CN109974757A - 基于内调制脉冲和啁啾光栅的分布式光纤传感器 - Google Patents

基于内调制脉冲和啁啾光栅的分布式光纤传感器 Download PDF

Info

Publication number
CN109974757A
CN109974757A CN201910287853.0A CN201910287853A CN109974757A CN 109974757 A CN109974757 A CN 109974757A CN 201910287853 A CN201910287853 A CN 201910287853A CN 109974757 A CN109974757 A CN 109974757A
Authority
CN
China
Prior art keywords
port
chirped
pulse
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910287853.0A
Other languages
English (en)
Other versions
CN109974757B (zh
Inventor
魏韦
周浩敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Poly Photoelectric Technology Co Ltd
Original Assignee
Nanjing Poly Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Poly Photoelectric Technology Co Ltd filed Critical Nanjing Poly Photoelectric Technology Co Ltd
Priority to CN201910287853.0A priority Critical patent/CN109974757B/zh
Publication of CN109974757A publication Critical patent/CN109974757A/zh
Application granted granted Critical
Publication of CN109974757B publication Critical patent/CN109974757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Abstract

本发明公开基于内调制脉冲和啁啾光栅的分布式光纤传感器,包括半导体激光器、光放大器、第一光纤环形器、第二光纤环形器、啁啾光纤光栅、光电探测器以及信号处理器:所述半导体激光器,经过电流调制后的啁啾光脉冲由其输出端口输出,所述半导体激光器的输出端口与光放大器的输入端口相连,所述光放大器对啁啾光脉冲进行放大,并由光放大器的输出端口输出,进入第一光纤环形器的第一端口,由第一光纤环形器的第二端口进入所述传感光纤,所述传感光纤中散射回的信号经过所述第一光纤环形器的第二端口进入其第三端口。本发明系统结构简单,成本较低,易于实施。

Description

基于内调制脉冲和啁啾光栅的分布式光纤传感器
技术领域
本发明属于光纤的技术领域,具体涉及基于内调制脉冲和啁啾光栅的分布式光纤传感器
背景技术
光纤传感器具有抗电磁干扰能力强,非侵入性,容易实现对被测信号的远距离监控,耐腐蚀,防爆,光路有可挠曲性,便于与光纤系统连接等优势。近年来,被广泛应用于天然气、石油管道安全监测,桥梁裂纹监测,气体浓度探测、边界安防等领域。
相位敏感光时域反射计(Φ-OTDR)是一种新型的分布式光纤声音传感技术(DAS),利用光纤中的后向瑞利散射,可以实现分布式动态检测。常规Φ-OTDR中,空间分辨率与信噪比、传感距离之间存在矛盾的关系,要获得更高的空间分辨率,需要压窄脉冲宽度,由于受激布里渊散射等非线性效应,光脉冲功率不能无限放大,压窄脉冲宽度会导致系统信噪比和传感距离降低。常规Φ-OTDR中,在传感距离大于十千米时,传感空间分辨率只能达到几米~几十米。
文献【Bin Lu,Zhengqing Pan,et al.High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J].Opt Lett,2017,42(3):391-394.】中提出利用扫频脉冲和匹配滤波技术可以解决传感距离与空间分辨率之间的矛盾关系,并且能够在传感距离约为20km时,实现亚米级空间分辨率。其主要是在数字域进行匹配滤波,在数字域设计与扫频脉冲满足复共轭关系的啁啾信号,通过卷积运算,可见扫频脉冲压缩成窄脉冲。该方案整体结构比较复杂,对探测器和数字信号处理带宽要求较高,有待进行系统优化。
文献【Pastor-Graells J.,Cortés L.R.,Fernández-Ruiz M.R.,et al.SNRenhancement in high-resolution phase-sensitive OTDR systems using chirpedpulse amplification concepts[J].Opt Lett,2017,42(9):1728-31.】中提出利用飞秒脉冲激光器作为传感光源,通过啁啾光纤光栅对飞秒脉冲光进行脉宽展宽,然后进行光放大,并在接收端通过另一组啁啾光纤光栅进行脉冲压缩,可实现厘米级空间分辨率,且提高系统的信噪比。其中,前后两组啁啾光纤光栅的色散满足复共轭的关系。但是,该系统的传感距离仅能达到几米,且飞秒脉冲激光器的成本较高。
发明内容
发明目的:本发明目的在于针对现有技术的不足,提供基于内调制脉冲和啁啾光栅的分布式光纤传感器。
技术方案:本发明所述基于内调制脉冲和啁啾光栅的分布式光纤传感器,包括半导体激光器、光放大器、第一光纤环形器、第二光纤环形器、啁啾光纤光栅、光电探测器以及信号处理器:所述半导体激光器,经过电流调制后的啁啾光脉冲由其输出端口输出,所述半导体激光器的输出端口与光放大器的输入端口相连,所述光放大器对啁啾光脉冲进行放大,并由光放大器的输出端口输出,进入第一光纤环形器的第一端口,由第一光纤环形器的第二端口进入所述传感光纤,所述传感光纤中散射回的信号经过所述第一光纤环形器的第二端口进入其第三端口,所述第三端口与所述第二光纤环形器的第一端口相连,由所述第二光纤环形器的第二端口进入所述啁啾光纤光栅,所述啁啾光纤光栅反射回的光经过第二端口进入其第三端口,所述第三端口与所述光电探测器的光输入端口相连,所述光电探测器的电学输出端口与所述信号处理器相连。
优选地,所述半导体激光器通过电流直接调制产生啁啾光脉冲。
优选地,所述半导体激光器包括分布式反馈激光器,所述分布式反馈激光器通过电流直接调制产生啁啾光脉冲,其连续光输出时波长为1550mm。
优选地,所述啁啾光纤光栅为大啁啾系数光栅或多啁啾光纤级联,啁啾光纤光栅的色散特性与所述半导体激光器内调制产生的啁啾光脉冲满足复共轭的关系。
优选地,所述啁啾光脉冲的频率变化特性为Ep=E0rect(t/T)exp(j2πfct+jπKt2),则啁啾光纤光栅的响应函数可表示为其中T是脉冲宽度,fc是载波频率,K是LFM脉冲的调频斜率,rect(t/T)是矩形函数;匹配滤波后,宽脉冲被压缩为sinc型窄脉冲,sinc脉冲的3dB宽度与啁啾光脉冲的扫频范围成反比,即而与啁啾光脉冲宽度无关,可克服空间分辨率与脉冲宽度之间的依赖关系,进而解决空间分辨率与信噪比、传感距离之间的矛盾关系;通过啁啾宽脉冲和啁啾光纤光栅脉冲压缩,可以同时获得高空间分辨率、高信噪比和长传感距离。
优选地,所述光放大器包括掺铒光纤放大器和半导体光放大器,以实现对啁啾光脉冲光的放大。
优选地,所述传感光纤采用G652普通单模光纤,其损耗参数为0.35dB/km@1310nm,0.2dB/km@1550nm。
优选地,所述光电探测器为光电二极管或雪崩光电二极管,对探测光进行光电转换,将光信号转换为电信号。
有益效果:(1)本发明所述分布式光纤传感器系统结构简单,成本较低,易于实施;本发明利用啁啾光脉冲,有效增加注入传感光纤中的脉冲光能量,提高探测信号的信噪比和传感距离;
(2)本发明利用啁啾光纤光栅对散射信号进行匹配滤波,宽脉冲可压缩成窄脉冲,提升系统的空间分辨率,并克服空间分辨率与脉冲宽度之间的依赖关系,以及克服常规Φ-OTDR中空间分辨率与信噪比、传感距离之间的矛盾关系,同时提高多项指标,通过啁啾宽脉冲和啁啾光纤光栅脉冲压缩,可以同时获得高空间分辨率、高信噪比和长传感距离。
附图说明
图1为本发明所述分布式光纤传感器的结构框图;
图2为实施例中啁啾光脉冲的频率变化特性测量装置示意图;
图3为本发明所述多啁啾光栅级联提高色散系数示意图。
其中,1-半导体激光器;2-光放大器;3-第一光纤环形器;4-第二光纤环形器;5-布拉格光纤光栅;6-光电探测器;7-信号处理器;8-传感光纤;9-耦合器;10-单频激光器;11-示波器。
具体实施方式
下面通过附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例:基于内调制脉冲和啁啾光栅的分布式光纤传感器,根据附图1中所示,分布式光纤传感器包括半导体激光器1、光放大器2、第一光纤环形器3、第二光纤环形器4、啁啾光纤光栅5、光电探测器6以及信号处理器7:半导体激光器1包括分布式反馈激光器,分布式反馈激光器通过电流直接调制产生啁啾光脉冲,其连续光输出时波长为1550mm,半导体激光器1,经过电流调制后的啁啾光脉冲由其输出端口11输出,半导体激光器1的输出端口11与光放大器2的输入端口21相连,光放大器2包括掺铒光纤放大器和半导体光放大器,以实现对啁啾光脉冲光的放大,光放大器2对啁啾光脉冲进行放大,并由光放大器2的输出端口22输出,进入第一光纤环形器3的第一端口31,由第一光纤环形器3的第二端口32进入传感光纤8,传感光纤8采用G652普通单模光纤,其损耗参数为0.35dB/km@1310nm,0.2dB/km@1550nm,传感光纤8中散射回的信号经过第一光纤环形器3的第二端口32进入其第三端口33,第三端口33与第二光纤环形器4的第一端口41相连,由第二光纤环形器4的第二端口42进入啁啾光纤光栅5,啁啾光纤光栅5为大啁啾系数光栅或多啁啾光纤级联,多啁啾光栅级联方式如附图3所示,啁啾光纤光栅5的色散特性与半导体激光器1内调制产生的啁啾光脉冲满足复共轭的关系;啁啾光纤光栅5反射回的光经过第二端口42进入其第三端口43,第三端口43与光电探测器6的光输入端口61相连,光电探测器6为光电二极管或雪崩光电二极管,对探测光进行光电转换,将光信号转换为电信号,光电探测器6作为接收器,直接对光纤中的散射光进行强度探测,光电探测器6的电学输出端口62与信号处理器7相连。
其中,第一光纤环形器3和第二光纤环形器4为标准3端口环形器。
本发明的基本原理为:
1、通过脉冲信号对半导体激光器1驱动电流进行直接调制,由于半导体激光器1的特性,直接调制会产生频率啁啾,其啁啾范围为GHz量级,半导体激光器1调制出的啁啾光脉冲的频率变化特性可以通过与一台稳频、频段相近、窄线宽激光1拍频的方式,经光电探测器6转换后,通过高速示波器11测量得到,如图2所示,啁啾光脉冲的频率变化特性测量装置包括半导体激光器1和单频激光器10,半导体激光器1和参考单频激光器10与同一耦合器9相连,耦合器9与光电探测器6相连,光电探测器6与示波器11相连。
2、啁啾光脉冲经过掺铒光纤放大器进行放大,由于多频率成分的存在,受激布里渊散射阈值会提高,注入光纤中的光能量得以提升,且可以通过增加脉冲宽度进一步提高注入光纤中的能量,提高信噪比。
3、传感光纤中散射回来的信号,经过设计的特定啁啾光纤光栅5进行脉冲压缩,啁啾光脉冲的扫频方式一般是非线性的,也可以通过频段筛选选择线性变化的区间,啁啾光纤光栅5的色散特性设计要满足与啁啾光脉冲扫频特性成复共轭的关系。假设测得的啁啾光脉冲的频率变化特性为Ep=E0rect(t/T)exp(j2πfct+jπKt2),则啁啾光纤光栅的响应函数可表示为其中T是脉冲宽度,fc是载波频率,K是LFM脉冲的调频斜率,rect(t/T)是矩形函数;匹配滤波后,宽脉冲被压缩为sinc型窄脉冲,sinc脉冲的3dB宽度与啁啾光脉冲的扫频范围成反比,即:而与啁啾光脉冲宽度无关,可克服空间分辨率与脉冲宽度之间的依赖关系,进而解决空间分辨率与信噪比、传感距离之间的矛盾关系;通过啁啾宽脉冲和啁啾光纤光栅脉冲压缩,可以同时获得高空间分辨率、高信噪比和长传感距离;所述的啁啾光纤光栅为大啁啾系数光栅或多啁啾光栅级联的方式,如图3所示。
4、压缩后的光信号经过光电探测器6后,通过数字采集卡将模拟信号转化为数字信号在信号处理器7中进行下一步处理。
以上技术方案可以实现基于内调制脉冲和啁啾光栅的高空间分辨率高信噪比分布式光纤传感器。虽然参照上述具体实施例详细地描述了本发明,但是应该理解本发明并不限于所公开的实施方式和实施例,对于本专业领域技术人员来说,可对其形式和细节进行各种改变。例如激光器的工作波段可以替换为其它波段;环形器可用耦合器替代等。所应理解的是,以上所述仅为本发明的具体实例而已,并不用于限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (8)

1.基于内调制脉冲和啁啾光栅的分布式光纤传感器,其特征在于:包括半导体激光器(1)、光放大器(2)、第一光纤环形器(3)、第二光纤环形器(4)、啁啾光纤光栅(5)、光电探测器(6)以及信号处理器(7):所述半导体激光器(1),经过电流调制后的啁啾光脉冲由其输出端口(11)输出,所述半导体激光器(1)的输出端口(11)与光放大器(2)的输入端口(21)相连,所述光放大器(2)对啁啾光脉冲进行放大,并由光放大器(2)的输出端口(22)输出,进入第一光纤环形器(3)的第一端口(31),由第一光纤环形器(3)的第二端口(32)进入所述传感光纤(8),所述传感光纤(8)中散射回的信号经过所述第一光纤环形器(3)的第二端口(32)进入其第三端口(33),所述第三端口(33)与所述第二光纤环形器(4)的第一端口(41)相连,由所述第二光纤环形器(4)的第二端口(42)进入所述啁啾光纤光栅(5),所述啁啾光纤光栅反射回的光经过第二端口(42)进入其第三端口(43),所述第三端口(43)与所述光电探测器(6)的光输入端口(61)相连,所述光电探测器(6)的电学输出端口(62)与所述信号处理器(7)相连。
2.根据权利要求1所述的分布式光纤传感器,其特征在于:所述半导体激光器(1)通过电流直接调制产生啁啾光脉冲。
3.根据权利要求2所述的分布式光纤传感器,其特征在于:所述半导体激光器(1)包括分布式反馈激光器,所述分布式反馈激光器通过电流直接调制产生啁啾光脉冲,其连续光输出时波长为1550mm。
4.根据权利要求1所述的分布式光纤传感器,其特征在于:所述啁啾光纤光栅(5)为大啁啾系数光栅或多啁啾光纤级联,啁啾光纤光栅(5)的色散特性与所述半导体激光器(1)内调制产生的啁啾光脉冲满足复共轭的关系。
5.根据权利要求4所述的分布式光纤传感器,其特征在于:所述啁啾光脉冲的频率变化特性为Ep=E0rect(t/T)exp(j2πfct+jπKt2),则啁啾光纤光栅的响应函数可表示为其中T是脉冲宽度,fc是载波频率,K是LFM脉冲的调频斜率,rect(t/T)是矩形函数;匹配滤波后,宽脉冲被压缩为sinc型窄脉冲,sinc脉冲的3dB宽度与啁啾光脉冲的扫频范围成反比,即
6.根据权利要求1所述的分布式光纤传感器,其特征在于:所述光放大器(2)包括掺铒光纤放大器和半导体光放大器,以实现对啁啾光脉冲光的放大。
7.根据权利要求1所述的分布式光纤传感器,其特征在于:所述传感光纤(8)采用G652普通单模光纤,其损耗参数为0.35dB/km@1310nm,0.2dB/km@1550nm。
8.根据权利要求1所述的分布式光纤传感器,其特征在于:所述光电探测器(6)为光电二极管或雪崩光电二极管,对探测光进行光电转换,将光信号转换为电信号。
CN201910287853.0A 2019-04-11 2019-04-11 基于内调制脉冲和啁啾光栅的分布式光纤传感器 Active CN109974757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910287853.0A CN109974757B (zh) 2019-04-11 2019-04-11 基于内调制脉冲和啁啾光栅的分布式光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910287853.0A CN109974757B (zh) 2019-04-11 2019-04-11 基于内调制脉冲和啁啾光栅的分布式光纤传感器

Publications (2)

Publication Number Publication Date
CN109974757A true CN109974757A (zh) 2019-07-05
CN109974757B CN109974757B (zh) 2021-03-23

Family

ID=67084089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910287853.0A Active CN109974757B (zh) 2019-04-11 2019-04-11 基于内调制脉冲和啁啾光栅的分布式光纤传感器

Country Status (1)

Country Link
CN (1) CN109974757B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567379A (zh) * 2019-09-26 2019-12-13 合肥工业大学 一种基于啁啾光纤光栅的光谱共焦位移传感器
CN111609875A (zh) * 2020-06-10 2020-09-01 电子科技大学 一种基于啁啾连续光的数字域可调分布式光纤传感系统及其传感方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093788A1 (en) * 2011-12-20 2013-06-27 Ecole Polytechnique Federale De Lausanne (Epfl) Fiber sensing system based on a bragg grating and optical time domain reflectometry
CN103314276A (zh) * 2010-12-22 2013-09-18 奥姆尼森股份公司 布里渊光电测量方法和设备
CN103471812A (zh) * 2013-07-15 2013-12-25 武汉理工大学 弱光栅检测装置及其检测方法
CN104254952A (zh) * 2012-01-06 2014-12-31 以卡尔马激光名义经营的卡尔马光通信公司 基于两级脉冲处理生成超短激光脉冲
CN108917804A (zh) * 2018-09-03 2018-11-30 哈尔滨工业大学 基于啁啾链的快速长距离分布式布里渊光纤传感装置
CN109238355A (zh) * 2018-08-30 2019-01-18 武汉理工大学 光纤分布式动静态参量同时传感测量的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314276A (zh) * 2010-12-22 2013-09-18 奥姆尼森股份公司 布里渊光电测量方法和设备
WO2013093788A1 (en) * 2011-12-20 2013-06-27 Ecole Polytechnique Federale De Lausanne (Epfl) Fiber sensing system based on a bragg grating and optical time domain reflectometry
CN104254952A (zh) * 2012-01-06 2014-12-31 以卡尔马激光名义经营的卡尔马光通信公司 基于两级脉冲处理生成超短激光脉冲
CN103471812A (zh) * 2013-07-15 2013-12-25 武汉理工大学 弱光栅检测装置及其检测方法
CN109238355A (zh) * 2018-08-30 2019-01-18 武汉理工大学 光纤分布式动静态参量同时传感测量的装置及方法
CN108917804A (zh) * 2018-09-03 2018-11-30 哈尔滨工业大学 基于啁啾链的快速长距离分布式布里渊光纤传感装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUAN PASTOR-GRAELLS: "Impact of the laser phase noise on chirped-pulse phase-sensitive OTDR", 《2017 25TH OPTICAL FIBER SENSORS CONFERENCE (OFS)》 *
刘景旺: "DFB激光器的调谐动态特性及测量方法研究", 《中国博士学位论文全文数据库 信息科技辑》 *
卢斌等: "高空间分辨率长距离分布式光纤振动传感系统", 《中国激光》 *
潘越: "基于多频Φ-OTDR的分布式光纤传感技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567379A (zh) * 2019-09-26 2019-12-13 合肥工业大学 一种基于啁啾光纤光栅的光谱共焦位移传感器
CN110567379B (zh) * 2019-09-26 2021-03-30 合肥工业大学 一种基于啁啾光纤光栅的光谱共焦位移传感器
CN111609875A (zh) * 2020-06-10 2020-09-01 电子科技大学 一种基于啁啾连续光的数字域可调分布式光纤传感系统及其传感方法
CN111609875B (zh) * 2020-06-10 2021-12-28 电子科技大学 基于啁啾连续光的数字域可调分布式光纤传感系统及方法

Also Published As

Publication number Publication date
CN109974757B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN102506904B (zh) 一种基于超导纳米线单光子探测器的自发布里渊散射光时域反射仪
CN103152097B (zh) 一种采用随机激光放大的偏振及相位敏感光时域反射计
EP2183624B1 (en) Distributed optical fiber sensor system
CN105806465B (zh) 一种基于固定反射点的新型φ-otdr探测装置及其探测方法
CN107917738A (zh) 一种同时测量温度、应变和振动的分布式光纤传感系统
CN108180853B (zh) 一种基于混沌调制的布里渊光时域反射应变检测装置
Healey Instrumentation principles for optical time domain reflectometry
CN106248119A (zh) 一种分布式超高速扰动定量检测方法及装置
CN106525096B (zh) 一种布里渊分布式光纤传感器及减小增益谱线宽方法
CN110375800B (zh) 一种基于超连续谱布里渊光时域分析器的传感装置及方法
CN101650197A (zh) 一种光频域反射光纤传感系统
CN203310428U (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN110220470A (zh) 基于瑞利散射的单端混沌布里渊动态应变测量装置及方法
CN102829811A (zh) 基于光梳和编码技术提高botda检测速度的方法
CN109297425A (zh) 一种物理随机数调制的布里渊光时域反射仪
CN108917804A (zh) 基于啁啾链的快速长距离分布式布里渊光纤传感装置
CN103323041A (zh) 一种基于相干检测的分布式布里渊光纤传感系统
CN105716638A (zh) 一种基于光开关产生互补光的新型cotdr探测装置及实现方法
CN109163748A (zh) 基于捷变频技术的单端动态分布式布里渊反射装置及方法
CN103837165A (zh) 基于布里渊激光器和自外差检测的布里渊时域分析系统
CN109974757A (zh) 基于内调制脉冲和啁啾光栅的分布式光纤传感器
CN104111086A (zh) 基于低布里渊散射阈值传感光纤的光时域反射仪的装置与方法
CN111623902B (zh) 基于强度调制啁啾脉冲压缩的分布式光纤拉曼温度传感器
CN110375960A (zh) 一种基于超连续谱光源otdr的装置及方法
CN109781156A (zh) 基于布里渊增益谱调制的botda系统及其传感方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant