CN110564664A - Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro - Google Patents

Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro Download PDF

Info

Publication number
CN110564664A
CN110564664A CN201910897759.7A CN201910897759A CN110564664A CN 110564664 A CN110564664 A CN 110564664A CN 201910897759 A CN201910897759 A CN 201910897759A CN 110564664 A CN110564664 A CN 110564664A
Authority
CN
China
Prior art keywords
xylan
sulfated
proliferation
vitro
probiotic bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910897759.7A
Other languages
Chinese (zh)
Other versions
CN110564664B (en
Inventor
李霞
陈海鸥
尚一凡
关媛
李培骏
单杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201910897759.7A priority Critical patent/CN110564664B/en
Publication of CN110564664A publication Critical patent/CN110564664A/en
Application granted granted Critical
Publication of CN110564664B publication Critical patent/CN110564664B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses an application of a xylan sulfated derivative in promoting the proliferation of probiotic bacteria outside a cell, which is characterized in that the xylan sulfated derivative is added into a basic culture medium for culturing probiotic bacteria according to the mass percentage of 1.5-2% to promote the proliferation of the probiotic bacteria outside the cell. According to the invention, xylan which is difficult to absorb is sulfated to prepare xylan sulfated derivatives, and the xylan sulfated derivatives are applied to in vitro culture of probiotics.

Description

Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro
Technical Field
The invention belongs to the technical field of functional sugar derivation and application, and particularly relates to application of a xylitol sulfated derivative in promoting probiotic extracellular proliferation.
Background
xylan is the main component of plant hemicellulose and is a complex poly-pentose. It is a polysaccharide second to cellulose in nature, and xylan itself has many unique physiological activities and biological functions, such as: the chemical modification of xylan to study its biological activity has also been a hot spot at present, such as hydroxylation and carboxylation, but sulfated modified xylan has become one of the more interesting hot spots because of its multiple biological activities. The principle of the sulfation method is as follows: the polysaccharide is reacted with a corresponding sulfating agent under conditions such that certain hydroxyl groups on the polysaccharide residue are attached to sulfate groups, e.g., chlorosulfonic acid, the sulfating of the polysaccharide is by SO in a solution of Lewis base3H+By substitution of H in the hydroxyl groups of the polysaccharide+And neutralizing to obtain the sulfate. The degree of substitution of sulfuric acid affects the activity of sulfated polysaccharides, but the higher the degree of substitution, the more sulfate radicals, the stronger the activity, and the excessive sulfate radicals in the molecule can produce side effects such as anticoagulation.
Xylan has the characteristics of low sweetness, low calorie, difficult absorption, fermentability, no increase of blood sugar and blood fat, bowel relaxing and the like, and due to various advantages, xylooligosaccharide with low polymerization degree is prepared in the prior art, so that xylooligosaccharide is found to obviously promote the propagation of intestinal probiotics (namely, the existing commercialized prebiotics, wherein xylooligosaccharide is one of the prebiotics), and oligosaccharide is only used for the special prebiotics of bifidobacterium at present, but still has no function of promoting the intestinal probiotics and has no function of promoting the propagation of the bifidobacterium for xylose with higher polymerization degree; in addition, in the prior art, chemically modified xylan has better biological activity, such as the research on the aspects of anti-inflammatory activity, antiviral activity, anticancer activity, anticoagulant activity and the like of sulfated xylan, but the in vitro proliferation effect of sulfated derivatives of xylan on probiotics is not reported in domestic and foreign documents.
The invention carries out sulfation modification on xylan, and researches the in vitro proliferation effect of different concentrations of sulfated xylan on probiotics (Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus brevis).
Disclosure of Invention
An object of the present invention is to solve at least the above problems and to provide at least the advantages described later.
the invention also aims to provide the application of the sulfated derivative of the xylitol in promoting the proliferation of the probiotic bacteria in vitro, and the sulfated derivative of the xylan is added into a culture medium for culturing the probiotic bacteria to obviously improve the reproductive capacity of the probiotic bacteria, which indicates that the sulfated derivative of the xylitol has the function of obviously promoting the proliferation of the probiotic bacteria in vitro.
to achieve these objects and other advantages and in accordance with the purpose of the invention, as well as provide a method for promoting the proliferation of probiotic bacteria in vitro, the method comprises the step of adding 1.5-2% by mass of sulfated xylan derivatives to a basic culture medium for culturing probiotic bacteria to promote the proliferation of probiotic bacteria in vitro.
Preferably, the probiotic is lactobacillus brevis or lactobacillus delbrueckii.
Preferably, the basal medium is MSR medium.
Preferably, the sulfated xylan derivative is prepared by sulfating xylan, and specifically comprises the following steps:
Step 1: dissolving xylan in N, N-dimethylformamide, and performing ultrasonic dispersion at room temperature to obtain a first mixture;
Step 2: slowly adding sulfamic acid into the obtained mixture I to react for 1-5h to obtain the sulfated derivative of xylan.
preferably, the xylan and the N, N-dimethylformamide are mixed in a mass-to-volume ratio of 3: 80-85; the sulfamic acid is added according to 1-5 times of the total amount of the xylan.
Preferably, the sonication conditions in step 1 are: the power is 60-100W, and the ultrasonic treatment is carried out for 20-30 min.
Preferably, the reaction conditions in step 2 are specifically: stirring the mixture by using a constant-temperature magnetic stirrer, heating to 70 ℃, adding the sulfamic acid, heating to 80 ℃ again to react for 1-5h, quickly moving to an ice water condition to stop the reaction, cooling to room temperature, neutralizing by using a sodium hydroxide solution, and then sequentially carrying out alcohol precipitation, centrifugation, dialysis and freeze drying.
Preferably, the alcohol precipitation conditions are: precipitating with ethanol at 4 deg.C for 24 hr; centrifugation conditions: centrifuging at 4500r/min for 15 min; dialysis conditions: and (4) centrifuging, collecting the precipitate, redissolving the precipitate, and dialyzing with running water for 48 hours.
Preferably, the xylan has a sulfated substitution degree of 0.314.
The invention at least comprises the following beneficial effects:
The xylan can be used as a complex poly-pentose, can be used as a growth carbon source of strains, has the characteristic of difficult absorption by intestinal tracts of organisms, can smoothly pass through small intestines and stomach without being degraded and utilized, can directly enter large intestines to be utilized by intestinal flora, and enables the intestinal strains to grow and reproduce in a large quantity. The sulfated xylan is formed by adding N, N-dimethylformamide and sulfamic acid for sulfation, and has better substitution degree, no byproduct generation, simple preparation method and easy operation. According to the sulfated xylan derivative prepared by the method, through in-vitro probiotic proliferation experiments, the increasing trend of probiotics is found along with the increase of the concentration of the sulfated xylan derivative, but the proliferation effect is optimal when the addition amount is 2%, the technical problem that the xylan is not easy to absorb and utilize and difficult to develop in the prior art is solved, the xylan with high polymerization degree can be used for researching prebiotics to provide a basis, the variety of beneficial bacteria in the prebiotics is expanded, and the sulfated xylan derivative has wide popularization significance and application value.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention.
Drawings
FIG. 1 is a graph of infrared spectroscopic analysis before and after the sulfated modification of the xylan;
FIG. 2 the effect of different sulfation temperatures on the sulfated substitution of xylan polysaccharides;
FIG. 3 the effect of different sulphation times on the sulphation substitution degree of xylan polysaccharides;
FIG. 4 the effect of different xylan to sulfamic acid ratios on the degree of sulfated substitution of xylan polysaccharides;
FIG. 5 effect of different microwave powers on sulfated substitution of xylan polysaccharides;
FIG. 6 is a graph showing the effect of different concentrations of sulfated xylan on the in vitro proliferation of Lactobacillus brevis;
FIG. 7 is a graph showing the effect of different concentrations of sulfated xylan on the in vitro proliferation of Lactobacillus delbrueckii subsp.bulgaricus;
FIG. 8 is the effect of the 2% sulfated xylan on the growth rate of Lactobacillus brevis;
FIG. 9 is a graph of the effect of the 2% sulfated xylan on the growth rate of Lactobacillus delbrueckii subsp.
Detailed Description
The present invention is described in further detail below to enable those skilled in the art to practice the invention with reference to the description.
It will be understood that terms such as "having," "including," and "comprising," as used herein, do not preclude the presence or addition of one or more other elements or groups thereof.
Example 1
Preparation of sulfated xylan derivatives.
Sulphated xylan was prepared by the sulphamic acid-N, N-dimethylformamide method. 6g of xylan sample is weighed, dissolved in 160mLN, N-dimethylformamide and subjected to ultrasonic treatment at 70W and room temperature for 30 min. Stirring and heating to 70 ℃ by using a constant-temperature magnetic stirrer, slowly adding 12g of sulfamic acid, heating to 80 ℃, stirring and reacting for 1h under the condition, then quickly transferring into ice water to stop the reaction, cooling to room temperature, and neutralizing by using a 20% NaOH solution. Adding 3 times of anhydrous ethanol into the reaction solution, precipitating with ethanol at 4 deg.C for 24h, centrifuging at 4500r/min for 15min, retaining the precipitate, redissolving the precipitate, dialyzing with running water for 48h, and lyophilizing to obtain sulfated xylan.
Example 2
The sulfated xylan prepared in example 1 was examined by infrared spectroscopy.
Weighing 2mg sulfated xylan and xylan respectively, adding 150mg dried KBr in agate mortar, drying and grinding under incandescent lamp, tabletting to obtain uniform transparent and granular-feeling-free sheet, and performing infrared spectrum analysis in Fourier infrared analyzer with range of 4000-400cm-1And obtaining an infrared scanning chart.
As shown in FIG. 1, sulfated xylan was found at 3400cm-1The left and right have a broad peak, caused by O-H stretching vibration, at 2890cm-1The left and right absorption peaks are caused by C-H stretching vibration. The two absorption peaks are similar to the characteristic peak of xylan, and are both characteristic absorption peaks of polysaccharide. Sulfated xylan was found at 1394cm, in addition to the characteristic peaks of the polysaccharide-1An absorption peak appears, which is an asymmetric S ═ O stretching vibration absorption peak and is 1089cm-1The absorption peaks in (2) are due to contraction vibration of C-O, and these characteristic absorption peaks prove that sulfate groups have been introduced into the sugar chains and sulfation modification has been successful.
Example 3
Determination of the degree of substitution of the sulfated xylan prepared in example 1
the sulfate radical content in sulfated xylan is BaCl2-gelatin turbidimetry assay.
(1) solution preparation:
Measuring 20.83mL of concentrated hydrochloric acid with the mass fraction of 36% -38% to 250mL of 1mol/L HCl.
0.5% gelatin: weighing 1.25g of gelatin, dissolving in water, dissolving at 60-70 ℃, cooling to constant volume of 250mL, and standing overnight at 4 ℃ for later use.
0.5% barium chloride-gelatin: 0.5g of barium chloride is weighed, 100mL of gelatin with the mass fraction of 0.5 percent is used for constant volume, and the barium chloride is stored for standby at 4 ℃.
Trichloroacetic acid: preparing an aqueous solution with the mass fraction of 8%.
Preparation of 0.1mg/mL K2SO4and (4) standard solution.
(2) Preparation of the Standard Curve
Respectively and accurately absorbing standard sulfate solutions: 0.0mL, 0.2mL, 0.4mL, 0.6mL, 1.2mL, 1.6mL in test tubes, each test tube with deionized water to 1.6 mL; adding 1.4mL of trichloroacetic acid with the mass fraction of 8% and 1.4mL of barium chloride-gelatin solution with the mass fraction of 0.5%, uniformly mixing, standing for 15min at room temperature, and measuring the absorbance at 360 nm; and taking the mass (mg) of the sulfate radicals as an abscissa and taking the ordinate as an absorbance value to obtain a standard curve.
(3) Determination of sulfate radical content in samples
6mg of polysaccharide is dissolved in 6mL of HCl with the concentration of 1mol/L, hydrolysis is carried out for 6h at 100 ℃, an evaporation dish is evaporated, the evaporation is promoted by absolute ethyl alcohol, and 2mL of deionized water is added after the solvent is completely evaporated. 0.4mL of polysaccharide hydrolysate is sucked and distilled water is added to 1.6mL, trichloroacetic acid (8% aqueous solution) is added to 1.4mL, and BaCl is added21.4mL of gelatin solution, mixing (3 parallel groups), standing for 15min, and measuring the absorbance A1 at a wavelength of 360 nm.
Control group: the control group was operated as above, replacing BaCl with 1.4mL of gelatin solution2-a gelatin solution. The absorbance value A2 was measured at a wavelength of 360 nm.
The absorbance A0-A1-A2 and A1-A2 were determined to eliminate the effect of the foreign absorbing substances contained in the hydrolysate. The quality of potassium sulfate can be calculated according to the standard sulfate curve by the measured absorbance value.
(4) Calculation of sulfated degree of substitution
Substitution degree calculation formula: DS ═ (1.62 × S)/(32-1.02 × S). Where S-mass fraction (%) of sulfur in the sample.
By using BaCl2Gelatin turbidimetry, obtaining the standard curve equation y 1.3379x +0.0037, R2=0.9934
According to the calculation results of the sulfate radical standard curve and the sulfate radical substitution degree formula, the obtained product has the sulfate radical substitution degree of 0.341 and the sulfate radical content of 6.72 percent.
Example 4
1. Effect of different sulfation temperatures on the degree of sulfated substitution of xylan polysaccharides
the temperature was set at 60, 70, 80, 90, 100 ℃ and the effect of different sulfation reaction temperatures on the degree of sulfated substitution of xylan polysaccharides was investigated.
As a result, as shown in FIG. 2, the degree of substitution was as high as 0.341 at 80 ℃. The degree of substitution gradually decreases with increasing temperature. Thus, the sulfation temperature of the sulfated modified xylan polysaccharide was 80 ℃.
2. Effect of different sulfation time on the degree of sulfated substitution of xylan polysaccharides
Reaction times of 1, 2, 3, 4, 5h were set, and the effect of different sulfation reaction times on the degree of sulfated substitution of xylan polysaccharides was investigated.
as shown in FIG. 3, the effect of the sulfation time on the degree of substitution was not large, and the degree of substitution was slightly decreased as the reaction time progressed, so that the optimum reaction time was 1 hour.
3. Effect of different xylan to sulfamic acid ratios on the degree of sulfated substitution of xylan polysaccharides
The effect of different amounts of sulfamic acid on the sulfated substitution of xylan polysaccharides was investigated by setting the ratios of xylan to sulfamic acid 1:1, 1:2, 1:3, 1:4, 1:5 (g/g).
as a result, as shown in FIG. 4, the ratio was 1:2, the peak was highest, and the degree of substitution was slightly decreased when the ratio exceeded 1: 2. Thus, the optimal ratio of xylan to sulfamic acid for sulfated modified xylan polysaccharides is 1: 2.
4. Effect of different microwave powers on the degree of sulfated substitution of xylan polysaccharides
The effect of different microwave powers on the sulfated substitution degree of xylan polysaccharides was investigated by setting 60, 70, 80, 90, 100W.
As a result, as shown in FIG. 5, the peak appeared at a microwave power of 70W, and the degree of substitution was reduced after the power exceeded 70W. Therefore, the optimal microwave power for sulfated modified xylan polysaccharides is 70W.
example 5
1. effect of different concentrations of sulfated xylan polysaccharides on probiotic proliferation
MSR culture medium: 10g of soybean peptone, 10g of beef extract, 5g of yeast powder, 2g of diamine citrate, 0.05g of manganese sulfate, 0.3g of magnesium sulfate, 801mL of tween-801, 2g of dipotassium hydrogen phosphate and 5.0g of sodium acetate, heating for dissolving, adding distilled water to 1000mL, and adjusting the pH value to 6.5. Sterilizing at 121 deg.C for 20 min.
10mL of MRS basal medium containing sulfated xylan polysaccharides with different concentrations (0.5, 1.0, 1.5, 2.0, 3.0%, W/V) are respectively added, xylan with different concentrations (basal medium with xylan as carbon source) is used as negative control, while fructo-oligosaccharide (FOS) with different concentrations is used as positive control, and sterilization is carried out at 115 ℃ for 30 min. Then respectively inoculating 100 μ L of multiply activated Lactobacillus delbrueckii (GIM1.155) and Lactobacillus brevis (GIM1.773) suspension, anaerobically culturing at 37 deg.C for 48 hr, sampling, and measuring OD value of each culture solution at 600nm and pH value of the culture medium; each experiment was repeated 3 replicates.
As shown in fig. 6 and 7, the results show that: OD in the sample600The value increases with the increase of the concentration of the sulfated xylan, which shows that the number of the strains in the sample to be tested tends to increase with the increase of the concentration, and the strain has a promoting effect on the thalli, and specifically comprises the following steps:
As shown in FIG. 7, in the range of 0.5-1.5%, OD value is increased continuously with the increase of concentration, OD value change is smaller in the range of 1.5-3%, OD value is not increased after 2% reaches the maximum value, so 2% concentration is the optimum concentration of Lactobacillus delbrueckii subspecies bulgaricus;
As shown in FIG. 6, the OD value of the culture solution of Lactobacillus brevis reaches the highest peak when the concentration is 1.5%, and then the change of the concentration of the culture solution is small at 2%, and the change of the OD value is not obvious along with the increase of the concentration, which shows that the effect is better when the addition amount of the polysaccharide is not higher, probably because the osmotic pressure of the culture solution is increased due to too high sugar concentration, the thallus is dehydrated and dead, and the growth of the thallus is inhibited. In general, the optimal concentration for the culture was selected to be 1.5% polysaccharide based on the OD of the culture.
2. Effect of sulfated xylan polysaccharides on probiotic growth Rate
OD of growth from both Lactobacillus delbrueckii subsp bulgaricus and Lactobacillus brevis as a result of the effect of different concentrations of sulfated xylan on the activity of the probiotic600And the pH index can be found as follows: the best proliferation condition is when the polysaccharide concentration is 2% and 1.5%, respectively, therefore, the sulfated xylan, xylan and FOS are added according to the concentration of 2% or 1.5% to respectively prepare liquid culture mediums, and the concrete steps are as follows: 450 ml Erlenmeyer flasks were divided into 2 groups, and two media, i.e., MRS medium and MRS medium supplemented with 2% or 1.5% sulfated xylan, were added to each group, and sterilized at 115 ℃ for 30 min. Respectively adding 50ml of FOS-containing culture medium, 500uL of lactobacillus brevis suspension with the concentration of 1% in the first group and 500uL of Lactobacillus delbrueckii subsp bulgaricus suspension with the concentration of 1% in the second group, and culturing for 48h under the anaerobic condition at 37 ℃; then taking 4mL of culture solution at 0h, 4h, 10h, 20h, 32h, 44h and 48h respectively, and taking the culture time as abscissa and OD600And taking the pH value as a vertical coordinate, measuring indexes, and drawing a growth curve of the probiotics.
As shown in fig. 8, the results show that: OD in 10-20h600The change of the pH value and the change of the pH value are both larger, which indicates that the proliferation condition and the acid production condition of the lactobacillus brevis at this stage are changed greatly and are in the period of vigorous growth; and after 44h, OD600And the pH value respectively tend to be basically flat, and the balance is reached, which indicates that the lactobacillus brevis enters a growth stable phase.
as shown in fig. 9, the results show that: OD in 10-20h600The change of the pH value and the change of the pH value are both larger, which indicates that the proliferation condition and the acid production condition of the Lactobacillus delbrueckii subsp.bulgaricus at this stage are changed greatly and are in the period of vigorous growth; and after 44h, OD600And the pH value respectively tend to be basically flat, and equilibrium is reached, which indicates that the Lactobacillus delbrueckii subsp.
The above embodiments are merely illustrative of the present invention and are not to be construed as limiting the invention. Although the present invention has been described in detail with reference to the embodiments, it should be understood by those skilled in the art that various combinations, modifications or equivalents may be made to the technical solution of the present invention without departing from the spirit and scope of the technical solution of the present invention, and the technical solution of the present invention is covered by the claims of the present invention.

Claims (9)

1. The application of the sulfated xylan derivative in promoting the proliferation of probiotics in vitro is characterized in that the sulfated xylan derivative is added into a basic culture medium for culturing probiotics according to the mass percent of 1.5-2% to promote the proliferation of the probiotics in vitro.
2. Use of sulfated derivatives of xylan according to claim 1 for promoting the proliferation of probiotic bacteria in vitro, wherein said probiotic bacteria are lactobacillus brevis or lactobacillus delbrueckii.
3. The use of sulfated derivatives of xylan according to claim 1 for promoting the proliferation of probiotic bacteria in vitro, wherein the basal medium is the MSR medium.
4. The use of a sulfated derivative of xylan according to claim 1 for promoting the proliferation of probiotic bacteria in vitro, wherein said sulfated derivative of xylan is prepared by sulfating xylan, comprising in particular the following steps:
step 1: dissolving xylan in N, N-dimethylformamide, and performing ultrasonic dispersion at room temperature to obtain a first mixture;
Step 2: slowly adding sulfamic acid into the obtained mixture I to react for 1-5h to obtain the sulfated derivative of xylan.
5. Use of sulfated derivatives of xylan according to claim 4 in the promotion of the proliferation of probiotic bacteria in vitro, wherein said xylan and said N, N-dimethylformamide are present in a mass to volume ratio of 3: 80-85; the sulfamic acid is added according to 1-5 times of the total amount of the xylan.
6. Use of sulfated derivatives of xylan according to claim 4 for promoting the proliferation of probiotic bacteria in vitro, wherein the sonication conditions in step 1 are: the power is 60-100W, and the ultrasonic treatment is carried out for 20-30 min.
7. The use of sulfated derivatives of xylan according to claim 4 for promoting the proliferation of probiotic bacteria in vitro, wherein the reaction conditions in step 2 are in particular: stirring the mixture by using a constant-temperature magnetic stirrer, heating to 70 ℃, adding the sulfamic acid, heating to 80 ℃ again to react for 1-5h, quickly moving to an ice water condition to stop the reaction, cooling to room temperature, neutralizing by using a sodium hydroxide solution, and then sequentially carrying out alcohol precipitation, centrifugation, dialysis and freeze drying.
8. use of sulfated derivatives of xylan according to claim 6 for promoting the proliferation of probiotic bacteria in vitro, wherein the alcohol precipitation conditions are: precipitating with ethanol at 4 deg.C for 24 hr; centrifugation conditions: centrifuging at 4500r/min for 15 min; dialysis conditions: and (4) centrifuging, collecting the precipitate, redissolving the precipitate, and dialyzing with running water for 48 hours.
9. Use of sulfated derivatives of xylan according to claim 4 in the promotion of the proliferation of probiotic bacteria in vitro, wherein the xylan has a degree of sulfation substitution of 0.314.
CN201910897759.7A 2019-09-23 2019-09-23 Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro Active CN110564664B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910897759.7A CN110564664B (en) 2019-09-23 2019-09-23 Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910897759.7A CN110564664B (en) 2019-09-23 2019-09-23 Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro

Publications (2)

Publication Number Publication Date
CN110564664A true CN110564664A (en) 2019-12-13
CN110564664B CN110564664B (en) 2023-02-21

Family

ID=68781817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910897759.7A Active CN110564664B (en) 2019-09-23 2019-09-23 Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro

Country Status (1)

Country Link
CN (1) CN110564664B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458129A (en) * 2020-12-29 2021-03-09 青岛润达生物科技有限公司 Preparation process of short-chain ganoderan sulfuric acid derivative
CN112480280A (en) * 2020-12-08 2021-03-12 中国科学院新疆理化技术研究所 Preparation method and application of bletilla striata polysaccharide derivative
CN115611998A (en) * 2022-07-18 2023-01-17 北京林业大学 Rod-shaped xylan nanocrystal, preparation method thereof and application thereof in detergent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651466A (en) * 2004-12-31 2005-08-10 中国药科大学 Sulphatization derivative of polysaccharide, its preparation method and use
GB0805360D0 (en) * 2008-03-25 2008-04-30 Univ Leuven Kath Arabinoxylan oligosaccharide preparation
CN109912726A (en) * 2018-09-29 2019-06-21 北方民族大学 Tinder fungus polysaccharide derivates, preparation method and applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651466A (en) * 2004-12-31 2005-08-10 中国药科大学 Sulphatization derivative of polysaccharide, its preparation method and use
GB0805360D0 (en) * 2008-03-25 2008-04-30 Univ Leuven Kath Arabinoxylan oligosaccharide preparation
CN109912726A (en) * 2018-09-29 2019-06-21 北方民族大学 Tinder fungus polysaccharide derivates, preparation method and applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAI WEIRONG 等: "Extraction, sulfonation and anticoagulant activity of xylan from corncob", 《EUROPEAN FOOD RESEARCH AND TECHNOLOGY》 *
刘丽娅等: "小麦麸皮阿拉伯木聚糖体外益生活性研究", 《中国粮油学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480280A (en) * 2020-12-08 2021-03-12 中国科学院新疆理化技术研究所 Preparation method and application of bletilla striata polysaccharide derivative
CN112480280B (en) * 2020-12-08 2022-06-24 中国科学院新疆理化技术研究所 Preparation method and application of bletilla striata polysaccharide derivative
CN112458129A (en) * 2020-12-29 2021-03-09 青岛润达生物科技有限公司 Preparation process of short-chain ganoderan sulfuric acid derivative
CN115611998A (en) * 2022-07-18 2023-01-17 北京林业大学 Rod-shaped xylan nanocrystal, preparation method thereof and application thereof in detergent
CN115611998B (en) * 2022-07-18 2023-08-08 北京林业大学 Rod-like xylan nanocrystal, preparation method thereof and application thereof in detergents

Also Published As

Publication number Publication date
CN110564664B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
CN110564664B (en) Application of sulfated xylan derivative in promoting proliferation of probiotics in vitro
Zeng et al. A review on peach gum polysaccharide: Hydrolysis, structure, properties and applications
CN108117991B (en) Use of a product for detecting the content of acetic acid, isobutyric acid and/or valeric acid for the preparation of a product for revealing an imbalance in the intestinal microecology of constipation sufferers
El-Saied et al. Production and characterization of economical bacterial cellulose
Wang et al. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1
WO2023280235A1 (en) Heparin molecule containing at binding sequence and continuous 2-o-glucuronic acid residue, and preparation method therefor and use thereof
Wang et al. Rapid microwave-assisted synthesis of polydextrose and identification of structure and function
CN108840889A (en) A kind of application of chitosan oligosaccharide based compound and preparation method thereof
WO2018121581A1 (en) Method of degrading polysaccharide using ozone
Chen et al. Flow synthesis, characterization, anticoagulant activity of xylan sulfate from sugarcane bagasse
CN114053247A (en) Konjac glucomannan targeted delivery capsule and preparation method thereof
Wang et al. A novel process for preparation of (1→ 3)-β-D-glucan sulphate by a heterogeneous reaction and its structural elucidation
CN109402106B (en) Method for fixing Klebsiella through polyvinyl alcohol-cellulose and application of method
CN100594877C (en) Application of carboxymethyl inulin
Maity et al. Chemical analysis and study of immunoenhancing and antioxidant property of a glucan isolated from an alkaline extract of a somatic hybrid mushroom of Pleurotus florida and Calocybe indica variety APK2
CN108239176B (en) Low-molecular-weight enteromorpha polysaccharide and preparation method thereof, sulfated low-molecular-weight enteromorpha polysaccharide and preparation method and application thereof
CN110627924A (en) Sulfated xylan, preparation method thereof and application thereof in preparing antioxidant drugs
Miao et al. Structure–prebiotic properties relationship for α-D-glucan from Leuconostoc citreum SK24. 002
Wang et al. Structural characterization of alkali-extracted jujube polysaccharides and their effects on the fecal microbiota in vitro
CN112568445B (en) Fucoidan with prebiotic effect, and preparation method and application thereof
CN113826900A (en) Gellan gum oligosaccharide and application thereof in prebiotics
CN110551231B (en) Preparation method of carboxymethylated xylan, carboxymethylated xylan product and application of carboxymethylated xylan product
CN104877047A (en) Synthesis method of inulin-catechin graft copolymer with strong antioxidation activity
CN114835826A (en) Zwitterionic cellulose and preparation method and application thereof
CN113999839A (en) Immobilization method of microalgae and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191213

Assignee: Guilin Fanyi Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980044835

Denomination of invention: Application of Xylan Sulfated Derivatives in Promoting in Vitro Proliferation of Probiotics

Granted publication date: 20230221

License type: Common License

Record date: 20231031

EE01 Entry into force of recordation of patent licensing contract