CN110567617B - 一种柔性压力传感器及其制备方法 - Google Patents

一种柔性压力传感器及其制备方法 Download PDF

Info

Publication number
CN110567617B
CN110567617B CN201910680823.6A CN201910680823A CN110567617B CN 110567617 B CN110567617 B CN 110567617B CN 201910680823 A CN201910680823 A CN 201910680823A CN 110567617 B CN110567617 B CN 110567617B
Authority
CN
China
Prior art keywords
pressure sensor
graphene
flexible pressure
flexible
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910680823.6A
Other languages
English (en)
Other versions
CN110567617A (zh
Inventor
赵彪
邓久帅
张茜
郭晓琴
白中义
张锐
任玉美
樊磊
关莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN201910680823.6A priority Critical patent/CN110567617B/zh
Publication of CN110567617A publication Critical patent/CN110567617A/zh
Application granted granted Critical
Publication of CN110567617B publication Critical patent/CN110567617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Abstract

本发明属于柔性导电高分子压力传感器技术领域,公开一种柔性压力传感器及其制备方法。步骤如下:按重量百分比,称取原料:聚醚嵌段酰胺80‑99.99%、石墨烯0.01‑20%;将聚醚嵌段酰胺和石墨烯加入转矩流变仪的混合室中,在温度140‑180℃、转速为60‑80 rpm条件下混合5‑10 min;混合样品在平板硫化机的模板上先140‑180℃预热10‑15 min,预热后再将样品在10‑15 MPa的压力下硫化至少4 min,即得柔性压力传感器。本发明制备的柔性压力传感器具有良好的灵敏度和传感稳定性,并且在循环加载稳定后具有良好的可恢复性和再现性,在压力传感中表现出良好的识别性。

Description

一种柔性压力传感器及其制备方法
技术领域
本发明属于柔性导电高分子压力传感器技术领域,具体涉及一种柔性压力传感器及其制备方法。
背景技术
基于暴露于机械变形时电阻变化的压力传感器由于其广泛的应用(包括健康监测和运动检测)而吸引了很多关注。高灵敏度、良好的重现性和良好的加工性是满意的压力传感所必需的。最近,基于CPC(Conductive Polymer Composite,导电高分子复合材料)的传感器由于其在暴露于拉伸或压缩应变时的电阻变化的快速响应而被广泛研究。通常,基于CPC的传感器总是呈现正电压系数(PPC)的电阻效应,即CPC的电阻随着外部刺激压力的增加而增加。例如,热塑性聚氨酯(TPU)/石墨烯,环氧/CNT,聚丙烯/CNT,和TPU/碳纳米管(CNT)显示出良好的应变传感能力和PPC抗性效应。但是,上述CPC传感器还具有基质的有限拉伸性和不良填料-聚合物相互作用的缺点,因此,如何选择具有令人满意的拉伸性和出色加工性的合适聚合物基体对压力传感具有重要意义。
发明内容
本发明的目的在于提供一种柔性压力传感器及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种柔性压力传感器的制备方法,步骤如下:
(1)、按重量百分比,称取原料:聚醚嵌段酰胺80-99.99%、石墨烯0.01-20%;
(2)、将聚醚嵌段酰胺和石墨烯加入转矩流变仪的混合室中,在温度140-180 ℃、转速为60-80 rpm条件下混合5-10 min;
(3)、混合样品在平板硫化机的模板上先140-180 ℃预热10-15 min,预热后再将样品在10-15 MPa的压力下硫化至少4 min,即得柔性压力传感器。
利用上述制备方法制备的柔性压力传感器。
有益效果:
(1)聚醚嵌段酰胺(PEBAX)是一种相对较新的热塑性弹性体,由聚酰胺嵌段(结晶硬链段)和聚醚嵌段(软链段)组成,本发明选择聚醚嵌段酰胺作为材料的基体,通过在聚合物基底中掺杂石墨烯使其具有导电性,改变材料的微观结构,构筑独特的表面形貌,使弹性材料能够将所承受的压力完全转化为弹性形变,并在外力消失时迅速释放弹性势能恢复原状;
(2)本发明制备方法采用易获取的原料,经过简单制备步骤即可得到具有快速响应性和高灵敏度的压力传感器,且制备过程中无需任何溶剂,操作简单,容易实施,易于工业化生产;
(3)本发明制备的柔性压力传感器具有良好的灵敏度和传感稳定性,并且在循环加载稳定后具有良好的可恢复性和再现性,在压力传感中表现出良好的识别性;本发明柔性压力传感器可用于穿戴足底压力测量、人体运动健康监测、带有压力传感器的枕头等,本发明柔性压力传感器还可用于电磁屏蔽材料等。
附图说明
图1:本发明制备的柔性压力传感器的实物图;
图2:柔性压力传感器循环负载5次,直至24.67KPa高压的电导率-压力行为。
具体实施方式
下面给出具体实施例以对本发明的技术方案作进一步说明,但是值得说明的是:以下实施例不能理解为对本发明保护范围的限制,本领域技术人员根据上述本发明的内容,对本发明作一些非本质性的改进和调整仍属于本发明的保护范围。
实施例1
一种柔性压力传感器的制备方法,步骤如下:
(1)、按重量百分比,称取原料:聚醚嵌段酰胺(PEBAX)99.5%、石墨烯0.5%;
(2)、将聚醚嵌段酰胺和石墨烯加入XSS-330转矩流变仪的混合室中,在混合温度175 ℃、转速为80 rpm条件下混合6 min;
(3)、混合样品在LN-50T平板硫化机的模板上先175 ℃预热10 min,预热后再将样品在15 MPa的压力下硫化4 min,即得柔性压力传感器。
实施例2
与实施例1的不同之处在于,原料配比为:聚醚嵌段酰胺(PEBAX)98%、石墨烯2%;其它同实施例1。
实施例3
与实施例1的不同之处在于,原料配比为:聚醚嵌段酰胺(PEBAX)95%、石墨烯5%;其它同实施例1。
实施例4
与实施例1的不同之处在于,原料配比为:聚醚嵌段酰胺(PEBAX)90%、石墨烯10%;其它同实施例1。
性能测试实验
利用PC68型高阻计(上海精密科学仪器有限公司)及与其配套的电极箱对实施例1-4所得柔性压力传感器分别测试其电导率随压力的变化,测试时打开电极箱顶部的盖子,直接在测量电极顶端添加不同重量的砝码来实现压力的变化。电导率随压力的变化结果如图2所示,发现:电导率的值随着压力的增加而逐渐增加,卸载后,电导率几乎恢复到初始水平,引起可逆现象。这是因为:对于原始的石墨烯导电网络,石墨烯导电网络的薄片-薄片连接在PEBAX中形成,当外部压力施加在样品上时,由于石墨烯的机械柔韧性,它沿着PEBAX链延伸和蠕变,导致形成更多的石墨烯-石墨烯接触,并减少导电石墨烯填料之间的隧道距离,同时,发生了一些破坏导电通路;导电网络的重建在加载过程中占主导地位,因此获得了增加的导电性;在卸载过程中,由于PEBAX具有出色的弹性,新的导电网络恢复到原始状态,引起可逆现象。

Claims (2)

1.一种柔性压力传感器的制备方法,其特征在于,步骤如下:
(1)、按重量百分比,称取原料:聚醚嵌段酰胺80-99.99%、石墨烯0.01-20%;
(2)、将聚醚嵌段酰胺和石墨烯加入转矩流变仪的混合室中,在温度140-180 ℃、转速为60-80 rpm条件下混合5-10 min;
(3)、混合样品在平板硫化机的模板上先140-180 ℃预热10-15 min,预热后再将样品在10-15 MPa的压力下硫化至少4 min,即得柔性压力传感器。
2.一种如权利要求1所述制备方法制备的柔性压力传感器。
CN201910680823.6A 2019-07-26 2019-07-26 一种柔性压力传感器及其制备方法 Active CN110567617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910680823.6A CN110567617B (zh) 2019-07-26 2019-07-26 一种柔性压力传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910680823.6A CN110567617B (zh) 2019-07-26 2019-07-26 一种柔性压力传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN110567617A CN110567617A (zh) 2019-12-13
CN110567617B true CN110567617B (zh) 2021-07-23

Family

ID=68773842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910680823.6A Active CN110567617B (zh) 2019-07-26 2019-07-26 一种柔性压力传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110567617B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567383C (zh) * 2006-07-13 2009-12-09 内蒙古科技大学 用于温度和应力传感器的聚合物导电复合材料及制备方法
WO2011159447A1 (en) * 2010-06-18 2011-12-22 Dow Global Technologies Llc Electrically conductive, mesophase-separated olefin multiblock copolymer compositions
US8746075B2 (en) * 2012-02-16 2014-06-10 7-Sigma, Inc. Flexible electrically conductive nanotube sensor for elastomeric devices
US9944774B2 (en) * 2012-06-21 2018-04-17 Indian Institute Of Technology Madras Graphene functionalized carbon nanotube polymer composites and methods for their preparation and use
CN104622464A (zh) * 2013-11-11 2015-05-20 克利夫兰医药聚合物有限公司 多功能纳米复合传感器和传感系统以及用于监测患者心血管系统的方法和聚合物组合物
US10012553B2 (en) * 2016-08-12 2018-07-03 The Hong Kong Polytechnic University Coated nanofiller/polymer composite sensor network for guided-wave-based structural health monitoring
CN108562219B (zh) * 2018-03-23 2022-10-25 南京邮电大学 一种柔性应变传感器及其制备方法与应用
CN108993176A (zh) * 2018-07-31 2018-12-14 天津工业大学 嵌段聚醚酰胺-氨基化氧化石墨烯杂化膜制备及其应用
CN109401192A (zh) * 2018-09-25 2019-03-01 暨南大学 一种制备三维石墨烯微结构填料改性的聚合物复合材料的方法

Also Published As

Publication number Publication date
CN110567617A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Wang et al. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands
Zheng et al. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring
Yu et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure
Natarajan et al. Strong strain sensing performance of natural rubber nanocomposites
Huang et al. Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles
Pu et al. 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors
Dios et al. Piezoresistive performance of polymer-based materials as a function of the matrix and nanofiller content to walking detection application
Liu et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications
Rashid et al. Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends
Teixeira et al. Piezoresistive response of extruded polyaniline/(styrene-butadiene-styrene) polymer blends for force and deformation sensors
Salaeh et al. Fabrication of a strain sensor from a thermoplastic vulcanizate with an embedded interconnected conducting filler network
Liang et al. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection
Huang et al. Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements
Dai et al. Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion
Qin et al. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors
Irfan et al. Polyaniline-NBR blends by in situ polymerization: Application as stretchable strain sensors
Yang et al. Graphene rubber composites integrated sealing rings for monitoring contact pressure and the aging process
Pecora et al. Strain gauge sensors based on thermoplastic nanocomposite for monitoring inflatable structures
CN111253751A (zh) 一种碳纳米管聚二甲基硅氧烷复合材料及其制备方法和应用
Min et al. Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites
Lu et al. An ultra-wide sensing range film strain sensor based on a branch-shaped PAN-based carbon nanofiber and carbon black synergistic conductive network for human motion detection and human–machine interfaces
Wu et al. An efficient flexible strain sensor based on anhydride-grafted styrene-butadiene-styrene triblock copolymer/carbon black: enhanced electrical conductivity, sensitivity and stability through solvent swelling
CN110567617B (zh) 一种柔性压力传感器及其制备方法
Ye et al. Segregated structures induced linear mechanoelectrical responses to low strains for elastomer/CNTs composites
Pal et al. Design, development and analysis of a conductive fabric based flexible and stretchable strain sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant