CN110589034A - 一种可回收高速飞行火箭及回收方法 - Google Patents

一种可回收高速飞行火箭及回收方法 Download PDF

Info

Publication number
CN110589034A
CN110589034A CN201910913959.7A CN201910913959A CN110589034A CN 110589034 A CN110589034 A CN 110589034A CN 201910913959 A CN201910913959 A CN 201910913959A CN 110589034 A CN110589034 A CN 110589034A
Authority
CN
China
Prior art keywords
speed
cabin
parachute
rocket
recoverable high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910913959.7A
Other languages
English (en)
Other versions
CN110589034B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lingkong Tianxing Technology Co Ltd
Original Assignee
Beijing Lingkong Tianxing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lingkong Tianxing Technology Co Ltd filed Critical Beijing Lingkong Tianxing Technology Co Ltd
Priority to CN201910913959.7A priority Critical patent/CN110589034B/zh
Publication of CN110589034A publication Critical patent/CN110589034A/zh
Application granted granted Critical
Publication of CN110589034B publication Critical patent/CN110589034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/22Load suspension
    • B64D17/30Harnesses
    • B64D17/32Construction of quick-release box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/64Deployment by extractor parachute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/48Range-reducing, destabilising or braking arrangements, e.g. impact-braking arrangements; Fall-retarding means, e.g. balloons, rockets for braking or fall-retarding
    • F42B10/58Range-reducing, destabilising or braking arrangements, e.g. impact-braking arrangements; Fall-retarding means, e.g. balloons, rockets for braking or fall-retarding of rotochute type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Toys (AREA)

Abstract

一种可回收高速飞行火箭,属于可重复使用火箭技术领域,包括任务载荷舱1、过渡段2、火箭箭体3、机舱结构6、机翼8、尾段9、空气舵系统10、燃气舵系统11、着陆缓冲装置12、降落伞系统、气囊系统;火箭箭体包括回收舱4和主发动机5;过渡段2用于连接任务载荷舱1和回收舱4;回收舱4与主发动机5连接;机舱结构6与主发动机5连接;机翼8安装在机舱结构6的两侧;尾段9同时与主发动机5和机舱结构6连接;空气舵系统10和燃气舵系统11均用于飞行控制;降落伞系统用于亚声速段的减速;气囊系统和着陆缓冲装置12均用于着陆触地。本发明给出了滑翔减速、降落伞减速稳降、气囊配合缓冲装置12的精确无损回收方法。

Description

一种可回收高速飞行火箭及回收方法
技术领域
本发明涉及一种可回收高速飞行火箭及回收方法,属于可重复使用火箭技术领域。
背景技术
随着国内外航天领域的不断发展,如何降低航天发射费用是整个航天产业面临的主要挑战之一,尤其是对于一些低空高速飞行试验发射,实现运载器及其有效载荷的回收和重复使用是降低成本的重要措施。上世纪中开始,世界各航天大国持续开展可重复使用航天运输系统的研究和试验。从构型技术特点上看,可重复使用运载器可以分为水平回收重复使用运载器和垂直回收重复使用运载火箭两大类。开展垂直回收重复使用运载火箭研究的前提是开展运载火箭子级回收技术研究,例如SpaceX公司的“猎鹰-9R”火箭,采用了垂直返回的方式;俄罗斯提出的“贝加尔号”助推器也采用了带翼飞回式。航天飞机是采用水平滑跑回收的水平回收方式。
垂直回收火箭系统需要具有可变推力的发动机,即液体发动机才能实现回收。液体发动机的使用,造成火箭系统的复杂程度增加很多,且其使用可靠性也相对会降低。液体火箭的重复使用需要进行大量的清理和检测确认工作流程,效费比较低;水平滑跑回收方式需要有配套的地面跑到才能实现回收,并且需要配有复杂的起落架等类似的水平着陆滑跑系统。更重要的是,目前已有的可回收火箭系统,都不能实现低空高速飞行试验的要求。
发明内容
本方案要解决的技术问题是:克服现有技术条件的不足,提供了一种可回收高速飞行火箭及回收方法,可回收高速飞行火箭包括任务载荷舱、过渡段、火箭箭体、机舱结构、机翼、尾段、空气舵系统、燃气舵系统、着陆缓冲装置、降落伞系统、气囊系统;火箭箭体包括回收舱和主发动机;过渡段用于连接任务载荷舱和回收舱;回收舱与主发动机连接;机舱结构与主发动机连接;机翼安装在机舱结构的两侧;尾段同时与主发动机和机舱结构连接;空气舵系统和燃气舵系统均用于飞行控制;降落伞系统用于亚声速段的减速;气囊系统和着陆缓冲装置均用于着陆触地。本发明给出了滑翔减速、降落伞减速稳降、气囊配合缓冲装置的精确无损回收方法。
本发明目的通过以下技术方案予以实现:
一种可回收高速飞行火箭,包括任务载荷舱、过渡段、火箭箭体、机舱结构、机翼、尾段、空气舵系统、燃气舵系统、着陆缓冲装置、降落伞系统、气囊系统;所述火箭箭体包括回收舱和主发动机;
所述过渡段用于连接所述任务载荷舱和所述回收舱;所述回收舱与所述主发动机连接;所述机舱结构与所述主发动机连接;所述机翼安装在所述机舱结构的两侧;所述尾段同时与所述主发动机和机舱结构连接;所述空气舵系统和燃气舵系统均用于飞行控制;
所述降落伞系统用于所述可回收高速飞行火箭在亚声速段的减速;所述气囊系统和着陆缓冲装置均用于所述可回收高速飞行火箭的着陆触地。
优选的,还包括连接机构,所述机舱结构通过所述连接机构安装在所述主发动机上。
优选的,所述任务载荷舱为升力体外形。
优选的,所述空气舵系统的空气舵与燃气舵系统的燃气舵为共轴联动。
优选的,所述降落伞系统、气囊系统均安装在所述回收舱内。
优选的,所述空气舵系统、燃气舵系统、着陆缓冲装置均安装在所述尾段上。
优选的,所述降落伞系统包括减速伞舱盖、减速伞、主伞舱盖、主伞、伞绳、前吊点、后减速点、第一后吊点、第二后吊点;所述前吊点包括前减速点和第一前吊点;
所述减速伞通过伞绳依次与后减速点和前减速点连接;所述主伞通过伞绳同时与第一前吊点、第一后吊点、第二后吊点连接;所述后减速点可分离的安装在所述机舱结构上。
所述减速伞舱盖和主伞舱盖均安装在所述回收舱上,所述回收舱内在所述减速伞舱盖和主伞舱盖的对应位置分别设有减速伞舱和主伞舱;所述减速伞和主伞分别安装在减速伞舱和主伞舱内。
优选的,所述气囊系统包括气囊舱盖、气囊;所述气囊舱盖安装在所述回收舱上,所述回收舱内在所述气囊舱盖的对应位置设有气囊舱;所述气囊安装在气囊舱内。
一种可回收高速飞行火箭的回收方法,采用上述可回收高速飞行火箭,包括如下步骤:
步骤一、增大可回收高速飞行火箭的攻角,利用机翼使可回收高速飞行火箭的飞行速度不超过第一预设速度且飞行高度不超过第一预设高度;
步骤二、降落伞系统的减速伞开伞,使可回收高速飞行火箭的飞行速度不超过第二预设速度;
步骤三、降落伞系统的主伞开伞,使可回收高速飞行火箭的飞行速度不超过第三预设速度;
步骤四、当可回收高速飞行火箭的高度不超过第二预设高度时,气囊系统的气囊充气;可回收高速飞行火箭利用气囊和着陆缓冲装置着陆触地。
优选的,所述可回收高速飞行火箭还包括雷达测高装置,所述雷达测高装置用于测量可回收高速飞行火箭的飞行高度。
本发明相比于现有技术具有如下有益效果:
(1)本发明采用成熟固体发动机(即主发动机),回收后,固体发动机直接更换,相对于液体发动机,减少了回收后的产品检测和维修,简化了产品使用流程,提高了火箭系统的可靠性;
(2)本发明采用低空急速转弯弹道设计,能够满足低空高速飞行试验的需求;
(3)本发明采用面对称大升力面结构布局,可自主实现高空减速;
(4)本发明的任务载荷可更换,适应不同外形尺寸及重量的飞行试验任务载荷;
(5)本发明采用滑翔减速、降落伞减速稳降、气囊配合缓冲装置的全箭精确无损回收方法,回收性能稳定可靠。
附图说明
图1为本发明可回收高速飞行火箭的组成示意图;
图2为本发明可回收高速飞行火箭的降落伞系统组成示意图;
图3为本发明可回收高速飞行火箭的回收舱内布局示意图;
图4为本发明可回收高速飞行火箭的三视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步详细描述。
实施例1:
一种可回收高速飞行火箭,包括任务载荷舱1、过渡段2、火箭箭体3、机舱结构6、机翼8、尾段9、空气舵系统10、燃气舵系统11、着陆缓冲装置12、降落伞系统、气囊系统、连接机构、雷达测高装置;所述火箭箭体包括回收舱4和主发动机5。
所述任务载荷舱1为升力体外形,所述过渡段2用于连接所述任务载荷舱1和所述回收舱4;所述回收舱4与所述主发动机5连接;所述机舱结构6通过所述连接机构安装在所述主发动机5上,本实施例中连接机构为抱箍7;所述机翼8安装在所述机舱结构6的两侧;所述尾段9同时与所述主发动机5和机舱结构6连接;所述空气舵系统10和燃气舵系统11均用于飞行控制,所述空气舵系统10的空气舵与燃气舵系统11的燃气舵为共轴联动。
所述降落伞系统用于所述可回收高速飞行火箭在亚声速段的减速;所述气囊系统和着陆缓冲装置12均用于所述可回收高速飞行火箭的着陆触地。所述降落伞系统、气囊系统均安装在所述回收舱4内。所述空气舵系统10、燃气舵系统11、着陆缓冲装置12均安装在所述尾段9上。所述雷达测高装置用于测量可回收高速飞行火箭的飞行高度。
所述降落伞系统包括减速伞舱盖20、减速伞13、主伞舱盖21、主伞14、伞绳15、前吊点16、后减速点17、第一后吊点18、第二后吊点19;所述前吊点16包括前减速点和第一前吊点;
所述减速伞13通过伞绳15依次与后减速点17和前减速点连接;所述主伞14通过伞绳15同时与第一前吊点、第一后吊点18、第二后吊点19连接;所述后减速点17可分离的安装在所述机舱结构6上;
所述减速伞舱盖20和主伞舱盖21均安装在所述回收舱4上,所述回收舱内在所述减速伞舱盖20和主伞舱盖21的对应位置分别设有减速伞舱22和主伞舱25;所述减速伞13和主伞14分别安装在减速伞舱22和主伞舱25内。
所述气囊系统包括气囊舱盖24、气囊;所述气囊舱盖24安装在所述回收舱4上,所述回收舱内在所述气囊舱盖24的对应位置设有气囊舱23;所述气囊安装在气囊舱23内。
实施例2:
本实施例的可回收高速飞行火箭,采用单级固体发动机(即主发动机5),面对称大升力面气动外形,低空急速转弯弹道,实现低空高速飞行试验的需求。固体发动机回收后直接更换,无检修确认工作流程,简化工作的同时提高产品可靠性;采用滑翔减速及伞降+气囊回收方式,实现可回收高速飞行火箭的准确落点回收,减少了对地面跑道和起落架等着陆装置的依赖性,提高了回收系统的使用适应性。任务载荷采用统一接口,适应不同外形尺寸及重量的任务载荷需求。
图1为本实施例可回收高速飞行火箭的全箭外形布局示意图,全箭长度9米,直径0.64米,翼展2.4米,通过单级固体发动机作为飞行动力,试验段可实现30公里以下最大飞行速度达到马赫4。区别传统火箭,安装面对称三角翼(即机翼8)为飞行提供升力并为减速提供阻力。
可回收高速飞行火箭可实现的典型弹道曲线为:火箭垂直发射,点火后数秒后进行低空急速转弯,压低弹道,实现低空高速飞行。随后保持0°攻角完成任务载荷飞行试验。试验结束后,进行大攻角拉起,攻角拉至8°~15°之间,进行高空减速。减速到满足降落伞开伞条件后进入降落伞减速段,最后落地前利用前部气囊和后部着陆缓冲装置12缓冲着陆,完成全箭回收。
可回收高速飞行火箭的任务载荷舱1位于全箭的最前端,过渡段2是连接任务载荷舱1和火箭箭体3的过渡结构。过渡段后连接的是火箭箭体3的回收舱4,回收舱4内主要安装降落伞系统和气囊系统。回收舱4与火箭箭体3的主发动机5连接,主发动机5上部并联机舱结构6,机舱结构6内部安装主要电气设备,如控制装置、伺服装置、测量装置,测量装置包括雷达测高装置。机舱结构6与主发动机5采用抱箍7连接固定。机舱结构6两侧安装机翼8(本实施例中为三角翼,后掠三角翼形式),机翼8为飞行提供升力和减速提供阻力。机舱结构6和主发动机5的后部连接尾段9。尾段9上安装空气舵系统10和燃气舵系统11,空气舵系统10的空气舵和燃气舵系统11的燃气舵是共轴联动设计。尾段9底部安装着陆缓冲装置12,位于主发动机5后部下方,着陆缓冲装置12包括铝制维型外壳和内部铝蜂窝结构,为可回收高速飞行火箭着陆提供有效的缓冲作用。
图2为降落伞系统,减速伞13位于回收舱4前端,主伞14位于回收舱4后端,伞绳15固定于机舱结构6的上表面。降落伞系统工作时,减速伞13首先从回收舱4内弹出,将伞绳15牵引至后减速点17,减速伞13通过5s收口减速和8s展开减速,将全箭飞行速度从马赫0.5减速到70m/s~80m/s。然后,后减速点17解锁,减速伞13将伞绳15牵引至前减速点;然后主伞舱盖打开,将主伞14拉出,主伞14通过伞绳15牵引至第一前吊点、第一后吊点18和第二后吊点19将箭体拉平减速,直到达到稳降速度7m/s~8m/s。
图3为回收舱4内布局示意图,回收舱4上部前端为减速伞舱盖20,后端为主伞舱盖21,保持舱体外表面结构外形。减速伞舱盖20下为减速伞舱22,内部安装减速伞13。主伞舱盖21下为主伞舱25,内部安装主伞15。回收舱4前端下部为气囊舱23,内部安装气囊,气囊舱外为气囊舱盖24。
实施例3:
一种可回收高速飞行火箭的回收方法,采用实施例1或2所述的可回收高速飞行火箭,包括如下步骤:
步骤一、增大可回收高速飞行火箭的攻角至8°~15°,利用机翼8使可回收高速飞行火箭的飞行速度不超过第一预设速度且飞行高度不超过第一预设高度;本实施例中第一预设速度不超过马赫数0.5,第一预设高度不超过5公里。
步骤二、降落伞系统的减速伞13开伞,使可回收高速飞行火箭的飞行速度不超过第二预设速度;本实施例中第二预设速度不超过80m/s。
步骤三、降落伞系统的主伞14开伞,使可回收高速飞行火箭的飞行速度不超过第三预设速度;本实施例中第三预设速度不超过8m/s。
步骤四、当可回收高速飞行火箭的高度不超过第二预设高度时,气囊系统的气囊充气;可回收高速飞行火箭利用气囊和着陆缓冲装置12着陆触地。本实施例中第二预设高度不超过600m。
实施例4:
一种可回收高速飞行火箭的回收方法,采用实施例1或2所述的可回收高速飞行火箭,包括如下步骤:
步骤一:可回收高速飞行火箭垂直发射,采用空气舵系统10和燃气舵系统(11)联动控制,起飞后数秒进行压攻角飞行,实现低空高速飞行;
步骤二:以0°攻角附近进入试验段,保持一定范围的高度和速度,完成飞行试验任务;
步骤三:完成飞行试验任务后,可回收高速飞行火箭进行大攻角拉起,从0°攻角拉起到8°~15°攻角,利用机翼8提供的升力进行减速,飞行速度从马赫数4减到马赫数0.5,飞行高度从30公里减速到5公里;
步骤四:减速完成后,满足降落伞系统开伞条件,控制装置(箭载计算机)将减速伞舱盖20解锁,然后发出弹伞指令,将减速伞13弹出,减速伞13牵引可回收高速飞行火箭的后部减速13s,将飞行速度从马赫数0.5减到70m/s~80m/s;
步骤五:减速伞13工作完成后,伞绳15从后减速点17解锁;然后主伞舱盖21解锁,主伞舱盖21将主伞14被拉出主伞舱25;
步骤六:主伞14拉出后逐渐展开,将可回收高速飞行火箭的飞行速度从70m/s~80m/s减速到7m/s~8m/s,并保持稳定速度下降;
步骤七:可回收高速飞行火箭达到稳定速度后,并且可回收高速飞行火箭离地高度达到600m时,控制装置将气囊舱盖24解锁,打开气囊系统的气囊电磁阀,将气囊充满气体;
步骤八:可回收高速飞行火箭继续下降,着陆时,可回收高速飞行火箭前部的气囊和后部的缓冲装置12首先着地进行缓冲,完成可回收高速飞行火箭的安全回收。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (10)

1.一种可回收高速飞行火箭,其特征在于,包括任务载荷舱(1)、过渡段(2)、火箭箭体(3)、机舱结构(6)、机翼(8)、尾段(9)、空气舵系统(10)、燃气舵系统(11)、着陆缓冲装置(12)、降落伞系统、气囊系统;所述火箭箭体包括回收舱(4)和主发动机(5);
所述过渡段(2)用于连接所述任务载荷舱(1)和所述回收舱(4);所述回收舱(4)与所述主发动机(5)连接;所述机舱结构(6)与所述主发动机(5)连接;所述机翼(8)安装在所述机舱结构(6)的两侧;所述尾段(9)同时与所述主发动机(5)和机舱结构(6)连接;所述空气舵系统(10)和燃气舵系统(11)均用于飞行控制;
所述降落伞系统用于所述可回收高速飞行火箭在亚声速段的减速;所述气囊系统和着陆缓冲装置(12)均用于所述可回收高速飞行火箭的着陆触地。
2.根据权利要求1所述的一种可回收高速飞行火箭,其特征在于,还包括连接机构,所述机舱结构(6)通过所述连接机构安装在所述主发动机(5)上。
3.根据权利要求1所述的一种可回收高速飞行火箭,其特征在于,所述任务载荷舱(1)为升力体外形。
4.根据权利要求1所述的一种可回收高速飞行火箭,其特征在于,所述空气舵系统(10)的空气舵与燃气舵系统(11)的燃气舵为共轴联动。
5.根据权利要求1所述的一种可回收高速飞行火箭,其特征在于,所述降落伞系统、气囊系统均安装在所述回收舱(4)内。
6.根据权利要求1所述的一种可回收高速飞行火箭,其特征在于,所述空气舵系统(10)、燃气舵系统(11)、着陆缓冲装置(12)均安装在所述尾段(9)上。
7.根据权利要求1~6之一所述的一种可回收高速飞行火箭,其特征在于,所述降落伞系统包括减速伞舱盖(20)、减速伞(13)、主伞舱盖(21)、主伞(14)、伞绳(15)、前吊点(16)、后减速点(17)、第一后吊点(18)、第二后吊点(19);所述前吊点(16)包括前减速点和第一前吊点;
所述减速伞(13)通过伞绳(15)依次与后减速点(17)和前减速点连接;所述主伞(14)通过伞绳(15)同时与第一前吊点、第一后吊点(18)、第二后吊点(19)连接;所述后减速点(17)可分离的安装在所述机舱结构(6)上。
所述减速伞舱盖(20)和主伞舱盖(21)均安装在所述回收舱(4)上,所述回收舱内在所述减速伞舱盖(20)和主伞舱盖(21)的对应位置分别设有减速伞舱(22)和主伞舱(25);所述减速伞(13)和主伞(14)分别安装在减速伞舱(22)和主伞舱(25)内。
8.根据权利要求1~6之一所述的一种可回收高速飞行火箭,其特征在于,所述气囊系统包括气囊舱盖(24)、气囊;所述气囊舱盖(24)安装在所述回收舱(4)上,所述回收舱内在所述气囊舱盖(24)的对应位置设有气囊舱(23);所述气囊安装在气囊舱(23)内。
9.一种可回收高速飞行火箭的回收方法,其特征在于,采用权利要求1~8之一所述的可回收高速飞行火箭,包括如下步骤:
步骤一、增大可回收高速飞行火箭的攻角,利用机翼(8)使可回收高速飞行火箭的飞行速度不超过第一预设速度且飞行高度不超过第一预设高度;
步骤二、降落伞系统的减速伞(13)开伞,使可回收高速飞行火箭的飞行速度不超过第二预设速度;
步骤三、降落伞系统的主伞(14)开伞,使可回收高速飞行火箭的飞行速度不超过第三预设速度;
步骤四、当可回收高速飞行火箭的高度不超过第二预设高度时,气囊系统的气囊充气;可回收高速飞行火箭利用气囊和着陆缓冲装置(12)着陆触地。
10.根据权利要求9所述的一种可回收高速飞行火箭的回收方法,其特征在于,所述可回收高速飞行火箭还包括雷达测高装置,所述雷达测高装置用于测量可回收高速飞行火箭的飞行高度。
CN201910913959.7A 2019-09-25 2019-09-25 一种可回收高速飞行火箭及回收方法 Active CN110589034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910913959.7A CN110589034B (zh) 2019-09-25 2019-09-25 一种可回收高速飞行火箭及回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910913959.7A CN110589034B (zh) 2019-09-25 2019-09-25 一种可回收高速飞行火箭及回收方法

Publications (2)

Publication Number Publication Date
CN110589034A true CN110589034A (zh) 2019-12-20
CN110589034B CN110589034B (zh) 2021-12-07

Family

ID=68863448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910913959.7A Active CN110589034B (zh) 2019-09-25 2019-09-25 一种可回收高速飞行火箭及回收方法

Country Status (1)

Country Link
CN (1) CN110589034B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216930A (zh) * 2020-03-13 2020-06-02 北京星际荣耀空间科技有限公司 火箭子级着陆回收系统及方法
CN111521073A (zh) * 2020-05-06 2020-08-11 蓝箭航天空间科技股份有限公司 一种火箭回收方法
CN111750744A (zh) * 2020-05-06 2020-10-09 蓝箭航天空间科技股份有限公司 火箭回收装置
CN111810318A (zh) * 2020-06-28 2020-10-23 北京凌空天行科技有限责任公司 一种单室双推力固体火箭发动机及火箭
CN112046791A (zh) * 2020-08-27 2020-12-08 航天科工空间工程发展有限公司 一种返回式货运飞行器
CN112678206A (zh) * 2020-12-29 2021-04-20 中国航天空气动力技术研究院 一种可重复使用的运载器的气动布局结构及设计方法
CN113790636A (zh) * 2021-08-31 2021-12-14 北京航空航天大学 一种采用卷弧翼实现滑翔增程及精确控制的火箭
CN114933019A (zh) * 2022-03-24 2022-08-23 中国航空工业集团公司沈阳飞机设计研究所 一种基于降落伞的无人机降落装置
CN114987804A (zh) * 2022-05-26 2022-09-02 西北工业大学 一种基于折叠式旋翼的定点回收探空火箭及回收方法
CN115503965A (zh) * 2022-11-21 2022-12-23 北京凌空天行科技有限责任公司 一种飞行器组合体及减速回收的着陆方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016846A1 (en) * 2002-07-23 2004-01-29 Blackwell-Thompson Judith C. Launch vehicle payload carrier and related methods
US20040188562A1 (en) * 2002-10-15 2004-09-30 Kistler Aerospace Corporation Commercial experiment system in orbit
CN201287829Y (zh) * 2008-10-30 2009-08-12 航宇救生装备有限公司 一种适用于火箭的降落伞装置
US20140263842A1 (en) * 2013-03-15 2014-09-18 Robert Salkeld Reusable Global Launcher
CN106628269A (zh) * 2016-12-05 2017-05-10 中国运载火箭技术研究院 一种一子级伞降回收运载火箭

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016846A1 (en) * 2002-07-23 2004-01-29 Blackwell-Thompson Judith C. Launch vehicle payload carrier and related methods
US20040188562A1 (en) * 2002-10-15 2004-09-30 Kistler Aerospace Corporation Commercial experiment system in orbit
CN201287829Y (zh) * 2008-10-30 2009-08-12 航宇救生装备有限公司 一种适用于火箭的降落伞装置
US20140263842A1 (en) * 2013-03-15 2014-09-18 Robert Salkeld Reusable Global Launcher
CN106628269A (zh) * 2016-12-05 2017-05-10 中国运载火箭技术研究院 一种一子级伞降回收运载火箭

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈祖炜: "可重复使用运载器K-l的回收系统设计概况", 《航天返回与遥感》 *
黄伟: "运载火箭伞降回收着陆技术概述", 《航天返回与遥感》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216930A (zh) * 2020-03-13 2020-06-02 北京星际荣耀空间科技有限公司 火箭子级着陆回收系统及方法
CN111521073A (zh) * 2020-05-06 2020-08-11 蓝箭航天空间科技股份有限公司 一种火箭回收方法
CN111750744A (zh) * 2020-05-06 2020-10-09 蓝箭航天空间科技股份有限公司 火箭回收装置
CN111810318A (zh) * 2020-06-28 2020-10-23 北京凌空天行科技有限责任公司 一种单室双推力固体火箭发动机及火箭
CN112046791A (zh) * 2020-08-27 2020-12-08 航天科工空间工程发展有限公司 一种返回式货运飞行器
CN112678206A (zh) * 2020-12-29 2021-04-20 中国航天空气动力技术研究院 一种可重复使用的运载器的气动布局结构及设计方法
CN113790636A (zh) * 2021-08-31 2021-12-14 北京航空航天大学 一种采用卷弧翼实现滑翔增程及精确控制的火箭
CN113790636B (zh) * 2021-08-31 2024-04-09 北京航空航天大学 一种采用卷弧翼实现滑翔增程及精确控制的火箭
CN114933019A (zh) * 2022-03-24 2022-08-23 中国航空工业集团公司沈阳飞机设计研究所 一种基于降落伞的无人机降落装置
CN114987804A (zh) * 2022-05-26 2022-09-02 西北工业大学 一种基于折叠式旋翼的定点回收探空火箭及回收方法
CN114987804B (zh) * 2022-05-26 2024-05-28 西北工业大学 一种基于折叠式旋翼的定点回收探空火箭及回收方法
CN115503965A (zh) * 2022-11-21 2022-12-23 北京凌空天行科技有限责任公司 一种飞行器组合体及减速回收的着陆方法

Also Published As

Publication number Publication date
CN110589034B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN110589034B (zh) 一种可回收高速飞行火箭及回收方法
RU2191145C2 (ru) Система запуска полезной нагрузки на низкую околоземную орбиту
CN110589033B (zh) 一种可变形回收飞行器及回收方法
CN110589032B (zh) 一种用于飞行器回收的降落伞系统、降落回收方法
RU2349505C1 (ru) Способ создания подъемной силы самолета (варианты), способ полета самолета, безаэродромный всепогодный самолет "максинио" вертикального взлета и посадки (варианты), способ взлета и способ посадки, способ и система управления самолетом в полете, фюзеляж, крыло (варианты), реверс тяги и способ его работы, система шасси, система газоразделения и газораспределения его
CN101857089A (zh) 飞机降落伞
WO2007133182A2 (en) Modular aerospace plane
CN104723816A (zh) 陆空两用小轿车和公务车的气动布局和动力配置实施方案
RU2442727C1 (ru) Многоразовый ракетно-авиационный модуль и способ его возвращения на космодром
Robins Concept development of a Mach 3.0 high-speed civil transport
CN104787306A (zh) 一种利用气动力控制飞行姿态的低速安全飞行器
CN110920891A (zh) 一种高速起降防坠飞机
CN100422044C (zh) 太阳能可控浮力、自控稳衡氦气蓝天飞船
US20220177115A1 (en) High-lift device
CN107434036A (zh) 无燃烧动力箭艇空中摆渡漂飞机场航空运输系统
RU2643063C2 (ru) Беспилотный авиационный комплекс
CN111959824A (zh) 一种空基发射的重型可重复使用的空天飞行器系统
Sadraey et al. Drag force and drag coefficient
RU64176U1 (ru) Тяжелый транспортный самолет
US3138347A (en) Aircraft and control means therefor
Fujiwara et al. Flight plan and flight test results of experimental SST vehicle NEXST-1
CN215285312U (zh) 基于双机身平直翼布局载机的空基发射系统
CN1276319A (zh) 变翼飞机
RU2335430C1 (ru) Самолет большой грузоподъемности
CN114476142A (zh) 一种用于助推器落区安全控制的翼伞精确回收系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant