷达外参标定系统,其特征在于,包括:
点云分割模块:激光雷达的输出是三维激光点云,其中包含了外界环境的整体描述,点云分割模块将三维激光点云分割为多个类别,过滤噪声点,将分割之后的语义点云输出到地图构建模块与地面检测的点云匹配模块中;
地面检测的点云匹配模块:用于构建基于地面的约束,使激光点云匹配可以开展在一个相对稳定的平面上,点云匹配采用语义ICP匹配算法算法,选用当前帧与周围点云地图配准策略,匹配过程利用点云分割的类别信息,同时获取IMU提供的位姿信息作为约束提高匹配准确度与效率,输出注册点云的6自由度姿态估计,将此输出到地图构建模块;
地图构建模块:用于获得分割后的点云以及每一帧点云前后的6自由度姿态估计,在场景地图构建模块将新增的点云图与附近点云地图进行细粒度配准,配准过程采用图优化的方式优化构建点云地图,并保存特征点云的匹配序列,后续新增的点云经过语义ICP的闭环检测算法,可消除前段时间内的累计漂移误差,输出优化的点云地图与点云的匹配序列即路径到信息融合模块;
信息融合模块:采用多线程的方式,分别接收来自地图构建模块的多组语义点云地图与特征点云路径,整合多个激光雷达的信息;首先求解多组语义点云图与路径间的变换关系,对语义点云地图进行配准,获得点云地图之间的变换关系,在该变换关系上采取遗传算法对特征点云的路径进行拟合,将多组辅助雷达到主雷达之间的标定结果输出到路径优化模块;
路径优化模块:用于获取外参的初值,将外参作用到初始采集的数据中,每个雷达都进行坐标系转化,然后在主雷达的全局语义地图中分别注册语义点云,获取特征点云的路径,利用遗传算法对路径进行拟合获取更进一步的外参偏移量;以此往复多次迭代,直至多次外参变化量小于某阈值或达到迭代最大次数,最终输出多组激光雷达的外参。
2.一种多组激光雷达外参标定方法,其特征在于,应用权利要求1所述的标定系统,具体包括以下步骤:
S1.车体固定好激光雷达,IMU置于车体中心,多组激光雷达之间的位置关系属于刚体变换,选取其中一个激光雷达作为主雷达,其他都设为辅助雷达,标定主雷达与IMU的外参;
S2.选取室内外合适环境,采集多组激光雷达与IMU的数据;
S3.离线启动点云分割模块,将激光点云信息发布到地面检测的点云匹配模块,构建地面约束与采用语义ICP算法,输出注册点云的6自由度姿态估计;
S4.获得语义点云与注册点云的6自由度姿态估计,在地图构建模块采用图优化的方式优化构建点云地图,并保存特征点云的路径,对于主雷达的点云地图添加IMU的位姿约束,提高主雷达语义地图的精确度;
S5.手动大致测出主雷达到其他雷达之间的偏移,在信息融合模块中利用该手动测量的初值,对每个辅助雷达的点云地图与主雷达地图进行语义ICP匹配,将配准的结果作为初值,采取遗传算法对多组特征点云的路径进行拟合,这一步可以获得初步的外参标定结果;
S6.利用步骤S5的标定结果,对辅助雷达的数据分别做一次刚体运动变换,将各自的坐标系都转到主激光雷达下;
S7.在主雷达的语义点云地图中,对每个激光雷达都进行各自的点云注册的姿态估计,获取每个激光雷达的特征点云路径,对此路径采用遗传算法进行细粒度的拟合,获得更精确的外参标定结果;
S8.重复步骤S6与步骤S7,直至两次外参变化量小于给定的阈值,或到达给定的迭代次数,最终获得多个辅助雷达到主雷达之间的外参。
3.根据权利要求2所述的多组激光雷达外参标定方法,其特征在于,在标定过程中利用激光雷达的上下文信息,将语义点云地图的构建与路径优化融入到外参标定过程中。
4.根据权利要求2所述的多组激光雷达外参标定方法,其特征在于,在标定过程中不依赖外部传感器提供的精准全局位姿,只需要激光雷达以及IMU,在室内外均可完成所有的标定工作。
5.根据权利要求2所述的多组激光雷达外参标定方法,其特征在于,所述激光雷达为Velodyne 16线或32线的激光雷达,或Robosense 16线的激光雷达,所述IMU可获取3轴角速度和3轴加速度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911023758.6A CN110596683B (zh) | 2019-10-25 | 2019-10-25 | 一种多组激光雷达外参标定系统及其方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911023758.6A CN110596683B (zh) | 2019-10-25 | 2019-10-25 | 一种多组激光雷达外参标定系统及其方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110596683A true CN110596683A (zh) | 2019-12-20 |
CN110596683B CN110596683B (zh) | 2021-03-26 |
Family
ID=68850423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911023758.6A Active CN110596683B (zh) | 2019-10-25 | 2019-10-25 | 一种多组激光雷达外参标定系统及其方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110596683B (zh) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111025331A (zh) * | 2019-12-25 | 2020-04-17 | 湖北省国土资源研究院(湖北省国土资源厅不动产登记中心) | 一种基于旋转结构的激光雷达建图方法及其扫描系统 |
CN111207774A (zh) * | 2020-01-17 | 2020-05-29 | 山东大学 | 一种用于激光-imu外参标定的方法及系统 |
CN111257853A (zh) * | 2020-01-10 | 2020-06-09 | 清华大学 | 一种基于imu预积分的自动驾驶系统激光雷达在线标定方法 |
CN111398984A (zh) * | 2020-03-22 | 2020-07-10 | 华南理工大学 | 基于扫地机器人的自适应激光雷达点云校正与定位方法 |
CN111413689A (zh) * | 2020-05-07 | 2020-07-14 | 沃行科技(南京)有限公司 | 一种基于rviz实现多激光雷达点云对齐的高效静态标定方法 |
CN111427028A (zh) * | 2020-03-20 | 2020-07-17 | 新石器慧通(北京)科技有限公司 | 参数监测方法、装置、设备和存储介质 |
CN111457902A (zh) * | 2020-04-10 | 2020-07-28 | 东南大学 | 基于激光slam定位的水域测量方法及系统 |
CN111710040A (zh) * | 2020-06-03 | 2020-09-25 | 纵目科技(上海)股份有限公司 | 一种高精度地图的构建方法、系统、终端和存储介质 |
CN112147599A (zh) * | 2019-06-28 | 2020-12-29 | 浙江大学 | 一种基于样条函数的连续时间上3d激光雷达和惯性传感器外参标定方法 |
CN112379353A (zh) * | 2020-11-10 | 2021-02-19 | 上海交通大学 | 多台目标激光雷达间的联合标定方法及系统 |
CN112698306A (zh) * | 2020-12-17 | 2021-04-23 | 上海交通大学宁波人工智能研究院 | 一种多激光雷达结合相机解决地图构建盲区的系统和方法 |
CN112873280A (zh) * | 2021-01-11 | 2021-06-01 | 上海思岚科技有限公司 | 一种用于机器人的传感器的标定方法及设备 |
CN113219440A (zh) * | 2021-04-22 | 2021-08-06 | 电子科技大学 | 一种基于轮式里程计的激光雷达点云数据校正方法 |
CN113238554A (zh) * | 2021-05-08 | 2021-08-10 | 武汉科技大学 | 一种基于激光与视觉融合slam技术的室内导航方法及系统 |
CN113269827A (zh) * | 2020-02-14 | 2021-08-17 | 北京京东乾石科技有限公司 | 一种实现自动化标定的方法和计算装置 |
CN113269840A (zh) * | 2021-05-27 | 2021-08-17 | 深圳一清创新科技有限公司 | 一种用于相机和多激光雷达的联合标定方法及电子设备 |
CN113589263A (zh) * | 2021-08-06 | 2021-11-02 | 北京易航远智科技有限公司 | 一种多个同源传感器联合标定方法及系统 |
CN113640778A (zh) * | 2021-08-12 | 2021-11-12 | 东风悦享科技有限公司 | 一种基于无重叠视场的多激光雷达的联合标定方法 |
CN113776544A (zh) * | 2020-06-10 | 2021-12-10 | 杭州海康威视数字技术股份有限公司 | 一种点云地图更新方法、装置、电子设备及定位系统 |
WO2021253193A1 (zh) * | 2020-06-15 | 2021-12-23 | 深圳市大疆创新科技有限公司 | 多组激光雷达外参的标定方法、标定装置和计算机存储介质 |
CN113947639A (zh) * | 2021-10-27 | 2022-01-18 | 北京斯年智驾科技有限公司 | 基于多雷达点云线特征的自适应在线估计标定系统及方法 |
CN114049385A (zh) * | 2021-10-15 | 2022-02-15 | 哈尔滨工业大学(威海) | 基于自适应配准的多激光雷达自主建网系统、方法、终端 |
CN114152937A (zh) * | 2022-02-09 | 2022-03-08 | 西南科技大学 | 一种旋转激光雷达的外参标定方法 |
CN114152935A (zh) * | 2021-11-19 | 2022-03-08 | 苏州一径科技有限公司 | 一种雷达外参标定精度的评估方法、装置及设备 |
CN114252868A (zh) * | 2020-09-24 | 2022-03-29 | 北京万集科技股份有限公司 | 激光雷达的标定方法、装置、计算机设备和存储介质 |
CN115079143A (zh) * | 2022-06-14 | 2022-09-20 | 北京航空航天大学 | 一种用于双桥转向矿卡的多雷达外参快速标定方法及装置 |
CN115236644A (zh) * | 2022-07-26 | 2022-10-25 | 广州文远知行科技有限公司 | 一种激光雷达外参标定方法、装置、设备和存储介质 |
WO2022246826A1 (zh) * | 2021-05-28 | 2022-12-01 | 深圳市大疆创新科技有限公司 | 外参标定方法、装置、可移动平台和存储介质 |
CN115993089A (zh) * | 2022-11-10 | 2023-04-21 | 山东大学 | 基于pl-icp的在线四舵轮agv内外参标定方法 |
WO2023159668A1 (en) * | 2022-02-25 | 2023-08-31 | Xiamen University | System and method of capturing large scale scenes using wearable inertial measurement devices and light detection and ranging sensors |
CN117129979A (zh) * | 2023-10-25 | 2023-11-28 | 深圳市迅龙软件有限公司 | 一种基于机器学习模型的激光雷达标定方法及系统 |
CN117406185A (zh) * | 2023-12-14 | 2024-01-16 | 深圳市其域创新科技有限公司 | 雷达与相机间的外参标定方法、装置、设备及存储介质 |
CN118131198A (zh) * | 2024-04-01 | 2024-06-04 | 湖南工程学院 | 一种激光雷达外参的标定方法和系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106405555A (zh) * | 2016-09-23 | 2017-02-15 | 百度在线网络技术(北京)有限公司 | 用于车载雷达系统的障碍物检测方法和装置 |
JP2019023017A (ja) * | 2017-07-24 | 2019-02-14 | 株式会社明電舎 | 車体の傾き推定装置 |
CN109557525A (zh) * | 2019-01-31 | 2019-04-02 | 浙江工业大学 | 一种激光雷达式车辆外廓尺寸测量仪的自动标定方法 |
CN109917419A (zh) * | 2019-04-12 | 2019-06-21 | 中山大学 | 一种基于激光雷达与图像的深度填充密集系统及方法 |
CN110009739A (zh) * | 2019-01-29 | 2019-07-12 | 浙江省北大信息技术高等研究院 | 移动摄像机的数字视网膜的运动特征的提取与编码方法 |
US10386480B1 (en) * | 2016-02-02 | 2019-08-20 | Waymo Llc | Radar based mapping and localization for autonomous vehicles |
CN106872963B (zh) * | 2017-03-31 | 2019-08-27 | 厦门大学 | 一种多组多线激光雷达的自动标定算法 |
CN110221275A (zh) * | 2019-05-21 | 2019-09-10 | 菜鸟智能物流控股有限公司 | 一种激光雷达与相机之间的标定方法和装置 |
CN110349221A (zh) * | 2019-07-16 | 2019-10-18 | 北京航空航天大学 | 一种三维激光雷达与双目可见光传感器的融合标定方法 |
CN110361010A (zh) * | 2019-08-13 | 2019-10-22 | 中山大学 | 一种基于占据栅格地图且结合imu的移动机器人定位方法 |
-
2019
- 2019-10-25 CN CN201911023758.6A patent/CN110596683B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10386480B1 (en) * | 2016-02-02 | 2019-08-20 | Waymo Llc | Radar based mapping and localization for autonomous vehicles |
CN106405555A (zh) * | 2016-09-23 | 2017-02-15 | 百度在线网络技术(北京)有限公司 | 用于车载雷达系统的障碍物检测方法和装置 |
CN106872963B (zh) * | 2017-03-31 | 2019-08-27 | 厦门大学 | 一种多组多线激光雷达的自动标定算法 |
JP2019023017A (ja) * | 2017-07-24 | 2019-02-14 | 株式会社明電舎 | 車体の傾き推定装置 |
CN110009739A (zh) * | 2019-01-29 | 2019-07-12 | 浙江省北大信息技术高等研究院 | 移动摄像机的数字视网膜的运动特征的提取与编码方法 |
CN109557525A (zh) * | 2019-01-31 | 2019-04-02 | 浙江工业大学 | 一种激光雷达式车辆外廓尺寸测量仪的自动标定方法 |
CN109917419A (zh) * | 2019-04-12 | 2019-06-21 | 中山大学 | 一种基于激光雷达与图像的深度填充密集系统及方法 |
CN110221275A (zh) * | 2019-05-21 | 2019-09-10 | 菜鸟智能物流控股有限公司 | 一种激光雷达与相机之间的标定方法和装置 |
CN110349221A (zh) * | 2019-07-16 | 2019-10-18 | 北京航空航天大学 | 一种三维激光雷达与双目可见光传感器的融合标定方法 |
CN110361010A (zh) * | 2019-08-13 | 2019-10-22 | 中山大学 | 一种基于占据栅格地图且结合imu的移动机器人定位方法 |
Non-Patent Citations (2)
Title |
---|
CARLOS GUINDEL* ET.AL: "《Automatic Extrinsic Calibration for Lidar-Stereo Vehicle Sensor Setups》", 《2017 IEEE》 * |
杨超 等: "《端对端平行无人矿山系统及其关键技术》", 《智能科学与技术学报》 * |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112147599A (zh) * | 2019-06-28 | 2020-12-29 | 浙江大学 | 一种基于样条函数的连续时间上3d激光雷达和惯性传感器外参标定方法 |
CN112147599B (zh) * | 2019-06-28 | 2022-05-20 | 浙江大学 | 基于样条函数的3d激光雷达和惯性传感器外参标定方法 |
CN111025331A (zh) * | 2019-12-25 | 2020-04-17 | 湖北省国土资源研究院(湖北省国土资源厅不动产登记中心) | 一种基于旋转结构的激光雷达建图方法及其扫描系统 |
CN111257853A (zh) * | 2020-01-10 | 2020-06-09 | 清华大学 | 一种基于imu预积分的自动驾驶系统激光雷达在线标定方法 |
CN111207774A (zh) * | 2020-01-17 | 2020-05-29 | 山东大学 | 一种用于激光-imu外参标定的方法及系统 |
CN113269827B (zh) * | 2020-02-14 | 2024-04-05 | 北京京东乾石科技有限公司 | 一种实现自动化标定的方法和计算装置 |
CN113269827A (zh) * | 2020-02-14 | 2021-08-17 | 北京京东乾石科技有限公司 | 一种实现自动化标定的方法和计算装置 |
CN111427028B (zh) * | 2020-03-20 | 2022-03-25 | 新石器慧通(北京)科技有限公司 | 参数监测方法、装置、设备和存储介质 |
CN111427028A (zh) * | 2020-03-20 | 2020-07-17 | 新石器慧通(北京)科技有限公司 | 参数监测方法、装置、设备和存储介质 |
CN111398984A (zh) * | 2020-03-22 | 2020-07-10 | 华南理工大学 | 基于扫地机器人的自适应激光雷达点云校正与定位方法 |
CN111398984B (zh) * | 2020-03-22 | 2022-03-29 | 华南理工大学 | 基于扫地机器人的自适应激光雷达点云校正与定位方法 |
CN111457902A (zh) * | 2020-04-10 | 2020-07-28 | 东南大学 | 基于激光slam定位的水域测量方法及系统 |
CN111413689B (zh) * | 2020-05-07 | 2023-04-07 | 沃行科技(南京)有限公司 | 一种基于rviz实现多激光雷达点云对齐的高效静态标定方法 |
CN111413689A (zh) * | 2020-05-07 | 2020-07-14 | 沃行科技(南京)有限公司 | 一种基于rviz实现多激光雷达点云对齐的高效静态标定方法 |
CN111710040B (zh) * | 2020-06-03 | 2024-04-09 | 纵目科技(上海)股份有限公司 | 一种高精度地图的构建方法、系统、终端和存储介质 |
CN111710040A (zh) * | 2020-06-03 | 2020-09-25 | 纵目科技(上海)股份有限公司 | 一种高精度地图的构建方法、系统、终端和存储介质 |
CN113776544A (zh) * | 2020-06-10 | 2021-12-10 | 杭州海康威视数字技术股份有限公司 | 一种点云地图更新方法、装置、电子设备及定位系统 |
CN114080547A (zh) * | 2020-06-15 | 2022-02-22 | 深圳市大疆创新科技有限公司 | 多组激光雷达外参的标定方法、标定装置和计算机存储介质 |
WO2021253193A1 (zh) * | 2020-06-15 | 2021-12-23 | 深圳市大疆创新科技有限公司 | 多组激光雷达外参的标定方法、标定装置和计算机存储介质 |
CN114252868A (zh) * | 2020-09-24 | 2022-03-29 | 北京万集科技股份有限公司 | 激光雷达的标定方法、装置、计算机设备和存储介质 |
CN112379353A (zh) * | 2020-11-10 | 2021-02-19 | 上海交通大学 | 多台目标激光雷达间的联合标定方法及系统 |
CN112698306A (zh) * | 2020-12-17 | 2021-04-23 | 上海交通大学宁波人工智能研究院 | 一种多激光雷达结合相机解决地图构建盲区的系统和方法 |
CN112873280A (zh) * | 2021-01-11 | 2021-06-01 | 上海思岚科技有限公司 | 一种用于机器人的传感器的标定方法及设备 |
CN113219440A (zh) * | 2021-04-22 | 2021-08-06 | 电子科技大学 | 一种基于轮式里程计的激光雷达点云数据校正方法 |
CN113238554A (zh) * | 2021-05-08 | 2021-08-10 | 武汉科技大学 | 一种基于激光与视觉融合slam技术的室内导航方法及系统 |
CN113269840A (zh) * | 2021-05-27 | 2021-08-17 | 深圳一清创新科技有限公司 | 一种用于相机和多激光雷达的联合标定方法及电子设备 |
WO2022246826A1 (zh) * | 2021-05-28 | 2022-12-01 | 深圳市大疆创新科技有限公司 | 外参标定方法、装置、可移动平台和存储介质 |
CN113589263B (zh) * | 2021-08-06 | 2023-10-31 | 北京易航远智科技有限公司 | 一种多个同源传感器联合标定方法及系统 |
CN113589263A (zh) * | 2021-08-06 | 2021-11-02 | 北京易航远智科技有限公司 | 一种多个同源传感器联合标定方法及系统 |
CN113640778A (zh) * | 2021-08-12 | 2021-11-12 | 东风悦享科技有限公司 | 一种基于无重叠视场的多激光雷达的联合标定方法 |
CN114049385A (zh) * | 2021-10-15 | 2022-02-15 | 哈尔滨工业大学(威海) | 基于自适应配准的多激光雷达自主建网系统、方法、终端 |
CN113947639A (zh) * | 2021-10-27 | 2022-01-18 | 北京斯年智驾科技有限公司 | 基于多雷达点云线特征的自适应在线估计标定系统及方法 |
CN113947639B (zh) * | 2021-10-27 | 2023-08-18 | 北京斯年智驾科技有限公司 | 基于多雷达点云线特征的自适应在线估计标定系统及方法 |
CN114152935A (zh) * | 2021-11-19 | 2022-03-08 | 苏州一径科技有限公司 | 一种雷达外参标定精度的评估方法、装置及设备 |
CN114152937A (zh) * | 2022-02-09 | 2022-03-08 | 西南科技大学 | 一种旋转激光雷达的外参标定方法 |
WO2023159668A1 (en) * | 2022-02-25 | 2023-08-31 | Xiamen University | System and method of capturing large scale scenes using wearable inertial measurement devices and light detection and ranging sensors |
CN115079143A (zh) * | 2022-06-14 | 2022-09-20 | 北京航空航天大学 | 一种用于双桥转向矿卡的多雷达外参快速标定方法及装置 |
CN115079143B (zh) * | 2022-06-14 | 2024-04-26 | 北京航空航天大学 | 一种用于双桥转向矿卡的多雷达外参快速标定方法及装置 |
CN115236644A (zh) * | 2022-07-26 | 2022-10-25 | 广州文远知行科技有限公司 | 一种激光雷达外参标定方法、装置、设备和存储介质 |
CN115993089A (zh) * | 2022-11-10 | 2023-04-21 | 山东大学 | 基于pl-icp的在线四舵轮agv内外参标定方法 |
CN115993089B (zh) * | 2022-11-10 | 2023-08-15 | 山东大学 | 基于pl-icp的在线四舵轮agv内外参标定方法 |
CN117129979B (zh) * | 2023-10-25 | 2024-02-13 | 深圳市迅龙软件有限公司 | 一种基于机器学习模型的激光雷达标定方法及系统 |
CN117129979A (zh) * | 2023-10-25 | 2023-11-28 | 深圳市迅龙软件有限公司 | 一种基于机器学习模型的激光雷达标定方法及系统 |
CN117406185B (zh) * | 2023-12-14 | 2024-02-23 | 深圳市其域创新科技有限公司 | 雷达与相机间的外参标定方法、装置、设备及存储介质 |
CN117406185A (zh) * | 2023-12-14 | 2024-01-16 | 深圳市其域创新科技有限公司 | 雷达与相机间的外参标定方法、装置、设备及存储介质 |
CN118131198A (zh) * | 2024-04-01 | 2024-06-04 | 湖南工程学院 | 一种激光雷达外参的标定方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110596683B (zh) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110596683B (zh) | 一种多组激光雷达外参标定系统及其方法 | |
CN109696663B (zh) | 一种车载三维激光雷达标定方法和系统 | |
CN107246868B (zh) | 一种协同导航定位系统及导航定位方法 | |
CN109341706B (zh) | 一种面向无人驾驶汽车的多特征融合地图的制作方法 | |
CN113269837B (zh) | 一种适用于复杂三维环境的定位导航方法 | |
CN110859044B (zh) | 自然场景中的集成传感器校准 | |
CN110702091B (zh) | 一种沿地铁轨道移动机器人的高精度定位方法 | |
CN112987065B (zh) | 一种融合多传感器的手持式slam装置及其控制方法 | |
CN113074727A (zh) | 基于蓝牙与slam的室内定位导航装置及其方法 | |
CN110307836B (zh) | 一种用于无人清扫车辆贴边清扫的精确定位方法 | |
CN113358112B (zh) | 一种地图构建方法及一种激光惯性里程计 | |
CN108426582B (zh) | 行人室内三维地图匹配方法 | |
CN111025366B (zh) | 基于ins及gnss的网格slam的导航系统及方法 | |
CN113947639B (zh) | 基于多雷达点云线特征的自适应在线估计标定系统及方法 | |
CN111862215B (zh) | 一种计算机设备定位方法、装置、计算机设备和存储介质 | |
CN115027482B (zh) | 智能驾驶中的融合定位方法 | |
CN114119886A (zh) | 高精地图点云重建方法、装置、车辆、设备和存储介质 | |
CN115272596A (zh) | 一种面向单调无纹理大场景的多传感器融合slam方法 | |
CN110579754A (zh) | 用于确定车辆的激光雷达与车辆其他的传感器的外参数的方法 | |
CN111207753A (zh) | 一种多玻璃隔断环境下的同时定位与建图的方法 | |
CN116608873A (zh) | 一种自动驾驶车辆的多传感器融合定位建图方法 | |
CN116452763A (zh) | 一种基于误差卡尔曼滤波和因子图的三维点云地图构建方法 | |
CN117490683A (zh) | 一种井下隧道多传感器融合算法的定位建图方法 | |
CN113673386B (zh) | 一种交通信号灯在先验地图中的标注方法 | |
CN113155126B (zh) | 一种基于视觉导航的多机协同目标高精度定位系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |