CN110567379B - 一种基于啁啾光纤光栅的光谱共焦位移传感器 - Google Patents

一种基于啁啾光纤光栅的光谱共焦位移传感器 Download PDF

Info

Publication number
CN110567379B
CN110567379B CN201910918739.3A CN201910918739A CN110567379B CN 110567379 B CN110567379 B CN 110567379B CN 201910918739 A CN201910918739 A CN 201910918739A CN 110567379 B CN110567379 B CN 110567379B
Authority
CN
China
Prior art keywords
fiber grating
chirped fiber
spectrometer
lens
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910918739.3A
Other languages
English (en)
Other versions
CN110567379A (zh
Inventor
钟翔
桂栋梁
董敬涛
邓华夏
张进
马孟超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910918739.3A priority Critical patent/CN110567379B/zh
Publication of CN110567379A publication Critical patent/CN110567379A/zh
Application granted granted Critical
Publication of CN110567379B publication Critical patent/CN110567379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于啁啾光纤光栅的光谱共焦位移传感器,是在光谱共焦位移传感器测量系统中对称设置第一啁啾光纤光栅和第二啁啾光纤光栅,光源发出的光信号经第一啁啾光纤光栅反射获得色散特性,具有色散特性的光信号经三端口环形器、针孔和聚焦透镜投向被测物,光信号中波长为λ的光满足共焦条件,在被测物表面形成聚焦,聚焦后的光信号沿原光路返回后被针孔接收,再经过第二啁啾光纤光栅反射后被光谱仪接收,最后根据波长换算成为对应的距离值,从而获得被测物位置的信息。系统中以聚焦透镜直接代替了结构复杂的色散物镜,实现了精密测量系统的小型化,并使测量系统具有较高的测量精度和分辨力。

Description

一种基于啁啾光纤光栅的光谱共焦位移传感器
技术领域
本发明涉及精密测量技术领域,更具体地说是一种光谱共焦位移传感器,尤其应用于待测物体的定位,物体表面轮廓测量,精密机械元件的尺寸检测等。
背景技术
光谱共焦位移传感器是近年来出现的一种基于波长位移调制的非接触式位移传感器。测量精度达亚微米级,工作频率达千赫兹。
传统光谱共焦位移传感器的工作原理是通过光学色散原理建立距离与波长间的对应关系,利用光谱仪解码光谱信息,从而获得位置信息;其主要由色散物镜、光源和光谱仪等组成。色散物镜是其最核心的部件,光源照射在一组色散镜上,通过色散镜可以将复色光在光轴方向上分解成各种不同波长的单色光;因其轴向色差大小会影响光谱共焦显微镜的测量范围,而色差与波长的线性程度影响会测量灵敏度或分辨力;因此色散物镜在目前所使用的光谱共焦位移传感器测量系统中显得尤为重要。
正是由于传统的光谱共焦位移传感器测量系统对色散物镜的色差等参数的要求很高,增加了整个传感器测量系统搭建的复杂性,并且色散物镜工艺设计复杂,加工成本很高。不利于精密测量朝着小型化,精确化,低消耗的方向发展。
发明内容
本发明是为避免上述现有技术所存在的不足,提供一种基于啁啾光纤光栅的光谱共焦位移传感器,以期利用透镜对色散物镜进行替代,实现精密测量系统的小型化,实现较高的测量精度和测量系统分辨力。
本发明为实现发明目的采用如下技术方案:
本发明基于啁啾光纤光栅的光谱共焦位移传感器的特点是:
在所述传感器中设置光谱色散共焦检测系统,系统构成包括:光源、三端口光纤环形器、第一啁啾光纤光栅、第一光纤隔离器、四端口光纤环形器、针孔、透镜、被测物、第二啁啾光纤光栅、第二光纤隔离器和光谱仪;
所述光源的输出端与三端口光纤环形器输入端相连接,三端口光纤环形器第一输出端连接第一啁啾光纤光栅输入端,三端口光纤环形器第二输出与四端口光纤环形器输入端相连接,四端口环形器第一输出端口的输出信号依次经针孔和透镜投向被测物,以透镜代替色散物镜,四端口光纤环形器第二输出端连接第二啁啾光纤光栅的输入端,在四端口光纤环形器第三输出端设置光谱仪;
设置所述第一啁啾光纤光栅(3)的带宽为(λn1),波长为λn、....、λ2和λ1的光经第一啁啾光纤光栅(3)反射至三端口光纤耦合器(2),经第一啁啾光纤光栅(3)反射在三端口光纤耦合器(2)的光在波长为λn、....、λ2和λ1的范围内具有色散特性;
设置所述第二啁啾光纤光栅(9)的带宽为(λn1),由所述第二啁啾光纤光栅(9)将波长为λn、...、λ2和λ1光反射至四端口光纤环形器(5),并经四端口光纤环形器第三输出端(504)输出至光谱仪(11),以所述光谱仪(11)检测获得光谱信号为传感器输出信号。
本发明基于啁啾光纤光栅的光谱共焦位移传感器的特点也在于:
按如下方式获得波长为λ的光信号经透镜在被测物的表面形成聚焦的焦点位置和焦距f:
由光谱仪检测获得的光谱信号Ireal(λ)由式(1)所表征:
Ireal(λ)=I(λ)S(λ)O(λ)D(λ) (1)
式(1)中:
Ireal(λ)为系统中朝向光谱仪出射的实际光谱信号;
I(λ)为系统中朝向光谱仪出射的理想光谱信号;
S(λ)为光源的单色光强影响因子,O(λ)为被测物的单色光强影响因子;
D(λ)为色散共焦检测系统的单色光光强的影响因子;
依据实际光谱信号Ireal(λ),由式(1)计算获得波长λ;并利用由式(1)计算获得的波长λ根据式(2)计算获得波长为λ的光信号经透镜在被测物的表面形成聚焦的焦点位置和焦距f:
Figure BDA0002216959680000021
式(2)中:
R1为透镜朝向针孔一侧的表面曲率,
R2为透镜朝向被测物一侧的表面曲率;
n(λ)是波长为λ的光在透镜中的折射率;
本发明基于啁啾光纤光栅的光谱共焦位移传感器的特点也在于:
针对由光谱仪所获得的光谱信号,按式(3)对光谱峰值位置进行定位:
Figure BDA0002216959680000022
式(3)中:
x为被测物的质心位置,t表示光谱仪中CCD上的第t个像元,It为第t个像元上的灰度值,m是指光谱仪中CCD上的第m个像元,m为任意取值的正整数。
本发明基于啁啾光纤光栅的光谱共焦位移传感器的特点也在于:在所述第一啁啾光纤光栅的输出端设置第一光纤隔离器;在所述第二啁啾光纤光栅的输出端设置第二光纤隔离器。
与已有技术相比,本发明有益技术效果体现在:
1、本发明在光谱共焦位移传感器测量系统中引入对称设置的第一啁啾光纤光栅和第二啁啾光纤光栅,啁啾光纤光栅为无源器件,能产生大而稳定的色散;因此使得在本发明测量系统中,可以用普通的透镜代替设计复杂的色散物镜;实现了精密测量系统趋于小型化的发明目的,可以适应于各种不同情况下的精密测量,同时大大增强了测量系统的可维护性;
2、本发明通过引入啁啾光纤光栅,实现了较高的测量精度和系统的分辨力,降低了系统成本;
3、本发明色散共焦检测系统具有较强的抗杂散光能力,应用前景十分广泛;
4、本发明设置四端口光纤环形器用来接收和传输信号光,使得测量系统中的光信号在传输过程中具有高稳定性和高可靠性;
附图说明
图1为本发明基于啁啾光纤光栅的光谱共焦位移传感器结构示意图。
图中标号:1光源、2三端口光纤环形器、3第一啁啾光纤光栅、4第一光纤隔离器、5四端口光纤环形器、6针孔、7透镜、8被测物、9第二啁啾光纤光栅、10第二光纤隔离器、11光谱仪;201第一啁啾光纤光栅输入端,202第一啁啾光纤光栅第一输出端,203第一啁啾光纤光栅第二输出端,501第二啁啾光纤光栅输入端,502第二啁啾光纤光栅第一输出端,503第二啁啾光纤光栅第二输出端,504第二啁啾光纤光栅第三输出端。
具体实施方式
参见图1,本实施例中基于啁啾光纤光栅的光谱共焦位移传感器的结构形式是:
在传感器中设置色散共焦检测系统,系统构成包括:光源1、三端口光纤环形器2、第一啁啾光纤光栅3、第一光纤隔离器4、四端口光纤环形器5、针孔6、透镜7、被测物8、第二啁啾光纤光栅9、第二光纤隔离器10和光谱仪11。
如图1所示,光源1的输出端通过光纤与三端口光纤环形器输入端201相连接,三端口光纤环形器第一输出端202连接第一啁啾光纤光栅输入端,三端口光纤环形器第二输出203与四端口光纤环形器输入端501相连接,四端口环形器第一输出端口502的输出信号依次经针孔6和透镜7投向被测物8,以透镜7代替色散物镜,四端口光纤环形器第二输出端503连接第二啁啾光纤光栅的输入端,在四端口光纤环形器第三输出端504设置光谱仪11。
本实施例中,在第一啁啾光纤光栅3的输出端设置第一光纤隔离器4,在第二啁啾光纤光栅9的输出端设置第二光纤隔离器10,通过光纤回波反射的光能够被光纤隔离器很好地隔离,使光只能单向传输,抑制系统中反射信号对测量精度的不利影响,提高光波的传输效率。
设置所述第一啁啾光纤光栅(3)的带宽为(λn1),波长为λn、....、λ2和λ1的光经第一啁啾光纤光栅(3)反射至三端口光纤耦合器(2),经第一啁啾光纤光栅(3)反射在三端口光纤耦合器(2)的光在波长为λn、....、λ2和λ1的范围内具有色散特性;
由于经过第一啁啾光纤光栅的光在第一啁啾光纤光栅的带宽范围内具有了色散特性,因此实现了以透镜7直接代替结构复杂的色散物镜,大大简化了系统构成,本实施例中的透镜7为非色散物镜,即聚焦透镜。
设置所述第二啁啾光纤光栅(9)的带宽为(λn1),由所述第二啁啾光纤光栅(9)将波长为λn、...、λ2和λ1光反射至四端口光纤环形器(5),并经四端口光纤环形器第三输出端(504)输出至光谱仪(11),以所述光谱仪(11)检测获得光谱信号为传感器输出信号。
具体实施中,按如下方式获得波长为λ的光信号经透镜7在被测物8的表面形成聚焦的焦点位置和焦距f:
由光谱仪(11)检测获得的光谱信号Ireal(λ)由式(1)所表征:
Ireal(λ)=I(λ)S(λ)O(λ)D(λ) (1)
式(1)中:
Ireal(λ)为系统中朝向光谱仪(11)出射的实际光谱信号;
I(λ)为系统中朝向光谱仪(11)出射的理想光谱信号;
S(λ)为光源的单色光强影响因子,O(λ)为被测物的单色光强影响因子;
D(λ)为色散共焦检测系统的单色光光强的影响因子;
在理想情况下,可以认为光源的光谱功率分布和被测物的表面反射特性均为常数值,此时式(1)所表示的函数就代表了光谱测量系统输入信号的光谱特性;因为最终的位移量的得出是与光谱信号探测密切相关的,所以进入光谱测量系统的信号对传感器的分辨率特性的影响是至关重要的。
本实施例中依据实际光谱信号Ireal(λ),由式(1)计算获得波长λ;并利用波长λ根据式(2)计算获得波长为λ的光信号经透镜7在被测物8的表面形成聚焦的焦点位置和焦距f:
Figure BDA0002216959680000041
式(2)中:
R1为透镜(7)朝向针孔一侧的表面曲率,
R2为透镜(7)朝向被测物一侧的表面曲率;
n(λ)是波长为λ的光在透镜(7)中的折射率;
关于式(2)的来源:
依据折射率与波长近似成反比,并结合阿贝尔系数公式获得式(2.1):
Figure BDA0002216959680000051
其中:
Figure BDA0002216959680000052
为透镜焦度,并有:
Figure BDA0002216959680000053
n(λ)是波长为λ的光在透镜7中的折射率,并有:
Figure BDA0002216959680000054
R1为透镜7朝向针孔一侧的表面曲率,R2为透镜7朝向被测物一侧的表面曲率;
K和C是根据阿尔贝系数公式确定的待定系数;
由式(2.1)、式(2.2)和式(2.3)获得式(2)。
本实施例中针对由光谱仪11所获得的光谱信号,按式(3)对光谱峰值位置进行定位:
Figure BDA0002216959680000055
其中:
x为被测物的质心位置,t表示光谱仪中CCD上的第t个像元,It为第t个像元上的灰度值,m是指光谱仪中CCD上的第m个像元,m为任意取值的正整数。
由于光谱仪中CCD像元有一定尺寸,相当于对原始的光谱进行了离散采样,所以可能会出现漏峰的情况。如果使用原始光谱数据中的最大值作为峰值波长会影响定位的精度,因此需要选用合适的算法对谱峰位置进行确定。由式(3)所表征的质心法尤其适用于处理关于峰值位置对称的光点信号。
本实施例中,透镜7为聚焦透镜,选用聚焦透镜波长范围是1060nm-1570nm,由光源1发出的光信号的中心波长是1550nm,经过三端口光纤耦合器传输到第一啁啾光纤光栅3中,第一啁啾光纤光栅的中心波长是1550nm,带宽是30nm,由于第一啁啾光纤光栅具有一定的带宽,将波长从1435nm到1565nm的光反射回三端口光纤耦合器2,使得在三端口光纤耦合器第二输出端203中输出的光具有了色散特性,通过测量装置中的针孔6将光输入到透镜7上,再经过透镜7之后,聚焦到被测物8表面上,满足共焦条件的波长的光才可以沿原光路返回,通过针孔6被光谱仪11感测到;由传感器接收被感测到的波长信号,根据波长换算成为对应的距离值,从而确定每个单色光波长对应的相应位置;选择第二啁啾光纤光栅9的带宽同样为30nm,中心波长同样为1550nm。通过对光谱仪11检测获得的光谱信号的计算和分析,根据上面的式(1)到式(3)实现对被测物8的位置测量。
本实施例中,被测物8距离透镜7的位置从5um到55um中等间距的选取各点,利用本发明基于啁啾光纤光栅的光谱共焦位移传感器的对被测物8进行测量,获得的测量结果如表1所示
表1
标准位移(um) 谱峰波长(nm) 计算位移(um) 位移偏差(um)
5 1436 5.7 0.7
15 1440 15.7 0.7
25 1444 26.1 1.1
35 1450 35.8 0.8
45 1550 45.7 0.7
55 1560 55.4 0.4
表1可见,基于啁啾光纤光栅的光谱共焦位移传感器能够精确的计算出被测物的位置,实现对被测物的定位,表1示出,引入啁啾光纤光栅的光谱共焦位移传感器测量系统,其测量范围是从5um到55um之间,被测物的实际位置和实验测得的位置有很好的吻合,最大位移偏差为1.1um,最小位移偏差只有0.4um;由表1可见,本发明传感器能够实现被测物位置的精确测量,实现对被测物的定位,具有较大的测量范围和较小的测量偏差,其最小的测量位移可以达到5um,具有较高的系统分辨力。

Claims (3)

1.一种基于啁啾光纤光栅的光谱共焦位移传感器,其特征是:
在所述传感器中设置光谱色散共焦检测系统,系统构成包括:光源(1)、三端口光纤环形器(2)、第一啁啾光纤光栅(3)、第一光纤隔离器(4)、四端口光纤环形器(5)、针孔(6)、透镜(7)、被测物(8)、第二啁啾光纤光栅(9)、第二光纤隔离器(10)和光谱仪(11);
所述光源(1)的输出端与三端口光纤环形器输入端(201)相连接,三端口光纤环形器第一输出端(202)连接第一啁啾光纤光栅输入端,三端口光纤环形器第二输出(203)与四端口光纤环形器输入端(501)相连接,四端口环形器第一输出端口(502)的输出信号依次经针孔(6)和透镜(7)投向被测物(8),以透镜(7)代替色散物镜,四端口光纤环形器第二输出端(503)连接第二啁啾光纤光栅的输入端,在四端口光纤环形器第三输出端(504)设置光谱仪(11);
设置所述第一啁啾光纤光栅(3)的带宽为(λn1),波长为λn、....、λ2和λ1的光经第一啁啾光纤光栅(3)反射至三端口光纤耦合器(2),经第一啁啾光纤光栅(3)反射在三端口光纤耦合器(2)的光在波长为λn、....、λ2和λ1的范围内具有色散特性;
设置所述第二啁啾光纤光栅(9)的带宽为(λn1),由所述第二啁啾光纤光栅(9)将波长为λn、...、λ2和λ1光反射至四端口光纤环形器(5),并经四端口光纤环形器第三输出端(504)输出至光谱仪(11),以所述光谱仪(11)检测获得光谱信号为传感器输出信号;
按如下方式获得波长为λ的光信号经透镜(7)在被测物(8)的表面形成聚焦的焦点位置和焦距f:
由光谱仪(11)检测获得的光谱信号Ireal(λ)由式(1)所表征:
Ireal(λ)=I(λ)S(λ)O(λ)D(λ) (1)
式(1)中:
Ireal(λ)为系统中朝向光谱仪(11)出射的实际光谱信号;
I(λ)为系统中朝向光谱仪(11)出射的理想光谱信号;
S(λ)为光源的单色光强影响因子,O(λ)为被测物的单色光强影响因子;
D(λ)为色散共焦检测系统的单色光光强的影响因子;
依据实际光谱信号Ireal(λ),由式(1)计算获得波长λ;并利用由式(1)计算获得的波长λ根据式(2)计算获得波长为λ的光信号经透镜(7)在被测物(8)的表面形成聚焦的焦点位置和焦距f:
Figure FDA0002821064120000011
式(2)中:
R1为透镜(7)朝向针孔一侧的表面曲率,
R2为透镜(7)朝向被测物一侧的表面曲率;
n(λ)是波长为λ的光在透镜(7)中的折射率。
2.根据权利要求1所述的基于啁啾光纤光栅的光谱共焦位移传感器,其特征是:
针对由光谱仪(11)所获得的光谱信号,按式(3)对光谱峰值位置进行定位:
Figure FDA0002821064120000021
式(3)中:
x为被测物的质心位置,t表示光谱仪中CCD上的第t个像元,It为第t个像元上的灰度值,m是指光谱仪中CCD上的第m个像元,m为任意取值的正整数。
3.根据权利要求1所述的基于啁啾光纤光栅的光谱共焦位移传感器,其特征是:在所述第一啁啾光纤光栅(3)的输出端设置第一光纤隔离器(4);在所述第二啁啾光纤光栅(9)的输出端设置第二光纤隔离器(10)。
CN201910918739.3A 2019-09-26 2019-09-26 一种基于啁啾光纤光栅的光谱共焦位移传感器 Active CN110567379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910918739.3A CN110567379B (zh) 2019-09-26 2019-09-26 一种基于啁啾光纤光栅的光谱共焦位移传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910918739.3A CN110567379B (zh) 2019-09-26 2019-09-26 一种基于啁啾光纤光栅的光谱共焦位移传感器

Publications (2)

Publication Number Publication Date
CN110567379A CN110567379A (zh) 2019-12-13
CN110567379B true CN110567379B (zh) 2021-03-30

Family

ID=68782613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910918739.3A Active CN110567379B (zh) 2019-09-26 2019-09-26 一种基于啁啾光纤光栅的光谱共焦位移传感器

Country Status (1)

Country Link
CN (1) CN110567379B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729122B (zh) * 2020-12-02 2022-09-27 北京信息科技大学 一种基于飞秒激光直写倾斜啁啾光纤光栅传感器测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278919A (zh) * 2013-05-28 2013-09-04 上海理工大学 一种彩色立体区域共焦显微成像方法
CN105992929A (zh) * 2013-11-29 2016-10-05 微-埃普西龙测量技术有限两合公司 用于非接触式光学测距的装置
CN107024816A (zh) * 2017-04-21 2017-08-08 上海理工大学 高阶色散补偿啁啾光谱展宽系统
CN107064946A (zh) * 2017-05-08 2017-08-18 哈尔滨工业大学 用于连续散射介质中目标探测的全光脉冲压缩激光雷达系统及测距方法
CN109286125A (zh) * 2018-11-16 2019-01-29 青岛自贸激光科技有限公司 一种高效的啁啾脉冲放大系统
CN208721004U (zh) * 2018-08-31 2019-04-09 天津大学 基于波长扫描的光谱共焦位移测量装置
CN109974757A (zh) * 2019-04-11 2019-07-05 南京聚科光电技术有限公司 基于内调制脉冲和啁啾光栅的分布式光纤传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278919A (zh) * 2013-05-28 2013-09-04 上海理工大学 一种彩色立体区域共焦显微成像方法
CN105992929A (zh) * 2013-11-29 2016-10-05 微-埃普西龙测量技术有限两合公司 用于非接触式光学测距的装置
CN107024816A (zh) * 2017-04-21 2017-08-08 上海理工大学 高阶色散补偿啁啾光谱展宽系统
CN107064946A (zh) * 2017-05-08 2017-08-18 哈尔滨工业大学 用于连续散射介质中目标探测的全光脉冲压缩激光雷达系统及测距方法
CN208721004U (zh) * 2018-08-31 2019-04-09 天津大学 基于波长扫描的光谱共焦位移测量装置
CN109286125A (zh) * 2018-11-16 2019-01-29 青岛自贸激光科技有限公司 一种高效的啁啾脉冲放大系统
CN109974757A (zh) * 2019-04-11 2019-07-05 南京聚科光电技术有限公司 基于内调制脉冲和啁啾光栅的分布式光纤传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
long-distance intrusion sensor based on phase sensitivity optical time domain reflectometry;zhang chunxi 等;《infrared and laser Engineering》;20150228;全文 *
基于光谱控制与色散优化的飞秒啁啾脉冲放大系统;牛佳 等;《中国激光》;20200131;全文 *

Also Published As

Publication number Publication date
CN110567379A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN101872064B (zh) 线型多波长共焦显微镜模块以及其共焦显微方法与系统
CN109781015B (zh) 一种光谱共焦线扫描快速测量物体表面台阶的方法
CN102650515B (zh) 带扩展的测量范围的彩色共焦点传感器光笔
CN101617935B (zh) Oct中基于时空分光的宽光谱高分辨探测方法及系统
CN106802129A (zh) 一种高分辨力与自校准光谱共焦位移测量系统
CN109163662A (zh) 基于波长扫描的光谱共焦位移测量方法及装置
CN113375572B (zh) 光谱共焦法实现grin透镜厚度的测量方法及测量系统
CN112325765B (zh) 一种面阵点扫描分光白光干涉仪
CN111999042B (zh) 检测光学系统任意波长透射波前的方法
CN109211415A (zh) 一种基于光源光谱特征波长的波长标定方法
CN113513994A (zh) 一种大量程的光谱共焦位移检测装置
CN110567379B (zh) 一种基于啁啾光纤光栅的光谱共焦位移传感器
CN208721004U (zh) 基于波长扫描的光谱共焦位移测量装置
CN115597711B (zh) 一种光谱仪及其光路设计方法
CN113203706B (zh) 一种线扫描分光白光干涉仪
CN113834421B (zh) 一种成像镜组及应用该成像镜组的干涉仪
CN104568777A (zh) 基于频谱编码的共焦显微成像装置及方法
CN110006356B (zh) 基于ss-oct间距测量系统中的实时标定装置和方法
CN113984715A (zh) 相干断层扫描装置及方法
Ma et al. Compact powell-lens-based low-coherence correlation interrogation system for fiber-optic fabry-perot sensors
CN105181605A (zh) 一种基于布拉格反射效应的光谱仪
CN217060621U (zh) 光学系统、色散物镜及光谱共焦传感器
CN215375943U (zh) 一种光学系统、色散物镜及光谱共焦传感器
CN112461365B (zh) 弯曲狭缝成像光谱仪
CN110307963A (zh) 检测透射式光学系统任意波长焦距的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant