CN110590162B - 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法 - Google Patents

一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法 Download PDF

Info

Publication number
CN110590162B
CN110590162B CN201911012393.7A CN201911012393A CN110590162B CN 110590162 B CN110590162 B CN 110590162B CN 201911012393 A CN201911012393 A CN 201911012393A CN 110590162 B CN110590162 B CN 110590162B
Authority
CN
China
Prior art keywords
light
transparent glass
optical storage
glass ceramic
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911012393.7A
Other languages
English (en)
Other versions
CN110590162A (zh
Inventor
林世盛
林航
徐桔
王元生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201911012393.7A priority Critical patent/CN110590162B/zh
Publication of CN110590162A publication Critical patent/CN110590162A/zh
Application granted granted Critical
Publication of CN110590162B publication Critical patent/CN110590162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提出一种LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的组分及其制备方法,目的在于制备出结构稳定,可用于实现紫外光信息写入和近红外激光信息读取的多维光存储透明玻璃陶瓷材料,涉及发光材料领域。该材料具有良好的光激励性能和缺陷性质,并且制备工艺简单、成本低廉。利用其透明的特点采用读取和写入光聚焦于材料不同深度的方式可使光存储模式由二维表面存储拓展到空间三维存储;利用其光激励读取出的510纳米发射光强度/625纳米发射光强度随前驱玻璃的热处理时间变化而宽幅可调的特点可实现波长维;利用其读取出的发光强度随254纳米紫外写入光功率的增加而增加的特点可实现强度维。

Description

一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法
技术领域
本发明涉及固体发光材料领域,尤其是涉及一种能够应用于多维光存储的透明玻璃陶瓷及其制备。
背景技术
如今,人类文明的传承依赖于大量文字、图片、视频和音频等信息的存储,需存储的信息量日渐庞大,传统存储行业不堪重负。这引发了研究人员对新型存储材料及存储模式的探索。一种特殊的余辉材料—光激励材料,自发现之初便因其对光信息的可擦写性和对读取光的快速响应而受到了人们的广泛关注。该材料可以利用高能量光子使载流子被激发并存储于材料的深缺陷能级中,而后通过低能量光子的激励使束缚的载流子得以释放,并于发光中心产生发光。借助于此,利用受高能量光照射过的点位,随后在低能量光激励下会产生光信号,可代表二进制数据中的“1”,反之可代表“0”,能够实现对于光信息的数字化编码和解码。然而,目前的光激励材料(如金属纳米晶、氧化石墨烯、半导体量子点和稀土掺杂纳米晶)尚存在诸多缺点,例如制备过程的高成本、高毒性、低产率。并且,这些材料均需分散于有机基体中才能构成块状材料,带来了物理和化学稳定性差的问题,直接影响了这些材料在激光长期、反复照射下的使用寿命。同时,如今的二维表面光存储模式的存储容量很难突破1TB的瓶颈,制约了光存储技术的进一步发展。
本发明为了解决上述问题,制备了结构稳定、具有合适缺陷性质的LiGa5O8:Mn2+纳米晶透明玻璃陶瓷,该材料能够实现紫外光信息写入和近红外激光信息读取的多维光存储(空间三维、波长维、强度维)。
发明内容
本发明提出一种LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的组分及其制备方法,目的在于制备出结构稳定,可用于实现紫外光信息写入和近红外激光信息读取的多维光存储透明玻璃陶瓷材料。
本发明采用如下制备工艺:
(1)前驱玻璃基体的设计,该玻璃基体组分含量如下:50-71mol%SiO2;2-15mol%Al2O3;1-10mol%Na2O;10-20mol%Ga2O3;5-15mol%Li2O3;0.01-1.0mol%MnCO3,上述组分的摩尔总量为100mol%。优选组分为68mol%SiO2;7mol%Al2O3;5mol%Na2O;12.9mol%Ga2O3;7mol%Li2O3;0.1mol%MnCO3
(2)将粉体原料按照一定组分配比研磨均匀后置于坩埚中,放入高温炉中加热到1580-1680℃后保温1-5小时,随后,将玻璃熔液快速倒入300℃预热过的铜模中成形;得到的玻璃块体置于电阻炉中退火以消除内应力,防止其开裂;退火后的玻璃继续在750℃进行热处理,可得到最终的透明玻璃陶瓷材料。
通过FLS920荧光光谱仪测量表明,在254纳米紫外光激发下,LiGa5O8:Mn2+纳米晶透明玻璃陶瓷呈现出随热处理时长不同而逐渐变化的位于625纳米和510纳米的发光峰,归属于不同局域配位环境的Mn2+:4T1(G)→6A1(S),呈现的发光颜色随热处理时长逐渐增加由红光-橙光-黄光-绿光变化。在关闭紫外光后,接着用波长为808纳米近红外激光照射材料,呈现的发光颜色也随热处理时间的不同而宽幅可调,并且随近红外激光循环开闭照射样品有着对应的出现和消失发光的现象。本发明中的透明玻璃陶瓷有着良好的光激励性能和缺陷性质,并且具有制备工艺简单、成本低廉等优势。进一步利用其透明的特点采用读取和写入光聚焦于材料不同深度的方式可以将存储模式从二维表面存储拓展到空间三维存储;利用其光激励读取出的510纳米发射光强度/625纳米发射光强度随前驱玻璃的热处理时间变化而宽幅可调的特点有望实现波长维;利用其读取出的发光强度随254纳米紫外写入光功率的增加而增加的特点可以实现强度维。
本发明中的LiGa5O8:Mn2+纳米晶透明光激励玻璃陶瓷将有可能成为一种实际应用于多维光信息存储的新颖材料。
附图说明
图1:前驱玻璃及系列LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的X射线衍射图
图2:LiGa5O8:Mn2+纳米晶透明玻璃陶瓷透射电镜明场像及选区电子衍射谱
图3:前驱玻璃及系列LiGa5O8:Mn2+纳米晶透明玻璃陶的紫外可见近红外透过谱
图4:前驱玻璃及系列LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的稳态发射谱(激发波长:254纳米)
图5:前驱玻璃及系列LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的光激励发射谱(254纳米紫外光照射5分钟后,再采用808纳米近红外激光激发)
图6:对应图5的CIE色坐标图
图7:254纳米紫外光照射后,808纳米近红外激光循环开闭照射LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的衰减谱(检测510纳米)
图8:不同功率254纳米紫外光照射后,808纳米近红外激光照射LiGa5O8:Mn2+纳米晶透明玻璃陶瓷的光激励衰减谱
图9:对应图8的相对强度—254纳米紫外光功率图
具体实施方式
实施例1:将分析纯的SiO2;Al2O3;Na2CO3;Ga2O3;Li2CO3和纯度为99.99%的MnCO3粉体,按50SiO2;15Al2O3;10Na2CO3;19.99Ga2O3;5Li2CO3;0.01MnCO3(摩尔比)的配比进行精准称量,在玛瑙研钵中研磨半小时以上使其均匀混合后置于氧化铝坩埚中,放入高温炉中加热到1580℃,并保温1小时使之熔融,而后,将熔融液体迅速倒入300℃预热的模具中成形,获得的玻璃放入电阻炉中450℃退火4小时后随炉冷却,以消除玻璃内应力;将退火后的玻璃在750℃加热分别保温5分钟、10分钟、20分钟、30分钟、1小时后,即得到不同热处理时间的系列Mn2+掺杂LiGa5O8纳米晶透明玻璃陶瓷。
实施例2:将分析纯的SiO2;Al2O3;Na2CO3;Ga2O3;Li2CO3和纯度为99.99%的MnCO3粉体,按71SiO2;2Al2O3;1Na2CO3;10Ga2O3;15Li2CO3;1MnCO3(摩尔比)的配比进行精准称量,在玛瑙研钵中研磨半小时以上使其均匀混合后置于氧化铝坩埚中,放入高温炉中加热到1680℃,并保温1小时使之熔融,而后,将熔融液体迅速倒入300℃预热的模具中成形,获得的玻璃放入电阻炉中450℃退火4小时后随炉冷却,以消除玻璃内应力;将退火后的玻璃在750℃加热分别保温5分钟、10分钟、20分钟、30分钟、1小时后,即得到不同热处理时间的系列Mn2+掺杂LiGa5O8纳米晶透明玻璃陶瓷。
实施例3:将分析纯的SiO2;Al2O3;Na2CO3;Ga2O3;Li2CO3和纯度为99.99%的MnCO3粉体,按68SiO2;7Al2O3;5Na2CO3;12.9Ga2O3;7Li2CO3;0.1MnCO3(摩尔比)的配比进行精准称量,在玛瑙研钵中研磨半小时以上使其均匀混合后置于氧化铝坩埚中,放入高温炉中加热到1650℃,并保温1小时使之熔融,而后,将熔融液体迅速倒入300℃预热的模具中成形,获得的玻璃放入电阻炉中450℃退火4小时后随炉冷却,以消除玻璃内应力;将退火后的玻璃在750℃加热分别保温5分钟、10分钟、20分钟、30分钟、1小时后,即得到不同热处理时间的系列Mn2+掺杂LiGa5O8纳米晶透明玻璃陶瓷。
X射线衍射数据表明在热处理后玻璃基体中析出了LiGa5O8晶相(如图1所示)。透射电镜对热处理1h后样品的观察发现此时LiGa5O8的晶粒大小约为7nm,电子衍射谱和LiGa5O8的(311)、(241)、
Figure BDA0002244585070000041
晶面相对应(如图2所示)。紫外可见近红外分光光度计的结果表明前驱玻璃和玻璃陶瓷样品的可见光区域透过率均>70%(如图3所示),可利用样品的透明性采用读取和写入光聚焦于材料不同深度的方式使存储模式由二维表面存储拓展到空间三维存储。用FLS920荧光光谱仪测量254纳米紫外光照射条件下的稳态发射光谱,得到玻璃陶瓷样品有着位于625纳米和510纳米处的发光峰,归属于不同局域配位环境的Mn2+:4T1(G)→6A1(S),其发光颜色随热处理时间变化,宽幅可调(如图4所示)。随后,测量了室温条件下经254纳米紫外光照射后,再使用功率为1.0瓦的808纳米近红外激光照射样品得到的光激励发射光谱,其光激励读取出的510纳米发射光强度/625纳米发射光强度随前驱玻璃的热处理时间的逐渐增加而增加(如图5所示),呈现的光激励发光颜色随热处理时长的增加由红光-橙光-黄光-绿光逐渐变化(如图6所示),可以将不同热处理时间的样品进行拼接或堆叠,实现特定位置探测到的发光波长人为可控,可实现波长维度。随后,在经过254纳米紫外光辐照后,再使用功率为1.0瓦的808纳米近红外激光循环开闭照射样品,同时监测510纳米的光,探测到存在对应近红外激光开闭而出现和消失的发光,体现了本材料对于近红外读取激光的快速响应(如图7所示)。并且,经过不同功率的254纳米紫外写入光照射后,再使用相同功率的808纳米近红外激光照射样品,可观察到随着紫外写入光功率的增加读取出的光强度也逐渐增加(如图8和9所示),证明此材料可实现强度维度。

Claims (1)

1.一种Mn2+掺杂LiGa5O8纳米晶透明玻璃陶瓷的制备方法,其特征在于:将前驱玻璃基体加热到1580-1680℃,形成玻璃熔体,熔体急冷成形、退火后,在750℃热处理,获得玻璃陶瓷;所述前驱玻璃基体的组分含量如下:50-71mol% SiO2;2-15mol% Al2O3;1-10mol% Na2O;10-20mol% Ga2O3;5-15mol% Li2O;0.01-1.0mol% MnCO3,上述组分的摩尔总量为100mol%;所述纳米晶透明玻璃陶瓷的用途为用于多维光存储介质。
CN201911012393.7A 2019-10-23 2019-10-23 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法 Active CN110590162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911012393.7A CN110590162B (zh) 2019-10-23 2019-10-23 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911012393.7A CN110590162B (zh) 2019-10-23 2019-10-23 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN110590162A CN110590162A (zh) 2019-12-20
CN110590162B true CN110590162B (zh) 2022-04-19

Family

ID=68850186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911012393.7A Active CN110590162B (zh) 2019-10-23 2019-10-23 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110590162B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256402B (zh) * 2021-12-18 2022-11-18 武汉理工大学 一种显示用阵列与Micro-LED器件
CN115490515B (zh) * 2022-09-26 2023-07-07 中国科学院福建物质结构研究所 一种自恢复型陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105948511A (zh) * 2016-07-12 2016-09-21 福建江夏学院 一种近红外发光透明玻璃陶瓷及其制备方法
CN106186701B (zh) * 2016-07-08 2019-05-14 华南理工大学 一种具有力致发光性能的微晶玻璃及其制备方法
CN110054415A (zh) * 2019-03-26 2019-07-26 宁波大学 一种基于Yb-Mn二聚体的上转换发光纳米玻璃陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002530A1 (fr) * 2013-02-28 2014-08-29 Centre Nat Rech Scient Verres et vitroceramiques nanostructures transparents dans le visible et l'infrarouge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106186701B (zh) * 2016-07-08 2019-05-14 华南理工大学 一种具有力致发光性能的微晶玻璃及其制备方法
CN105948511A (zh) * 2016-07-12 2016-09-21 福建江夏学院 一种近红外发光透明玻璃陶瓷及其制备方法
CN110054415A (zh) * 2019-03-26 2019-07-26 宁波大学 一种基于Yb-Mn二聚体的上转换发光纳米玻璃陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mn2+/Mn4+离子激活发光材料的合成及光学性能研究;胡桃;《中国优秀硕士学位论文全文数据库》;20190930(第9期);第24-25页 *
福建物构所玻璃陶瓷基可擦写多维度光信息存储介质研究取得进展;新型;《化工新型材料》;20190731(第7期);第247页 *

Also Published As

Publication number Publication date
CN110590162A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
Yuan et al. CsPbBr 3: x Eu 3+ perovskite QD borosilicate glass: a new member of the luminescent material family
Atabaev et al. Color-tunable properties of Eu 3+-and Dy 3+-codoped Y 2 O 3 phosphor particles
Xiao et al. A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic
Song et al. RGB tricolor and multimodal dynamic optical information encryption and decoding for anti-counterfeiting applications
CN113004892B (zh) 基于铈、铕激活硅铝酸盐的发光材料及制备方法和应用
CN110590162B (zh) 一种用于多维光存储的纳米晶透明玻璃陶瓷及其制备方法
Wang et al. Glass-limited Yb/Er: NaLuF 4 nanocrystals: reversible hexagonal-to-cubic phase transition and anti-counterfeiting
Jiao et al. Enhancing upconversion luminescence and thermal sensing properties of Er/Yb co‐doped oxysulfide core‐shell nanocrystals
Morad et al. Crystallization‐induced valence state change of Mn2+→ Mn4+ in LiNaGe4O9 glass‐ceramics
Santos et al. Laser sintering and photoluminescence study of Tb-doped yttrium aluminum garnet ceramics
CN110511754B (zh) 一种钽酸盐基光激励发光材料及其制备方法
CN112080798A (zh) 一种近零热猝灭氟化物荧光单晶材料及其制备方法
Qiang et al. ZnAl2O4: Cr3+ translucent ceramic phosphor with thermally stable far-red luminescence
Wang et al. Color-tunable photoluminescence and persistent luminescence in a single LiYGeO4: Tb3+ phosphor
Zhang et al. Effects of coordination field environment on the fluorescence properties of transparent ZnGa2O4 glass-ceramics doped with Mn2+ and Cr3+ ions
Makhija et al. Enhanced luminescence of Dy-activated in-situ synthesized LaAlO3/MgO nanocomposites for cool wLED and latent finger printing applications
Kuznetsova et al. Yellow-white emitting phosphor-in-glass with LuAG: Ce and embedded CdS quantum dots
Rani et al. Optical properties of TAG co-doped with Ce and Eu
Głuchowski et al. “Frozen” pressure effect in GGAG: Ce3+ white light emitting nanoceramics
Sharma et al. Red upconversion luminescence and paramagnetism in Er/Yb doped SnO 2
CN109704585A (zh) 一种用于光信息存储的玻璃陶瓷及其制备方法
Liu et al. Effect of Pr3+ doping concentration on microstructure and optical properties of transparent BaF2 ceramics
Shi et al. Temperature characteristics of NaY (MoO4) 2: Sm3+ and effect of Li+ doping on luminescent properties of phosphors
Wu et al. Novel Te doping in Y2O3–Al2O3 system phosphor
Verma et al. Structural and photoluminescent features of Eu3+ activated single‐phase niobate phosphor for lighting applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant