CN110566367B - 一种降低双脉冲固体发动机隔层应变的燃烧室 - Google Patents

一种降低双脉冲固体发动机隔层应变的燃烧室 Download PDF

Info

Publication number
CN110566367B
CN110566367B CN201910769154.XA CN201910769154A CN110566367B CN 110566367 B CN110566367 B CN 110566367B CN 201910769154 A CN201910769154 A CN 201910769154A CN 110566367 B CN110566367 B CN 110566367B
Authority
CN
China
Prior art keywords
interlayer
engine
pulse
grain
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910769154.XA
Other languages
English (en)
Other versions
CN110566367A (zh
Inventor
李青频
郭运强
张翔宇
利凤祥
甘晓松
黄薇薇
张飞
薛太旭
赵康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Propulsion Institute
Original Assignee
Xian Aerospace Propulsion Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Propulsion Institute filed Critical Xian Aerospace Propulsion Institute
Priority to CN201910769154.XA priority Critical patent/CN110566367B/zh
Publication of CN110566367A publication Critical patent/CN110566367A/zh
Application granted granted Critical
Publication of CN110566367B publication Critical patent/CN110566367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/10Shape or structure of solid propellant charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • F02K9/346Liners, e.g. inhibitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

本发明公开了一种降低双脉冲固体发动机隔层应变的燃烧室,包括隔层、绝热层、药柱和壳体;药柱设置在壳体内,药柱与壳体之间设置绝热层,隔层将药柱沿轴向分隔成两段;前端药柱与后端药柱相对的端面上设置环形槽,该隔层与前端药柱端面形状匹配。本发明能够降低径向隔层环向应变。

Description

一种降低双脉冲固体发动机隔层应变的燃烧室
技术领域
本发明涉及双脉冲固体发动机技术领域,具体涉及一种降低双脉冲固体发动机隔层应变的燃烧室。
背景技术
新一代战术导弹武器,特别是防空反导导弹,要求固体发动机具备更为灵活的能量管理能力。双脉冲固体发动机因其能量管理的优势,使导弹射程更远、末速度更大、机动性更高。通过设计Ⅰ/Ⅱ脉冲工作时间和脉冲间隔时间,可对发动机工作全程的能量进行有效分配,提高导弹的作战效能。
双脉冲固体发动机分为隔舱式和隔层式两类。隔舱式双脉冲固体发动机采用刚性硬隔离方式,通过隔舱将发动机沿轴向分隔成两个燃烧室,隔舱作为发动机的独立承力结构承担Ⅰ脉冲燃烧室的工作压强。隔层式双脉冲固体发动机采用柔性软隔离方式,通过隔层将发动机燃烧室内的药柱分隔成两部分,隔层不作为发动机的独立承力结构,需要借助Ⅱ脉冲药柱7和绝热壳体来承担Ⅰ脉冲燃烧室工作压强,同时还要起隔热和密封作用。
与隔舱式双脉冲发动机相比,隔层式双脉冲发动机具有消极质量轻、质量比高的优点。但隔层式双脉冲发动机也有自身的缺点,其使用温度下限通常比隔舱式双脉冲发动机要高,且低温下隔层安全系数低。对于隔层式双脉冲固体发动机,随着使用发动机使用温度降低,隔层应变增大,隔层材料的断裂应变减小,当隔层应变超过隔层材料的断裂应变,隔层将会发生破坏,造成隔层失效导致Ⅰ/Ⅱ脉冲药柱之间贯通,Ⅰ/Ⅱ脉冲药柱同时燃烧,燃烧室压强急剧上升,当燃烧室压强超过发动机壳体10爆破压强,发动机爆炸。
对于隔层式双脉冲发动机,径向隔层4的环向应变超过径向隔层4材料的断裂应变是最常见的隔层破坏原因。目前的隔层式双脉冲固体发动机往往通过提高隔层材料在低温(-40℃)下断裂应变的方法来保证隔层在低温下正常工作。隔层的主要功能是抗烧蚀和隔热,因此隔层材料通常选择绝热材料,而绝热材料在低温下(-40℃)的断裂应变较小,提高绝热材料的断裂应变将极大增加了研制成本和周期。
常规隔层式双脉冲固体发动机结构如图1所示,包括Ⅰ脉冲点火器1、顶盖2、Ⅱ脉冲点火器3、径向隔层4、绝热层5、人工脱粘层6、Ⅱ脉冲药柱7、轴向隔层8、Ⅰ脉冲药柱9、壳体10和喷管11。在发动机Ⅰ脉冲药柱9工作过程中,隔层需要承受高温和高压环境,高压环境会使径向隔层4产生较大的环向应变,径向隔层4的环向应变可由公式(1)确定,式中:ε为径向隔层4上任意一点的应变,u为该点的径向位移,r为该点的半径。常规燃烧室利用人工脱粘层6释放应力。
Figure BDA0002172986290000021
径向隔层4的径向位移由两部分构成:第一部分是随着发动机使用温度降低,径向隔层4和Ⅱ脉冲药柱7收缩变形,径向隔层4和Ⅱ脉冲药柱7中孔产生间隙,当发动机Ⅰ脉冲药柱9刚被Ⅰ脉冲点火器1引燃,很小的压强(通常在0.1~0.2MPa)作用下下径向隔层4就会发生变形紧贴Ⅱ脉冲药柱7,径向隔层4的径向位移为U,U随着发动机工作温度降低而增大;第二部分是随着压强的增大,隔层和药柱继续变形,直到达到平衡状态(发动机Ⅰ脉冲工作压强达到最大值,通常为10~20MPa),径向隔层4从紧贴Ⅱ脉冲药柱7到达到平衡状态所产生的径向位移为U',U'随着发动机工作温度降低而减小。径向隔层4的总径向位移为U+U',由于U的增加量远大于U'的减少量,U+U'随着发动机工作温度降低而增加,当径向隔层4最大环向应变超过该温度下径向隔层4材料的断裂应变,径向隔层4将发生破坏。
发明内容
有鉴于此,本发明提供了一种降低双脉冲固体发动机隔层应变的燃烧室,能够降低径向隔层环向应变。
本发明的具体实施方案如下:
一种降低双脉冲固体发动机隔层应变的燃烧室,包括隔层、绝热层、药柱和壳体;
药柱设置在壳体内,药柱与壳体之间设置绝热层,隔层将药柱沿轴向分隔成两段;前端药柱与后端药柱相对的端面上设置环形槽,所述隔层与前端药柱端面形状匹配。
进一步地,所述环形槽是由平面曲线绕发动机中心轴线旋转360°形成的旋转体,所述平面曲线由两段平行于中心轴线的等长平行线段和连接两条平行线段的弧线构成。
进一步地,所述弧线为半圆。
进一步地,所述平行线段长度为L,半圆半径为R,环形槽与前端药柱外圆面的径向距离为H,利用优化算法确定L、R、H,优化目标是使发动机最低工作温度下径向隔层的环向应变最小,约束条件是发动机的推力-时间曲线满足所要求的推力-时间曲线包络范围,所述最低工作温度由导弹总体设定。
有益效果:
1、本发明燃烧室去掉了人工脱粘层,Ⅱ脉冲药柱增加环形槽,利用环形槽释放应力,将径向隔层承受的应变转移到轴向隔层,可有效降低径向隔层的第一部分位移U随温度降低的增加量,从而降低径向隔层的环向应变,拓宽发动机的使用温度下限,提高发动机的低温工作安全系数。
2、本发明的环形槽形状能够避免应力集中,且由于对燃面的改变要尽量小,本发明采用半圆与平行线段的结合是令环形槽周长最小的形状。
附图说明
图1为常规隔层式双脉冲固体发动机结构示意图;
图2为本发明双脉冲固体发动机结构示意图;
图3为本发明环形槽的局部示意图;
图4为本发明轴向隔层环形体的局部示意图;
其中,1-Ⅰ脉冲点火器,2-顶盖,3-Ⅱ脉冲点火器,4-径向隔层,5-绝热层,6-人工脱粘层,7-Ⅱ脉冲药柱,8-轴向隔层,9-Ⅰ脉冲药柱,10-壳体,11-喷管。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本实施例提供了一种降低双脉冲固体发动机隔层应变的燃烧室,如图2所示,包括径向隔层4、绝热层5、药柱、轴向隔层8和壳体10,与常规隔层式双脉冲固体发动机燃烧室结构相比,去掉了人工脱粘层6。
药柱设置在壳体10内,药柱与壳体10之间设置绝热层5,径向隔层4、轴向隔层8将药柱沿轴向分隔成两段,分别为Ⅰ脉冲药柱9、Ⅱ脉冲药柱7。壳体10一端由顶盖2密封,壳体10另一端固定连接喷管11,径向隔层4与顶盖2一体化成型,Ⅰ脉冲点火器1、Ⅱ脉冲点火器3均固定在顶盖2上,分别用于点燃Ⅰ脉冲药柱9、Ⅱ脉冲药柱7,由此构成发动机。Ⅱ脉冲药柱7位于前端,远离喷管11,Ⅰ脉冲药柱9位于后端。径向隔层4包裹在Ⅱ脉冲药柱7内圆周面,轴向隔层8包裹在Ⅱ脉冲药柱7与Ⅰ脉冲药柱9相对的端面,同时径向隔层4搭接在轴向隔层8内侧,且搭接处位于Ⅱ脉冲药柱7内圆周面与端面转角,以固体发动机轴线所在为内;Ⅱ脉冲药柱7与Ⅰ脉冲药柱9相对的端面上设置环形槽,轴向隔层8与Ⅱ脉冲药柱7端面形状匹配,增加了与环形槽匹配的环形体。环形槽和环形体是由平面曲线绕发动机中心轴线旋转360°形成的旋转体,平面曲线由两段平行于中心轴线的等长平行线段和连接两条平行线段的半圆构成,如图3所示,线段长度为L,半圆半径为R,环形槽与Ⅱ脉冲药柱7外圆面的径向距离为H,环形体与轴向隔层8外圆面的径向距离也为H,如图4所示。
具体设计实施过程如下:
步骤一,根据导弹总体推力-时间曲线要求,完成Ⅰ/Ⅱ脉冲药型设计,此时Ⅱ脉冲药柱7不含人工脱粘层6和环形槽。
步骤二,利用商用有限元软件计算Ⅰ脉冲药柱9工作时发动机内流场,确定径向隔层4和轴向隔层8的材料和厚度。
步骤三,利用优化算法确定设计参数L,R,H。优化目标是使发动机最低工作温度下径向隔层4的环向应变最小,最低工作温度由导弹总体拟定,一般为-40℃,由于Ⅱ脉冲药柱7开环形槽后会影响Ⅱ脉冲压强-时间曲线,进而影响发动机的推力-时间曲线,故约束条件是推力-时间曲线满足导弹总体要求的推力-时间曲线包络范围。
步骤四,利用商用软件计算由步骤三确定的发动机燃烧室结构在发动机最低工作温度下径向隔层4的环向应变,并与由步骤二确定的径向隔层4材料在发动机最低工作温度下的断裂应变对比,得到径向隔层4的低温安全系数,由此证明提高了发动机的低温工作可靠性。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种降低双脉冲固体发动机隔层应变的燃烧室,其特征在于,包括隔层、绝热层、药柱和壳体;
药柱设置在壳体内,药柱与壳体之间设置绝热层,隔层将药柱沿轴向分隔成两段;前端药柱与后端药柱相对的端面上设置环形槽,所述隔层与前端药柱端面形状匹配;
所述环形槽是由平面曲线绕发动机中心轴线旋转360°形成的旋转体,所述平面曲线由两段平行于中心轴线的等长平行线段和连接两条平行线段的弧线构成;所述弧线为半圆;
所述平行线段长度为L,半圆半径为R,环形槽与前端药柱外圆面的径向距离为H,利用优化算法确定L、R、H,优化目标是使发动机最低工作温度下径向隔层的环向应变最小,约束条件是发动机的推力-时间曲线满足所要求的推力-时间曲线包络范围,所述最低工作温度由导弹总体设定。
CN201910769154.XA 2019-08-20 2019-08-20 一种降低双脉冲固体发动机隔层应变的燃烧室 Active CN110566367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910769154.XA CN110566367B (zh) 2019-08-20 2019-08-20 一种降低双脉冲固体发动机隔层应变的燃烧室

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910769154.XA CN110566367B (zh) 2019-08-20 2019-08-20 一种降低双脉冲固体发动机隔层应变的燃烧室

Publications (2)

Publication Number Publication Date
CN110566367A CN110566367A (zh) 2019-12-13
CN110566367B true CN110566367B (zh) 2021-09-03

Family

ID=68775700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910769154.XA Active CN110566367B (zh) 2019-08-20 2019-08-20 一种降低双脉冲固体发动机隔层应变的燃烧室

Country Status (1)

Country Link
CN (1) CN110566367B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114953519B (zh) * 2022-03-27 2023-09-15 西安航天动力技术研究所 固体火箭发动机人工脱粘结构单侧裂纹增强模拟件及成型方法
CN114811657B (zh) * 2022-04-28 2023-06-20 湖北航天技术研究院总体设计所 一种适用于两边出气的燃发器压强波动的绝热结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672170A (en) * 1970-06-12 1972-06-27 Lockheed Aircraft Corp Propellant grain suspension system
US3908364A (en) * 1973-01-19 1975-09-30 United Technologies Corp Putty propellant stress refief system
US4936092A (en) * 1988-11-28 1990-06-26 The United States Of America As Represented By The Secretary Of The Navy Propellant grain design
CN1154911A (zh) * 1995-11-27 1997-07-23 三菱重工业株式会社 印刷滚筒
EP0899447A3 (en) * 1997-08-29 2000-06-14 Hughes Electronics Corporation Attachment ring for a rocket combustion chamber
CN203023323U (zh) * 2011-08-29 2013-06-26 西门子公司 紧固轮彀装置
CN109723573A (zh) * 2018-12-28 2019-05-07 湖北航天技术研究院总体设计所 一种带药缠绕一体化结构的双脉冲发动机及制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188802A (en) * 1961-11-29 1965-06-15 Thiokol Chemical Corp Solid propellant grain
DE2458180A1 (de) * 1974-12-09 1976-06-10 Dynamit Nobel Ag Trennwand fuer raketentriebwerke
JPS6047853A (ja) * 1983-08-25 1985-03-15 Nissan Motor Co Ltd 固体ロケツトモ−タの推進薬グレイン保持装置
WO1995030084A1 (en) * 1994-04-29 1995-11-09 Thiokol Corporation Solid propellant dual pulse rocket motor loaded case and ignition system and method of manufacture
JP4719182B2 (ja) * 2007-05-14 2011-07-06 三菱重工業株式会社 2パルスロケットモータ
CN102168631B (zh) * 2011-04-14 2013-07-24 北京航空航天大学 一种铝膜隔板装置及应用铝膜隔板装置的脉冲固体发动机
US9435266B2 (en) * 2013-03-15 2016-09-06 Rolls-Royce North American Technologies, Inc. Seals for a gas turbine engine
JP6307345B2 (ja) * 2014-05-14 2018-04-04 株式会社Ihiエアロスペース マルチパルスロケットモータとその製造方法
US10107601B2 (en) * 2015-10-06 2018-10-23 Raytheon Company Electrically operated pulse initiators and ignition
CN106930865B (zh) * 2017-02-24 2019-08-02 湖北航天技术研究院总体设计所 一种宽温使用的高能固体火箭发动机
CN208564799U (zh) * 2017-11-21 2019-03-01 西安航天动力技术研究所 一种多维编织复合网式隔离装置
CN208106595U (zh) * 2018-04-26 2018-11-16 湖南宏大日晟航天动力技术有限公司 一种新型端面固体推进剂装药

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672170A (en) * 1970-06-12 1972-06-27 Lockheed Aircraft Corp Propellant grain suspension system
US3908364A (en) * 1973-01-19 1975-09-30 United Technologies Corp Putty propellant stress refief system
US4936092A (en) * 1988-11-28 1990-06-26 The United States Of America As Represented By The Secretary Of The Navy Propellant grain design
CN1154911A (zh) * 1995-11-27 1997-07-23 三菱重工业株式会社 印刷滚筒
EP0899447A3 (en) * 1997-08-29 2000-06-14 Hughes Electronics Corporation Attachment ring for a rocket combustion chamber
CN203023323U (zh) * 2011-08-29 2013-06-26 西门子公司 紧固轮彀装置
CN109723573A (zh) * 2018-12-28 2019-05-07 湖北航天技术研究院总体设计所 一种带药缠绕一体化结构的双脉冲发动机及制作方法

Also Published As

Publication number Publication date
CN110566367A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN110566367B (zh) 一种降低双脉冲固体发动机隔层应变的燃烧室
CN107269424B (zh) 一种固体火箭发动机二次点火结构
CN109707534B (zh) 一种径向隔层式双脉冲发动机
US5886289A (en) Long range artillery shell
CN110749536B (zh) 一种固体火箭发动机热防护材料烧蚀实验装置
CN112211749A (zh) 一种小型固体火箭发动机
US2661691A (en) Projectile
RU2312999C1 (ru) Ракетный двигатель на твердом топливе
KR101494393B1 (ko) 이중 추력 로켓 추진기관
US4738100A (en) Boost-sustain-boost rocket
CN110596180B (zh) 发动机级间防护材料烧蚀模拟固定装置
RU2493533C1 (ru) Активно-реактивный снаряд
CN110594039A (zh) 一种降低双脉冲固体发动机隔层应变的隔层结构
RU2383764C1 (ru) Ракетный двигатель твердого топлива
CN105910507A (zh) 一种无壳枪弹
US2497888A (en) Means for preventing excessive combustion pressure in rocket motors
CN116220944B (zh) 固体发动机及火箭
US7117797B2 (en) Pyrotechnic charge structure
RU2305790C1 (ru) Ракетный двигатель твердого топлива
CN216342481U (zh) 一种固体姿控发动机一体化舱体
CN105449526A (zh) 小型非冷却等离子体射流点火器
CN112922745B (zh) 一种反旋式套管型药柱结构
CN217602792U (zh) 一种无绝热结构固体火箭发动机
CN108023276A (zh) 一种火花塞
CN114858008B (zh) 一种两边出气的燃发器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant